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London equation of state for a quantum-hard-sphere system
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The London analytical interpolation equation between zero and packing densities for the ground-state

energy of a many-boson hard-sphere system is corrected for the reduced mass of a pair of particles in a
"sphere-of-influence" picture. It is thus brought into good agreement with computer simulations and

with experimental results extrapolated out to close packing.

The hard-sphere system is a useful first approximation
to a many-body system interacting via a pair potential
containing a short-ranged repulsive part. This description
is better at very low densities where the particles experi-
ence weakly the attractive potential tail surrounding the
repulsion, or at very high densities where the repulsions
are predominant. However, at intermediate densities the
attractive potential can be expected to play a significant
role.

The hard-sphere system is used as a "reference system"
in perturbative theories in the zero order. For instance,
familiar from classical statistical thermodynamics is the
thermodynamic perturbation theory, ' which describes
classical fluids very successfully. A quantum counter-
part, quantum thermodynamic perturbation theory, has
been developed and shown that a good quantum-hard-
sphere state equation at physical (intermediate) densities
is crucial in correctly describing quantum fluids such as
He, He, electron-spin-polarized H, nuclear matter, etc.

At very low density the energy E for an N-boson sys-
tem is given exactly by

t 1+C& (pa )' +Culpa ln(pa )+E 2M pa

where a is the S-wave scattering length of the pair poten-
tial between particles, C& = 128/15' m, C2 =8(4m /
3 —&3}, p =N /0 is the particle number density, 0 the
system volume, and m the particle mass. For a hard-
sphere system a reduces to the hard-sphere diameter c.
This "virial-expansion-like" series is clearly not a power
series expansion, and at best is an asymptotic series. A
similar series exists for an N-identical-fermion system.
Unfortunately, both boson and fermion low-density ex-
pansions break down at moderate and higher densities,
including the all-important saturation (or equilibrium,
zero-pressure) density of He, He, or nuclear matter.

As in the classical-hard-sphere system, a (Kirkwood)
fluid-to-crystal phase transition is expected at some in-
termediate density around which are available the
presumably exact Green function Monte Carlo (GFMC}
computer simulations for the many-boson hard-sphere
system. Four density data points are reported for the
Quid branch and five for the crystalline.

At very high density, as in the classical case, one ex-
pects the quantum hard-sphere system to approach a
close packing density po. Furthermore, the equation of
state can be expected to then become independent of
statistics (boson or fermion) as in this limit each particle
becomes distinguishable by a precise, specific location.
The uncertainty principle applied to a single particle then
implies a second-order pole in the ground-state energy
per particle given by
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where the "residue" A is a dimensionless constant. The
value of A has been predicted to lie in the range

1.63 A +27.0 (3)

An ingenious attempt to analytically represent the
ground-state energy per particle of an assembly of
N( ))1) boson hard spheres for all densities goes back to
London, who wrote a formula interpolating the two den-
sity extremes of the range 0 ~p ~po. Explicitly, he gives
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where b=2 /~ —1. Here, c is the hard-sphere diame-
ter, and po—=&2/c is believed' to be the ultimate densi-

ty for a system of classical hard spheres, thought to close
pack in a so-called "primitive hexagonal" (e.g., face-
centered-cubic) arrangement. (This hypothesis, variously
known as Kepler's or Newton's conjecture, appears to
have finally been demonstrated. ") London's rationale
for Eq. (5) is that it reduces smoothly, at both lowest and
highest densities, to.the limiting expressions

for face-centered-cubic close packing, by generalizing the
straightforward calculation for a simple cubic lattice
based on three mutually perpendicular exactly soluble
linear lattices, which itself gives A =m. =9.87. The ex-
perimental value for the residue extracted by Cole from
high-pressure crystalline branch data in He, He, H2,
and Dz systems is

A =15.7+0.6 .
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FIG. 1. The dimensionless quantity (2n+peN/mE)'~

=[1—(p /p 0)'~' ][I+b(p /po)'~ 3]'~ from the London (L) equa-
tion (5) with b =2' /n. —1, and from modified London (ML)
equation with b =2' /m —1 as discussed in text. This quantity
clearly approaches 1 as p/p0~0, and 0 as p/pa~1.
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The asymptotic result Eq. (6) is the leading term in (1)
with a =c and is the celebrated Lenz' term, calculated
by him as the leading correction to the energy due to an
"excluded volume" effect. On the other hand, the limit-
ing result equation (7) according to London is just the
quantum-mechanical kinetic energy of a point particle of
mass m inside a spherical cavity of radius r —c, where
r =(v 2/p)' is the separation between two neighboring
spheres as primitive hexagonal close packing is ap-
proached. This can be seen from the Schrodinger equa-
tion for the point particle in a spherical cavity of radius
r —c, whose energy eigenvalues call for the first (nonzero)
root of J'o(x)=sinx/x, with x =k(r —c). This is just
k(r c)=m. so th—at R k /2m =A' n /2m(r —c), which
is precisely (7).

Recently, a London equation generalized to describe
fermions with v intrinsic degrees of freedom has been de-

rived' which for popo becomes independent of statis-
tics, i.e., of v, and reduces to (7), when v~ ~ as it
should. From this it follows that according to the Lon-
don formula (5), and (7), the residue A in (2) for bosons or
fermions is the same and equal to (m /2'/ )=7.83. This
value satisfies the bounds (3) but is roughly only one half
the empirical value of (4).

The derivation of the high-density extreme of the origi-
nal (boson) London equation (5), and consequently of the
generalized' (fermion) London equation, contains one
fundamental error. The spherical cavity of radius r —c al-
luded to above in reality refers to a "sphere of influence"
of two particles; thus, the particle mass used in obtaining
(7) from the lowest Schrodinger equation eigenvalue of a
particle in the spherical cavity should refer to the reduced
mass m /2. This gives the constant b =2 /m —1 (instead
of 2 / /m. —1 as given by London) in (5). The result will
be designated the modified London equation, which con-
tinues to satisfy (6) as this is independent of the constant
b in (5). The residue A in (2) is now 2 / m. =15.7 in full
agreement with the empirical residue (4). This modified
London (ML) equation agrees dramatically better than
the original London (L) equation with GFMC computer
simulation of both fluid and crystalline branches of the
boson-hard-sphere system, Fig. 1. Needless to say, the
London interpolation being smooth completely misses
the fiuid-to-crystalline (first-order) phase transition. The
problem examined in this paper is reminiscent of the con-
troversy which raged during the last century between
Clausius, Maxwell, and Boltzmann —and finally resolved
by the latter —on the correct way to analytically calcu-
late the second virial coefficient for hard spheres in a
"sphere-of-influence" picture.

In summary, a correct sphere-of-influence argument
taking into account the reduced mass of a pair of particles
modifies the high-density extreme of the ingenious analyt-
ical London interpolation formula describing the
ground-state energy of a many-boson hard-sphere system.
The correction yields both excellent agreement with the
experimentally extracted residue at the close-packing-
density uncertainty-principle pole in the energy, as well
as good agreement with computer simulations at inter-
mediate densities. Clearly, neither of these two tests were
available to London.
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