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Disorder-induced unbinding of a fiux line from an extended defect
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We study the competition, for a single Qux line, between pinning by bulk point randomness and
an extended defect, such as an ion track, dislocation line, or twin plane. In three dimensions, there
is an unbinding transition for a linear (but not a planar) defect. This transition is analyzed using
Flory, Migdal-KadanofF, functional renormalization-group, and numerical methods. The localization
length, describing the typical transverse separation between the vortex line and defect, diverges like

~T —T,
~

~, with v~ 1.4. We predict the effects of this localization length on the I V-
characteristics of the superconductor, and suggest experiments to observe the transition.

I. INTRODUCTION

It is now well known that Huctuations can drastically
change the nature of the Abrikosov phase of type-EI su-
perconductors. Thermal disorder can melt the vortex
lattice, forming a Hux liquid at both low and high vor-
tex densities. ~ Quenched randomness also leads to new
behavior, 2 which depends upon its degree of correlation.
Point defects, such as vacancies or interstitials, encour-
age line wandering, and may lead to the formatio~ of a
glassy phase with a nonzero critical current, called a vor-
tex glass. More recently, the experimental creation of
"columnar, " or linear, pinning sites ' has inspired theo-
retical treatment of the resulting "Bose glass" phase. '

Twin planes, planar defects which occur naturally as a
type of grain boundary, lead to a yet different glassy
phase.

When both point and extended defects (such as colum-
nar pins or twin boundaries) are present, the theoretical
(and experimental) situation is less clear. s' Scaling ar-
guments suggest that the Bose glass phase is unstable
to point disorder. Although the vortex glass is itself
not well understood, it is quite possible that the ad-

dition of correlated disorder leads to an instability in
this case as well. At present, the only concrete cal-
culations addressing this problem for bulk systems are
renormalization-group analyses in two dimensions, and
in a dislocation-free model in 5 —e dimensions. The na-

ture of the phase(s) in three dimensions in the presence of
dislocations and point defects remains an open question.

Much of the difBculty of the competing-disorder prob-
lem derives from the lack of a detailed understanding
of the bulk vortex glass phase. The behavior of a sin-

gle flux line (FL) with point disorder, however, is well

understood. The equilibrium statistical mechanics
of a single FL and a single extended defect is also well
known (see, e.g. , Ref. 7 or Ref. 14). In this paper, we

analyze one FL in the presence of both bulk point ran-
domness and a single extended defect (see Fig. 1).

Although both point disorder and the extended de-
fect act to pin the FL, the nature of the pinned state
in each case is quite different. With purely point disor-
der, the FL tends to wander transversely as it proceeds
along the magnetic field axis, in order to take advantage
of locally favorable regions of impurities. The extended
defect, on the other hand, attracts the FL to itself, sup-
pressing wandering. An important characterization of
the FL, therefore, is whether it wanders arbitrarily far as
its length increases, or whether it remains within some
width E~ of the extended defect. In general, both the
former and latter cases are possible, and will be referred
to as delocalized and localized phases, respectively.

In three dimensions with a columnar defect, we find

FIG. 1. Flux line localized amund a columnar pin in three
dimensions (d = 3, n = 1). White portions of the FL indicate
when it is on the defect.
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that both localized and delocalized phases exist, provided
that the point randomness is sufBciently strong. In this
case, the FL is localized at high temperatures, with a
second-order unbinding transition as temperature is de-
creased through some critical point T„.As the critical
temperature is approached Rom above, the localization
length diverges with the power law E~ (T —T„)
The best estimate of the critical exponents is obtained us-

ing renormalization-group (RG) techniques, which yield
v~ 1.4, in agreement with numerical simulations which
yield v~ = 1.3 6 0.6. The RG calculation also yields the
specific heat exponent n 0.21. For a planar defect in
three dimensions, the FL is localized at all temperatures.
Even at zero temperature, there is a nonzero localiza-
tion length due to point defects. Experimentally, this
behavior may be observed at low magnetic fields and low
densities of extended defects.

The outline of the paper is as follows. In Sec. II,
we present the appropriate &ee energy for a single FL,
and discuss methods for estimating the magnitudes of
its various terms starting from fundamental parameters
of the superconductor. Section III describes the phases
of the model and analyzes their stabilities. In Sec. IV
a characterization of the unbinding transition is given,
along with simple "mean-field" or Flory estimates for
the critical exponents. In Sec. V, a Migdal-Kadanoff
RG is introduced as a first attempt to remedy the defi-
ciencies of the scaling arguments in the previous section.
Functional renormalization-group techniques, described
in Sec. VI, lead to a controlled expansion for the critical
exponents, and the results quoted above. These predic-
tions are tested against numerical simulations in Sec. VII,
and show reasonable agreement. In Sec. VIII, we deter-
mine the limits of applicability of our theory, evaluate the
estimates of Sec. II for several types of point and colum-
nar defects in YBazCus07 (YBCO), and suggest meth-
ods of experimental observation of FL delocalization. In
Sec. IX, we review our conclusions, the relationship to
other work, and give suggestions for future research.

tively. The FL stiffness constant ei has been calculated
in its full wave-vector-dependent form in Ref. 16. Up to
logarithmic prefactors [of O(1) for most physical situa-
tions] its limits are

A gq &&1,
p ep, A~gq~ PP 1, (2.2)

where q, is the wave vector for distortions involving small
numbers of impurities, and p is the anisotropy.

B. Extended defect potential

The extended defect is modeled as an n-dimensional
normal region of width cp, oriented parallel to the z axis
(see Fig. 1). For n = 1 or n = 2, this model describes pin-
ning by a columnar or planar defect, respectively. The re-
sulting potential V~ is a short-range function of the coor-
dinate x~ (z) E R~ " transverse to the defect, with width
bp and magnitude Up. The magnitude Up is roughly de-
termined by the condensation energy saved in the normal
region, and in the Ginzburg-Landau approximation is es-
timated as (see Ref. 7)

C. Point impurity potentials

W

l ep in(~~ )+O(1), A s&&cp &&(~ s,
( )

I epc2p/(4Qs), cp (( ( s,

where ( s is the in-plane coherence length, and cp is
the actual width of the defect. The constant ep

((t)p/4+1 s), where Pp
——hc/2e is the Hux quantum.

The O(1) contribution for A s » cp » g s arises from
the core, and may be quantitatively important due to
the only logarithmic dependence on cp/$ s. The effective
width is given by bp ——max(cp, g s).

II. MODEL

A. Free energy

Generally, the potential due to point defects can be
represented as a sum of potentials v; arising from the
individual impurities,

dzV (x(z), z) = ) v;(x(z;) —«;), (2.4)
Choosing the z axis along the direction of the magnetic

induction B, it is natural to describe the conformation of
the Hux line by a vector x(z) transverse to this axis. For
the sake of generality, we will consider a d-dimensional
space, so that x(z) 6 R i, though all numerical esti-
mates will, of course, be calculated in the physical case
d = 3. The &ee energy is a modification of that originally
introduced by Nelson and Seung,

V (x, z) = ) v;(x —x,)b(z —z;) (2 5)

where we have made the approximation that the inter-
action v;(x) depends on the transverse distance to the
defect, valid when the angle between the FL's and the z
axis is not too large. Eq. (2.4) leads to the expression

F = dz — —Vzz(xz(z)) —Vz(x(z), z)),
d«(z)

0 2 dz

(2.1)

where Vii(x~(z)) and V (x(z), z) are potentials repre-
senting the extended defect and point disorder, respec-

for V~. The range R and strength E~ of v;(x) can vary
considerably, depending upon the type of defect consid-
ered. Oxygen vacancies occur at atomic scales and are
thought to be a major source of pinning in untwinhed
bulk high-temperature superconductors. Other types of
defects, such as precipitates, might constitute more
mesoscopic-scale bulk randomness in some samples. Con-
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sider a single impurity, modeled as a sphere of radius ro.
For ro &) A, both the core and field gradient energies are
saved over a vortex segment of length 2ro, so

——,+-, (e1) '+'
(2.12)

E~'))"' = 2epro[ln(A b/( s) + =], (2.6)

where " 0.1 is the core contribution to the vortex line
energy (see, for example, Ref. 18). When ( s « ro « A,

all the core energy but only a &action of the field energy
is saved, leading to

Egos«&o«&as ~ 2 P ( g ) + ] (2.7)

In both of the above cases, the range is B = ro. For
ro « f s, the naive assumption of purely core pinning
within the spherical defect gives the estimate

(R't" '
E~ Ep

/

k&~)
(2.i3)

For FL segments of length z~, the coarse-grained po-
tential must be chosen to match Eqs. (2.10)—(2.13). In
terms of the small-scale parameters, the correlation func-
tion between two Gaussian volumes is

with x& given by Eq. (2.11). For d = 3, this gives a
cutoff of a ge1/pI T. The typical energy fluctuation
within one volume is just the energy EI, averaged over
transverse fluctuations of the FL within the volume,

&0 &&4ab 4

F
Q

3
(2.8)

(x —x' ) (z —z' l
{V~(» z)zaV~{x', z')za) - E~f

~
I g I

z& ) 4 z

(2.14)
In this regime, however, the microscopic core structure
may become important. Indeed, a BCS-type calcula-
tion yields an enhancement of EI by roughly a factor
of $ g/ro. Such a small impurity may reside anywhere
within the core, so R = ( b We. will assume, as is usu-

ally true, that this range is quite short compared to the

typical point defect separation sp —= p&
For some calculations, it is useful to treat V (x, z) as

a Gaussian random potential with the two-point expec-
tation value

{Vp(x,z) Vj (x', z')) = R{x—x')b(z —z'). {2.9)

d—1
p+XG Z+ ~ 1~ (2.10)

At high temperatures, thermal fluctuations dominate the
physics on these small scales. Application of the equipar-
tition theorem to Eq. (2.1) then gives

Naively, one might expect that the sum in Eq. (2.5)
would automatically lead to a Gaussian distribution for

V~(x, z). The central-limit theorem, however, does not
apply in this case, since at any given point (x, z), no more
than one term of the sum is typically nonzero (given the
assumption s~ )) R). Instead, short FL segments will

be pinned by distinct point impurities. On scales much
larger than s~, however, a coarse-grained FL will expe-
rience a smoothed-out random potential closely approxi-
mating the form of Eq. (2.9). To estimate R(x), we must
carry out this coarse graining explicitly.

To observe Gaussian fluctuations, the system must be
divided into volumes containing a number of impurities of
O(1). Denoting the transverse and longitudinal lengths
of the volumes by xc and zG,

where f(g) and g(y) are short-range functions with both
magnitude and range of O(1). Ignoring physics at scales
smaller than the cutoff, g(y) ~ b(y), leading to

E~ (x —x')
{V~(x,z)V~(x', z')) f

~
~
h(z —z'). (2.15)

ZG E +G )
In order to match with Eq. (2.9), we require

E2
(2.16)

For power-counting purposes, it is useful to take the limit

f(g) + 8f" 1l(y), leading to

(2.17)

where, in terms of small-scale parameters,

~2 p E2 g2(d —1) (2.is)

61XG /ZG EP. (2.19)

Note that all the temperature dependencies from coarse
graining disappear in the expression for 02. This will be
important in Sec. III.

At low temperatures, thermal fluctuations no longer
dominate within each Gaussian volume. Instead, the FL
conformation is determined by the impurities themselves.
To understand how this comes about, consider a segment
of FL pinned by two impurities at zero temperature. The
elastic energy to deform the segment of length ZG. a trans-
verse distance xG must be compensated by the pinning
energy,

(T ) 1/2

XG ~ ZQ' (2») A comparison of Eq. (2.11) with its low-temperature
counterpart Eq. (2.19) shows them to be identical up to
the replacement T m EI . Thus

Equations (2.10) and (2.11) f1x the dimensions of the
Gaussian volume. Once fluctuations within the box are
accounted for, the coarse-grained theory should include
a cutoff in z given by a z~. The solution of Eqs. (2.10)
and (2.11) is

2 ( j ) d+1
z~-p

&E&)
(2.20)

with xG, given by Eq. (2.19). Since there are also no
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thermal fiuctuations, Eq. (2.13) is replaced by Ez Ep.
Equation (2.16) remains valid, while similar reasoning
leads to

3—d 1/d+1g4d p3 —d

2(d—1)
1

(2.21)

For d = 3, this gives O' = Ep/ei.

III. PHASES AND STABILITY

A great deal is known about the behavior of a single
vortex line when only one type of defect is present. Even
in this case, there is a competition between impurity pin-
ning and thermal Quctuations. When only the extended
defect is present, the analysis becomes particularly sim-
ple. For a strong defect, or at low temperatures, it is
clear that the FL will be localized near the pin, since the
&ee energy of the delocalized state is purely entropic,
and therefore can always be made larger than that of
the localized state by decreasing T or increasing the pin-
ning strength. A variety of methodsr i show that, for
d —n & 2, the FL is localized by an arbitrarily weak
extended defect, while for d —n ) 2, a finite pinning
strength is required to "&eeze" the FL into a localized
state. In three dimensions, the only possible phase in the
absence of point impurities is therefore the localized one.
Since the defect energy is dominant, this is an ordered
phase, described in the renormalization-group (RG) lan-
guage by a zero-temperature fixed point (sink).

An important quantity is the localization length e~
within which the FL is confined to the defect. It may be
defined by

x(z) I')1™ (3.1)

where the angular brackets denote a thermal average.
For the coln~nar defect (n = 1) in three dimensions,
the criterion for localization at high temperatures is only
marginally satisfied (i.e., d —n = 2). As pointed out
in Ref. 7, this implies that the localization length is a
rapidly increasing function of texnperature,

(3.2)

where T = geiUpbp characterizes the strength of the
columnar pin. Since E~ is such a rapidly growing func-
tion of T, one must be careful in applying the single-FL
treatment of this paper to situations where E~ exceeds
other relevant scales of the problexn, such as the intervor-
tex or interdefect separation. The corresponding length
for the planar defect grows much more slowly, as

(3.3)

where T~] = QUpbpei.
When only bulk ixnpurities are present, the problem is

much more difficult, but is also now well understood due
to extensive nuxnerical and theoretical work. Just as
in the previous case, while at low temperatures the FL
is pinned, it may be depinned at higher temperatures in

dixnensions greater than 3. Thus, in the dimensions of in-
terest, only a single phase is possible, described by a (dif-
ferent) zero-temperature fixed point. In fact, this phase
is the zero-density limit of the proposed vortex glass. To
contrast with the localized phase described above, we will
denote this the delocalized phase. Care should be taken
not to confuse this delocalized phase with the thermally
depinned (and also unconfined) phase possible in higher
dimensions.

Several properties will be important in what follows.
Although the randomness is dominant, the &ee energy
per unit length is self-averaging and approaches a con-
stant, F(L)/L + F(L)/L—: Fp —Flu. ctuations in free
energy and transverse extension also grow with length
(albeit more slowly), and are described by nontrivial
power laws

bF AL and bz BL~, (3.4)

where for short-range correlated disorder, the exponents
~ and ( depend only on d and obey ~ = 2( —1.
The exponent ( is exactly 2/3 in d = 2, approximately
0.61 in d = 3, and gradually reduces to 1/2 in higher
dimensions. i2 Once again, because three dimensions is a
marginal case, there is a long length scale at high temper-
atures before this asymptotic behavior dominates. The
randomness of Vp in the z direction causes this length
scale, ur(T), to grow more rapidly with temperature than
e~(T) in the previous case, 24

tp(T) ~ tupe(T/Tp)i (3.5)

where Tz —— (cia'z)i~s is a characteristic temperature
and happ z~ (T/eipp) ~ is the cutoff' width
[cf. Eq. (2.12)j. Thus, at high temperatures, one expects
the effects of the extended defect to dominate experimen-
tally.

To determine whether these phases persist in the pres-
ence of both an extended defect and bulk randomness,
we determine their stability to weak perturbations of the
complementary interactions. Because the fixed points are
at zero temperature, it is sufficient to consider the stabil-
ity in the absence of thermal fiuctuations. The problem
of calculating the partition function reduces to that of
finding the optimal path for the FL. Correspondingly,
the &ee energy can be reduced to simply the energy.

It is straightforward to show the stability of the local-
ized phase to weak point randomness. In order to desta-
bilize the localized state, the FL would need to achieve
a lower energy in a delocalized conformation. However,
the optimal energy in the delocalized configuration (at
zero temperature) is self—averaging, and, in the limit of
weak disorder, much less favorable than that of the lo-
calized state. To improve its energy, the FL would need
to return to the defect a nu~ber of times proportional to
its length —i.e., it would be localized, a contradiction. In
fact, small regions of the FL will pull away &om the defect
to take advantage of local energy Buctuations, increasing
the localization length (though keeping it finite). There
are now, of course, sample-to-sample Buctuations of the
energy (or free energy). In this weak-disorder liinit, these
result &om the addition of random energies &om each of
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the regions of width E~. Adding up these contributions
gives a scaling

bE AL (coluinnar defect),

which we expect to be valid throughout the localized
phase by continuity (i.e., so long as the Huctuating re-
gions remain finite). For higher-dimensional defects, the
contributions for each such region are no longer indepen-
dent. Since they can be optimized within the defect, they
instead lead to a smaller power law,

bE AL ", (3.7)

1 —cv

E(L, f. ) = UL/f "+—AL/f. ' —E L. (3.8)

The first term is the attractive contribution from the de-
fect, while the second term uses Eq. (3.4) to account for

the energy cost of confining the FL into L/E&~ regions

of length /&~ and width /~ (see Fig. 2). Whether or
not the pinning term is dominant at large distances de-
termines its relevance. A weak potential is irrelevant for
d ) d~, where d~ is the loner critical dimension, defined

by

(di —n)( = 1 —ur. (3.9)

Using the above estimates of (, di = 2 for columnar
defects (n = 1), while 3 ( di ( 4 for planar defects
(n = 2). A single Hux line in three dimensions is thus
always pinned by a planar defect. When weak pinning is
relevant, minimizing Eq. (3.8) yields a localization length
that diverges for small Uo as

0

f~ -Uo "~, where VJ (3.iO)
1 —ld —d —n

For the planar defect, v& = 3.6.
These results can be put on a more formal footing by

appealing to the RG. In this picture, the stability of the
delocalized phase is determined by the relevance of VD.
At the delocalized fixed point, position and temperature
rescale as

z m bz,

x~ b~x,

T —+ b T.

(3.11)
(3.i2)

(3.13)

where ~„is the energy exponent for a FL interacting with
point defects in n dimensions.

The stability of the delocalized phase is much more dif-
ficult to ascertain. This difference occurs because, while
there is no way for the FL to be "weakly" delocalized, it
certainly can be weakly localized. Such an instability of
the delocalized phase corresponds to the formation of a
localized state for any nonzero strength of the extended
defect; the localization length goes continuously to infin-

ity as the defect strength goes to zero. To investigate this
possibility, consider the energy of such a weakly localized
FL. The localization length is estimated by minimizing
the FL energy

FIG. 2. Schematic illustration of a weakly localized FL. Be-
tween regions of width Ez and height E~~, the FL must pay an

energy cost ( f&~ ) to remain localized. This cost is balanced
by the loss of energy from the weak defect ( Uof ~~/Ez ").

mated by a (d —n)-dimensional b function, which leads
to the result

—( — CV b
—(— — CV (3.i4)

which is equivalent to the criterion of Eq. (3.9).
This reformulation suggests that a RG expansion in

powers of VD might be systematically made for d near
d~. Defining V~(x) = 6f(x), with f(x) a short-range
function of x of order 1, Eq. (3.14) becomes

dA

dl SC
(3.i5)

where e = d —d~ and the label "SC" indicates that only
the explicit scale changes have been included. To con-
vert this into an e expansion, the effects of Huctuations
or higher-order terms in Vii must be included. The nat-
ural expectation is that these corrections will yield an
equation of the form

= —~(A + cA'+ O(6'), (3.i6)

where c is a (cutoff-dependent) constant. Equation
(3.16) makes two main assumptions. First, the linear
term must be unaffected by Buctuation effects. In most
renormalization-group calculations this holds true. A no-
table exception is the case of the sine-Gordon or rough-
ening model. Unlike the roughening model, however, the
fields in the FL problem are not dimensionless, so this
is not expected to be a problem. Second, the quadratic
term is assumed not to vanish and occur with positive
sign. Generically, one expects a second-order term to
exist, but the sign is not a priori clear.

In fact, the sign of this term is crucial to the existence
of a well-behaved RG for the delocalization transition. If
positive, a fixed point occurs at weak coupling,

For this purpose, the defect potential may be approxi- b, * = e(/c+ O(~ ). (3.17)
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FIG. 3. Dimension-phase diagram for a hypothetical RG
scheme with a negative quadratic term. At the lower critical
dimension, there is an unbinding transition with nonzero 4, .
For d ( d~, the delocalized Sxed point bifurcates, creating a
stsbte fixed point at O(e). The simple delocalized phase is
thus replaced by another scale-invariant state in which both
the point randomness and extended defect are important. At
higher defect strengths, there is still a transition to a conven-

tional localized phase. Below some other critical dimension,
d ( d~q, the new Gxed point could annihilate with the crit-
ical Sxed point, and only the localized phase would persist.
Since d~q is unknown, the crucial test of such a scenario is the
presence or absence of a transition for d = d~.

Linearizing around this fixed point, one obtains the uni-
versal eigenvalue A~ ——e(, which leads to

FIG. 4. Schematic RG Bows at fixed V in the T-VD plane.
There must be at least one critical Sxed point, located on the
line T = 0. The simplest scenario is shown here, with a
critical line separating localized and delocalized phases, along
which the RG Bows lead into the critical point. Because at
high temperatures point disorder is more strongly suppressed
than the extended defect [cf. Eqs. (3.2) and (3.5)], we expect
the phase boundary to approach the VD = 0 axis at high
temperatures.

analysis, the critical behavior should be describable in
terms of optimal paths.

What will be the properties of such a transition? As-
suming second-order behavior, one expects the localiza-
tion leagth to diverge as the transition is approached
from the localized phase. From the size of typical "bub-
bles, " or excursions from the defect, two correlation
length exponents v~ and v~~ may be defined,

Interestingly, the lowest-order result is independent of
c. Had the sign beea aegative, however, no fixed point
would have been found. In fact, such a negative sign
leads to a stable fixed point for d ( di, implying a scale-
invariant phase at intermediate defect strengths, aad,
pres»mably, a transition to a true localized state at larger
4 (see Fig. 3). Precisely at the critical dimension, a aeg-
ative quadratic term implies a delocalization transition
at finite A.

The computation of even the sign of the quadratic terxn
is extremely nontrivial. To calculate c, it is necessary
to know certain properties of the three-point correlation
function of Vri at the delocalized fixed point. Unfortu-
nately, the delocalized fixed point itself is nonperturba-
tive for any dimension d (these properties may be deter-
minable in two dimensions using Buctuation-dissipation
methods, a possibility currently under investigation ).
We will return to this question in Sec. VI.

IV. PHASE TRANSITION AND FLORY THEORY

The results of the previous section xnake clear that in
three dimensions there must be an unbinding transition
from a columnar pin at an intermediate defect strength.
Because both phases are "ordered, " one also expects the
critical fixed point to be at zero temperature (see Fig. 4
for a schematic RG diagram). Thus, as for the stability

(4.i)
(4.2)

where E~ is in fact the localization length defined ear-
lier and 8—:(Vii —V&) is the reduced defect strength.
From the two correlation lengths, it is natural to define
a critical roughness exponent t,', = v~/v~~. A number
of arguments indicate that (, = (, the roughness expo-
nent in the bulk, analogously to the behavior at wet-
ting transitions. ' There will also be singularities in
the (free) energy, where one conventionally defines the
specific heat exponeat a by

(4.3)

where E, is the singular part of the FL energy, and Eo
is the energy per unit length of a Fl in the bulk.

A simple first attempt at determining these critical
exponents is a "Flory"-type argument. Physically, the
transition occurs because of the two different ways of re-
solving the competition between the FL's remaining on
the defect and wandering oK to take advantage of favor-
able regions of point pins. Consider a FL very near the
transition point on the localized side. Such a line xnakes
large excursions away &om the defect, forming "bubbles"
of typical size XII and Z~ E in the longitudinal and

II

transverse directions (see Fig. 1). For large E~~, the en-
ergy of a single bubble relative to a pinned segment is
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~(&(i) = (U —E )&ii
—E (&ii/ ) . (4.4)

The first term is the energy cost (per unit length) of
leaving the defect to wander in the bulk; the second term
is a typical excess energy gain available (at scale E~~) due
to a favorable arrangement of impurities. Minimizing this
energy gives

construction

v~~
——1/(1 —ur), and vz ——(/(1 —~). (4.5)

Assuming that the probability of encountering a favor-
able bubble is independent of its length 8t~, the total
number of favorable bubbles is proportional to L/E~~~. The
singular part of the FL energy thus scales as

LE,(L) oc —E(Eii) OL. —
ell

(4.6)

V. MIGDAL-KADANOFF RENORMALIZATION
GROUP

To improve upon the simple approximation of the last
section, consider a FL of length 8~~ with both ends fixed at
x = 0. Its optimal configuration may be a single pinned
segment, a single bubble, or a combination of several bub-
bles and pinned segments. If the optimal bubble size is
to be Z~~, the energies of all the other configurations must
be more than that of the single bubble. To ensure this,
the energy of the FL must be minimized on all length
scales.

This intuitive picture can be made precise by intro-
ducing the Berker hierarchical lattice. ' This is a self-
similar lattice, coristructed iteratively in such a way that
the position-space RG can be carried out exactly (see
Fig. 5). It can be thought of as the result of the Migdal-
Kadanoff "bond-moving" procedure applied to a Eu-
clidean lattice. At every stage in the construction of the
lattice, each bond is replaced by q branches of two bonds
each. This process leads to the relation N oc L", where
N is the number of bonds, I is the length of the lattice,

The corresponding heat capacity exponent, n = 1, sat-
isfies a modified hyperscaling form, 2 —o. = (1—ur) v~~, ap-
propriate to a zero-temperature fixed point. Application
of Eq. (4.5) then gives v~ = 0.78, using the numerical
values for ( and u in d = 3.i2

This Flory-like treatment makes several approxima-
tions. First, all bubbles are treated independently, ne-

glecting possible correlations along the FL. Secondly, the
energy of each bubble is estimated from the bulk result.
This scaling may break down if the constraint of not
crossing the defect (necessary to define the bubble con-
sistently) becomes restrictive. A naive estimate of this
effect compares the number of returns to the origin of a
bulk FL to its energy Buctuations. Such comparison sug-
gests that this effect is unimportant for d ) di, but this
treatment is probably too simplistic. Lastly, and possi-
bly most significantly, Eq. (4.4) compares energies only
at the largest and smallest scales. In reality, the energy
of the FL should be minimized over conformations at all
length scales.

(a) (b)

FIG. 5. Berker hierarchical lattice used in Sec. V. Each seg-
ment is replaced at the next stage of construction by a set of
q = 2" branches, as in (a). The resulting lattice after three
iterations for the case q = 2 is shown in (b). Extended de-

fects can be included by adding an additional binding energy
to certain bonds of the lattice. For columnar pins (n = 1),
these bonds form a single branch spanning the length of the
system, indicated here by the thick gray line. The generaliza-
tion to n ) 1 is described in Sec. V. To perform the RG, each
unit cell of 2q bonds is replaced by a single segment, reversing
the construction procedure.

where E; is the energy of the ith segment. To treat the
defect, certain bonds begin the RG with lower energies.
At the first step of the lattice construction, we choose
2" of the branches to have such favorable bonds. At
each subsequent stage, bulk bonds are replaced by the
usual q bulk branches, while defect bonds are again re-
placed by 2" favorable branches and q —2" bulk
branches. This construction generalizes the one used in
Ref. 26 for columnar pins to other extended defects.

Specializing to the case of the columnar pin (n = 1),
the defect bonds lie on a single branch of the lattice.
Under the RG, the random energies in the bulk induce
randomness in the energies on the defect as well. Equa-
tion (5.1) can be used to derive the elimination portion
of the recursion relations for p (E) and p+(E), the prob-
ability distributions of energies on the defect and in the
bulk, respectively,

oo - q —& ooj«'~. (~') j«'~. (~')), ~5 w

oo -q

p„+,(E)= — dE'P„(E') (5 3)"+' dE E

Here n indexes the iteration of the RG, and P ' (E) are
the energy distribution functions for pairs of bonds in
series, on the defect and in the bulk, respectively. They
are given in terms of the single-bond distributions by

~.")E)=j«'.."~~').."~~-~')-(5.4)

and q = 2" defines the effective dimensionality d.
To perform the RG transformation, the q branches of

the unit cell (see Fig. 5) are collapsed to one, according
to

E' = min (Ei + E2, Es + E4, ~ ~ ~, E2q i + E2g) ) —(5 1)
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The full RG equations are obtained from Eqs. (5.2) and

(5.3) by allowing for the rescaling of energies. These are

0.3

p„,(E) = 2 p„,2 (E+E, ),
p-+i(E) = 2"p-+i 2 (E+ Eo )

{5.5)

(5.6)

where uD, u» E&, and E& must be adjusted to find
fixed distributions.

Equations (5.3) and (5.6) decouple, since they are
obtained from the RG away &om the defect. These
equations have been studied extensively by several
authors. ~ They describe the behavior of a FL in a
medium with random point pins, within the Migdal-
Kadanoff approximation. For short-range correlated dis-
order, only a single fixed point exists (up to dimensional
rescalings), which must be found numerically for any
given q. One finds tv~ —0.30, 0.21,0.19 for q = 2, 3, 4.

Once a solution p+ (E) is found, it must be inserted into
Eq. (5.2), which determines p (E). Above the critical
dimension, this equation has three fixed points, describ-
ing the localized phase, delocalized phase, and critical
point. Unlike a Euclidean lattice, the hierarchical lattice
has d, ( 2. In the localized phase, the defect energy is
smaller than the bulk energy, so that (at least at scales) 8/~) the FL always chooses to lie on the defect. This oc-
curs if all defect energies are less than all energies in the
bulk. In this case, Eq. (5.1) reduces to a E' = Ei + E2,
with all energies drawn from p+(E) By the c. entral-limit
theorem, this leads to a Gaussian fixed-point distribution
for p (E), with /dr/ = 1/2. This is in agreement with the
description of the localized phase in Sec. III and in par-
ticular with Eq. (3.6). In the delocalized phase, the FL
no longer has any preference to lie on the defect. In this
case, any coarse-grained segment on the defect will even-
tually be dominated by a smaller-scale bubble, so that
the energies on the defect no longer differ f'rom those in
the bulk. Indeed, the ansatz pD(E) = p+(E) trivially
solves the RG equations, with uD ——u~ and E0 ——E0 .

The critical fixed point is described by a nontrivial
new solution of the RG equations. Since p+(E) feeds
into Eq. (5.2), however, the scaling parameters for the
defect must be identical to those in the bulk, i.e.,

0.2-

p (E)

0.1

p (E)

critic
distr

/
/

I

I
I
I
I

/

/
& V

'(E)

-300 -200 -100 0 100 200 300

FIG. 6. Determination of the critical Sxed-point distribu-
tion in the Migdal-Kadanoff approximation. The initial dis-

tribution pp was tuned until it Sowed under the RG to the
critical point. The bulk fixed-point distribution p '(E) is
also shown, to demonstrate that the critical point has indeed
been found.

po (E) = p '(E)+~).c'(~p)'(E) (5 9)

its critical value by explicitly watching the evolution of
pg(E) (see Fig. 6).

In principle, linearized versions of Eqs. (5.2), (5.4), and
(5.5) may be solved directly to determine the eigenvec-
tors and eigenvalues around the critical point, and hence

v~~. In practice, this would require the discretization of
the resulting linear integral equations and the solution
of the corresponding matrix eigenvalue problem. To ob-
tain only the largest eigenvalue, an iterative procedure is
simpler. We again iterated Eqs. (5.2), (5.4), and (5.5),
with pg(E) = p+'(E + 8). This initial function is de-
composable into eigenperturbations b'p of the fixed-point
form,

D =~a~
D

(5.7)

(5.8)

Equation (5.7) is the analog, within this approximation,
of the statement in Sec. IV that ( = /,

'. Equation (5.8)
says that the mean energy per nuit length of the FL is
constant throughout the delocalized phase and including
the critical point. This is very much in contrast to the
usual bulk phase transitions, which exhibit symmetric
scaling on both sides of the critical point. Precisely this
behavior exists, however, in wetting transitions.

The critical exponent v~~ is determined by linearizing
Eq. (5.2) around the critical fixed point. To do this, the
bulk fixed-point distribution p+ was calculated by nu-
merical iteration of Eqs. (5.3), (5.4), and (5.6). Once p
was known, Eq. (5.2) cauld also be iterated numerically.
We took po (E) to be a Gaussian distribution with mean
6 and the same width as in the bulk. 4 was tuned to

Q

I

C)

5II

C)
II

Q
4.5—

o o o o e oa aa aa ~~
I I I

-3 -2

1n(02"")

FIG. 7. Scaling collapse of the mean defect energy as a
function of length scale and reduced defect strength for q = 4
(d = 3). Data &om 13 systems (different values of e) fall onto
the single universal curve. The eigenvalue y = 1/v/I, tuned to
achieve this collapse, is y = 0.28.
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d
2

2.6
3

u
0.21
0.25
0.28

vII

4.8
4.0
3.6

3.1
2.4
2.1

where i = 0 labels the single relevant eigenfunction and
i ) 0 labels the irrelevant perturbations. Under the RG,
co grows according to

TABLE I. Liberation exponents in the Mig, dal-Kadanoff
approximation. The dimension d is de6ned by the relation

q = 2 . To compute vz, we used the exponent identity
~ = 2( —1 to de6ne ( = 0.65, 0.61,0.60 for q = 2, 3, 4 respec-
tively.

(Vp(x, z)Vp(x', z')) = R(x —x')h(z —z'). (6 2)

The advantage of the generalized model is that, when
D is near 4, the zero-temperature fixed point becomes
perturbatively accessible. To approach the FL limit of
D = 1, it is necessary to make a double expansion in
~ = d —d~ and b = 4 —D. However, only the sign of the
quadratic term in OVD/Bl inatters, and this is probably
reliably obtained despite the double expansion.

The delocalized fixed point (VLi = 0) was investigated
in detail in Ref. 33. For D = 4 —b, the roughness ex-
ponent ( was found to be proportional to h. Because
( = O(h) and T = 0, it was necessary to perform a func-
tional RG for the correlation function, R(x), of the point
disorder,

cp(n) = cp(0)2"", (5.10)

(Eo) = / ds p (E)E (5.11)

To determine y, we plotted 1n((E~) —p g—p
—(ED) g)

versus In(82""), for various values of y. Using Eqs. (5.9)
and (5.10), this should yield a straight line. In fact, since
neither the critical distribution nor (ED) pg pare—pre--

cisely known, one expects only a scaling collapse. By
tuning until such a collapse is found, we determined y
and hence v~~ (see Fig. 7). The results are shown in Ta-
ble I. For q = 4, corresponding to d = 3, we find v~~ 3.6.
Using the exponent identity to define ( = (1+tu)/2, this
gives v~ 2.1.

VI. FUNCTIONAL RG AND e EXPANSION

While the approach of the previous section gives a
qualitatively appealing picture, the quantitative reliabil-
ity of the Migdal-KadanoK approximation is unclear. Ide-
ally, one would like a RG scheme on a Euclidean model,
so that the physical dimensionality is taken into account
in a controlled way. Because of the nonperturbative na-
ture of the delocalized fixed point for FL's, we introduce
a generalized model of a randomly pinned oriented man-
ifold of internal dimension D in the presence of an ex-
tended defect. The single internal coordinate z along the
FL is replaced by a vector z C %, with the transverse
coordinate x(z) E %.' = . For example, for D = 1, the
manifold reduces to a FL, while for D = d —1, it may be
thought of as an interface. The full free energy is

where y is the eigenvalue of the perturbation, and is re-
lated to the correlation length exponent by v~~

= 1/y.
At each step of the iteration, the distribution function
defines a mean value

The resulting functional RG equation, valid to lowest or-
der in b, is

M(x)
Ol

= (4 —D —4()R(x) + (z'8;R(x)

+K4 28;B~R(x)8;B~R(x) 8;B~R(x—)8;B~R(Q),
(6.3)

where 8; = 8/Bx', and K4 ——S4/(2z) = 1/(8z')2. The
condition that this equation has a fixed-point solution
with R(x) decaying rapidly at large argument (for short-
range correlated disorder) determines (. To lowest order
in h, the roughness exponent is given by

(= Th+0(h'~'), (6.4)

where the constant T —1/(4 + N) (we keep N as an
independent variable —i.e., it need not be expanded in h).
With this value for (, the fixed-point function is R' =
O(h).

To include the effects of the extended defect, the po-
tential VD(x~(z)) must be included. In the absence of
the random potential, no renormalization of V~ occurs
at zero temperature. This is because the optimal config-
uration of the manifold occurs exactly at the minimum of
VD, since no pins or thermal Quctuations can pull it away.
Thus terms of O(Vii) and O(Vg) will not contribute in
the RG expansion, making all corrections to VD at least
O(h').

Formally, the recursion relation for VD can be derived
using the methods of Ref. 33. The relevant diagrams
are summarized in Fig. 8. As discussed in the previous
paragraph, diagrams containing only VD vertices vanish
at zero temperature [Fig. 8(a)j. To O(h), nonvanishing
contributions are obtained &om graphs with a single dis-
order vertex [Fig. 8(b)). The resulting RG equation to
O(RVg) is

P= d z —Tx —Vj xz, z —VD xi z

(6.1)

KD
2

(6.5)

Ol
= (2 —2()V~+( '8;V~+ A I'V' VD

2

where x~(z) 6 R, and we have rescaled ci m 1 to
avoid confusion with e = d —d~. We consider only the
case n )D.

where

(V'V (x, z) VVg(x, z))
N(2') hi 1(Q)

(6.6)
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(a) (b)

that the left eigenfunction corresponding to VD i is a con-
stant, so that c is obtained by simply integrating the last
term in Eq. (6.5) over x~. Since this term is manifestly
positive, c & 0. A straightforward Gaussian integration
yields the numerical value

(c) (d)

is positive and O(b) at the fixed point. To extract the
lower critical dimension, the linearized RG equation must
be analyzed in detail. Such an analysis was performed
in Ref. 34 for a very similar problem. Denoting A =
KDA F, the ansatz

FIG. 8. Diagrams arising in the functional RG treatment
of the defect potential Vii. The graphs in (a) and (b) vanish
at zero temperature, because they do not involve the bulk
randomness. The black circles in (c) and (d) are disorder
vertices, which, since Vz is nonrandom, contribute only a
factor of I'.

2 N~ —/2

&&)

(6.12)

F'= d zM xi z V'x (6.13)

valid to O(b).
Naively, it appears that the one-loop diagram in

Fig. 8(b) contributes for finite momenta, resulting in a
renormalization of temperature and a difFerent roughness
exponent (, g ( at the critical point. Because the defect
potential breaks translational invariance, the terms gen-
erated by momentum-dependent graphs take the form

1(
Vg)(xi) = q(xg) exp

~

———zi
~2A i)

simplifies the linear part of Eq. (6.5) to

2

(6.7)

where M(x~) is a short-range function [since it comes
from V~(xi)]. Because the linear eigenoperators V~;
are short-range functions and not simple polynomials,
however, the momentum-dependent terms must be de-
composed similarly, into operators of the form

K;—: d zVD; xi z Vx (6.14)

where Ni = d —n. Letting q(xi, l) = q(xi) exp(Al)
results in the eigenvalue equation

——V q+ ZJ q =
~

2 —2t,
" — —A ~q. (6.9)

A 2 ( 2
/' Ni(

2 2A 2 j
Equation (6.9) has the same form as the Schrodinger
equation for an N~-dimensional simple harmonic oscilla-
tor. The various "states" of the oscillator give the eigen-
functions of the linear operator in the RG. The "ground
state" is the most relevant operator (largest A), with

Ap = 2 —2( —Ni( = D —(u —(d —n)( = —(E, (6.10)

which reproduces the power-counting result [Eq. (3.14)].
The excited states yield eigenvalues larger by integer mul-
tiples of ( b, and are thus irrelevant. It is therefore
only necessary to consider the single-parameter RG of
Eq. (3.16), with b, defined by

and the simple kinetic term

Kp = — d ziVx] .
1

2
(6.15)

(d —n + 2)( —2 4t,' —2
(6.16)

The set K; do not mix under the linearized RG includ-
ing the eH'ects of the disorder. For i ) 0, all the E; are
strongly irrelevant (with dimension A; —2 + 2(). There-
fore, only the projection of the one-loop diagram onto Ko
can potentially contribute to the temperature renormal-
ization. Since M(xi) is a short-range function, however,
this projection is zero. We believe that this continues to
hold to all higher orders, so that (, = ( exactly.

Having established the validity of the e expansion,
Eq. (3.18) may be evaluated with confidence. For a FL
and a columnar defect in three dimensions,

VLi i(x L) = +ex
A

(6.11)
Using ( = 0.61 6 0.01 we find v~ = 1.4 + 0.1.

The RG also determines the singularities in the free
energy at the transition, and hence a. De6ning

Higher-order corrections in R yield total derivatives of VD
(due to the contractions with R vertices). Such terms,
like the V&VD in Eq. (6.5), only change the form of the
fixed-point function, and not the eigenvalue, Eq. (6.10). s

The quadratic term in VD, by contrast, will be affected
at higher order in R. These corrections will modify the
coefficient c of the b, 2 term beyond O(b').

To determine c to leading order, an eigenfunction ex-
pansion is inserted into Eq. (6.5). Equation (6.7) implies

f = —TlnZ/L

the RG yields the inhomogeneous scaling relation

f(, )= '
&( (l) ())

2 p T(s) '

(6.17)

(6.18)
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where the last term results from the O(B) diagram in
Fig. 9, and the Grst term arises &om the scale changes.
b, (l) and T(l) are determined by Eq. (3.16) and the con-
tinuous analog of Eq. (3.13),

dT
dl

(6.19)

Solving Eq. (6.19), Eq. (6.18) becomes

y(~, T) =.-(~--)'y(~(l), T.-')
I'A K '

( ),
2 p

(6.20)

At low temperatures, entropic contributions become neg-
ligible, and f(b, , T) + u(b, ). Thus

I'ADK
u(b, ) = e ( )'u(A(l)) — dae

2 p

(6.21)

FIG. 10. Flux line directed along the diagonal of a square
lattice, as utilized in the simulations of Sec. VII. Random
energies were assigned independently to each bond of the lat-
tice, with a fixed defect energy on bonds along a defect (thick
gray) at the origin.

On the delocalized side of the transition, 6(l) ~ 0
for large l. In this limit, u goes smoothly to its bulk
value Eo Since .D —~ = 2(l —() ) 0, the first term of
Eq. (6.21) vanishes and the last term is nonsingular and
independent of A. In agreement with both the Flory
and Migdal-KadanoK theories, the mean line energy is
independent of 6 on the delocalized side of the transition.
In an experiment, where the actual tuning parameter is
the temperature, the &ee energy will not, of course, be
independent of T in the delocalized phase. It should,
however, be &ee of singular behavior as the transition is
approached &om this side.

In the localized phase, b, (l) becomes large for large l.
For large 4, the FL will be fully localized on the defect,
so u oc b, . Unlike the delocalized case, the first term in

Eq. (6.21) cannot be ignored. To understand its effects
near the transition, Eq. (6.21) can be rewritten in terms
of the reduced defect strength as

I'A KD
u(e) = e 'u(ee' "~~) — dse

2 p

(6.22)

The two contributions do not cancel on this side of the
transition (as they must according to the previous argu-
ment in the delocalized phase), leading to singular behav-
ior with 2 —a = (D —ur) v~~, the appropriate modification
of hyperscaling for this zero —temperature 6xed point. For
the FL and columnar pin in three dimensions, o, —0.21.

VII. NUMERICAL SIMULATIONS

To check the predictions of Secs. III—VI, we exam-
ined the problem numerically at zero temperature by a
transfer-matrix method which locates the optimal path
exactly in a strip of 6nite width. To enhance perfor-
mance, we chose the z direction along the diagonal of
a square or cubic lattice, with random energies on the
bonds (see Fig. 10). The energies of optimal paths ter-
minating at position x at height z obey the recursion
relation

E(x, z+1)= min (E(x',z) + Vj (x,x',z) —48(xz) },
/x —x')=X

Choosing e' = 8 "~~ = E~~/a, this becomes

n(~) = (&II/a) ' "'&(l'=1)
rADK

1 —
(E~~/ ) (6.23)

~ +~
e

0

0 !
0

0 0

FIG. 9. O(R) diagram renormalizing the free energy In-.
tegrating out this vertex leads to the inhomogeneous term in
Eq. (6.17).

where V (x, x', z) is the random energy assigned to the
bond connecting the points (x, z + 1) and (x', z), and
h'(x~) is an appropriate lattice b function indicating when
the FL is on the defect. Boundary conditions were chosen
so that the FL remains within a strip of width W. For
simplicity, the random bond energies were drawn from a
uniform distribution of integers with mean 0 and width
4096.

It is easy to obtain an upper bound on the critical
defect strength A, above which the FL is localized. Sup-
pose A ) Eo, the (negative) mean energy per unit length
in the bulk. If the FL were delocalized, its energy per unit
length would take this value, because it would spend neg-
ligible time on the defect. Since A & Ep, however, the
FL can lower its energy simply by remaining on the de-
fect. Therefore the assumption that it is delocalized must
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be false, -so 6, & Es .It is probable that this bound is
saturated as d -+ oo, but we consider only d = 2, 3.

Iteration of Eq. (7.1) yields the optimal paths for a
system of width W and length L in a time T oc W~ iL
To calculate quantities defined at a single height z, only
two arrays E(x) need to be stored concurrently, requiring
memory M (x: W" . The localization. length can be
defined as

(7.2)

Figure 12(a) shows E~(W) versus b, at several values
of W for the columnar defect in three dimensions. We
used FL's of length L 2.5 x 10 lattice constants with
widths up to W = 250, and a few larger systems to test
the limits of the computer. For 6 & 300, E~(W) be-
comes essentially constant (and oc W) as a function of
A. The data are in agreement with Sec. III, suggesting
an unbinding transition with 4 300. The location of
the critical point is reasonable, with b„/Ep 0.2.

For the planar defect in three dimensions, shown in
Fig. 12(b), the behavior for small b, is quite different. For

where the angular brackets ( ) indicate evaluation on
the optimal FL, and the overbar, as usual, signifies the
disorder average. The mean line energy is simply ob-
tained by averaging the optimal element of the energy ar-

ray, i.e., E (x, L)./L. Both the localization length and
mean line energy are self-averaging, so that the disorder
average may be replaced by an average over z. In the lo-
calized phase, segments of the FL of length 8~~ should con-
tribute roughly independently to these z averages. The
&actional uncertainty in the average coxnputed in this
way should thus scale like t 1/~N gE~~/L. To avoid
large finite-size efFects, the width must be chosen to be
at least W aE~, with a 2—5. Thus, to obtain good
data within a tolerance t in the localized phase requires
an execution time of the order
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tixne steps. Since both L~ and XII diverge strongly at the
critical point, time limitations become quite important.
Using v~ = (v~~ 1.4, we find T 8 ' for the colum-
nar defect in three dimensions. For the planar defect,
v = (v —3.6 gives T

II

In addition to these equal-z quantities, it is also in-
teresting to visualize the conformation of the FL in a
particular realization of bulk randomness. To compute
the optimal configuration of the FL, the transfer-matrix
algorithm above must be moclified to include nonlocal in-
formation. The simplest such modification (though not
the most memory efficient) is to store the vertex x(z) to
which the optimal FL terminating at the vertex x(z + 1)
is connected, for all x(z) and all z. The conformations
of the FL terminating at any point at z = L can then
be constructed by tracing back this connectivity step by
step until z = 0 (for details of the algorithm, see Ref. 22).
Figure 11 shows the configurations for a FL of length
L = 1000 in two dimensions for four defect strengths.
As 4 is increased, the FL collapses more closely to the
defect. Such pictures emphasize the presence of bubbles
on all scales less than the localization length.

To check the predictions of Sec. III, we studied the
behavior of E~(W) as a function of W and E. Delo-
calized and localized phases can be distinguished by the
behavior of /~(W) as a function of W. If the FL is truly
delocalized, its transverse Huctuations will be contained
only by the strip width, so that E~(W) W for large
W, independent of A. In a localized phase, however,
E~(W) will settle down to its infinite-system value when
W && E~(W = oo).
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FIG. 11. Optimal conformations of a FL of length L = 1000

in two dimensions, with the two ends constrained to lie on the
origin. The black curves iu (a), (b), (c), (d) show the config-
uration for A = 0, 200, 400, 600, respectively. The other three
curves are retained in gray within each frame for compari-
son. As the defect strength increases, the FL collapses into
a more and more compact configuration. Note that "bound"
segments actually contain many excursions on scales smaller
than the largest bubbles.
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FIG. 12. l~(W) as a function of 6 in three dimensions for

(a) the columnar defect, and (b) the planar defect. See text
for details.

6 = 0, the FL is delocalized, and E~(W) oc W. However,
within the resolution of the calculation, any nonzero 6
leads to a decrease in E~(W). A putative delocalized
phase would have to occur for 6, & 10. In dimensionless
units b„/Eo ( 7 x 10 s, which strongly suggests that
the delocalized phase is in fact absent, in agreement with
Sec. III. To check Eq. (3.10), the data are replotted on
a log-log scale in Fig. 13. A least-squares linear fit gives
v& 2.3, much less than the predicted value of v&
3.6. As noted above [see Eq. (7.3)], the large value of vs
makes finite-size effects particularly strong for the planar
defect. A closer examination of Fig. 13 reveals upward
curvature, suggesting that a larger value of v& would be
obtained by going to smaller A.

We also repeated similar simulations in two dimen-
sions, where somewhat larger system sizes can be han-
dled (W = 1600, L = 1.6 x 10 lattice constants). These
calculations provide a direct check on the prediction of
Sec. VI that the quadratic term in the RG is positive.
Since d = 2 is the critical dimension for columnar de-
fects, a delocalized phase for small E can only exist if
this term is negative. Figure 14 shows E~(W) versus E
for this case. As for the planar defect in three dimen-
sions, the data put a bound on the dimensionless critical
defect strength. Using the measured value Ep = 1100,

FIG. 13. Log-log plot of the localization length versus de-
fect strength for the planar defect in three dimensions. The
line is a least-squares fit to the reliable data for 4 & 100.
Note the upward curvature, suggesting that the asymptotic
power-law behavior has not yet been reached.

we find b„/Eo ( 0.09. Further support for the RG is
obtained by plotting in[I~(W)] versus 1/6 (see Fig. 15).
The resulting straight line implies E~ E~o exp(b, /b, ),
which is the RG prediction in the critical dimension. A
least-squares fit gives 8~0 0.3 and 6' 1000, in agree-
ment with the lattice length scale and energy scale set by
the disorder width. Note that previous numerical inves-
tigations in two dimensions for this problem, and for
pinning by an attractive wall, both saw an unbinding
transition with nonzero 6,. While the attractive wall is
probably in a different universality class, we believe the
earlier study by one of us for this problem was ham-
pered by finite-size e8ects.

We next turn to the critical point for the columnar pin
in three dimensions. The main difBculty in this analysis is
in the determination of the critical defect strength 6,. To
do so, we made log-log plots of E~ versus 8—:(b,—b,,)/6,
for a range of values of 6,. The result is shown in Fig. 16.
Plausible linear behavior is observed for 300 ( 6, & 435.
Least-squares fits to the linear regions give the range of
values v~ ——1.3 + 0.6. This result is consistent with
all three estimates (Flory, Migdal-Kadanoff, and RG),
though the best curve in Fig. 16 gives the mean value
quite close to the RG estimate, v~ 1.4.

VIII. POSSIBLE EXPERIMENTS AND
SIMULATIONS

A. Applicability of the single-flux-line limit

In order to compare the predictions of this paper with
experiment we must account for several complications
not included in our treatment. Both extended defects
and FL's appear at finite densities and their lengths are
limited by the sample thickness. First consider a single
FL in a random set of columnar pins at zero temperature.
The FI can be unpinned &om a particular defect by two
mechanisms. When the localization length Z~ becomes



&304349 DISORDER-INDUCED UNBINDING OF A FLUX LINE FROM. . .

10

)pi

FIG. 14. Localization length /~(W) as a
function of A for the columnar defect in two
a '

No evidence of a transition isimensions.
seen. A careful examination of the topmost
curve reveareveals a slight upward curvature, sug-
gesting a non-power-law divergence o ~ or
small A.
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where h(y) is a universal scaling function.
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II II

o
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ing function is h(y) ~y, '
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and a width I~ [Lll/g(Uo)pqsoj / . Local Huctuations
f oint ins can compensate for this energy cost. In

f the sin le-pin
problem, energy Buctuations obey a scaling form

OLg + ~ x Ld i,
~«Uor~. ~

(8.I)

g(Uo) pleo
(8 2)

~ ~

where the energy per length of the far pin is estimated

of states in energyf t '
nergy for col»mnar defects at 0, an is

probably of order of some f'raction of I/Uo. or a given
L the optimal kink has an energyII~

(8.4)

Equation . emE t' ~8.4& demonstrates that the total energy Quctu-
ations are o aine ybt d b summing Quctuations wit 'n o-

ar umentcalization volumes of length Ill. The scaling argumen
a so agrees wi al ith an exact calculation of energy Huctua-
tions of a pinne o a wd t wall in two dimensions. When
Ell/a «, e is1 the FL is strongly localized on the co umnar
pin, an energy
lying within a distance R + bo from the e ece ect center.
Equation (8.4) is then replaced by

&n(Z~) lV = 200
W =400
W =800
R' = 1600

- 6t

FIG. 15. Plot of In(t~) versus I/4 for the
columnar pin cn two dimension .s. The strai ht
line is a least-squares 6t to the exponentia l
form I~ Ei o exp(A'/b, ) (see Sec. VII).
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delocalized through quenched-in kink formation for L )
Lh p, where

CJ ~1/2

(f// ) EG' l&(Up) p~epl

2d
d —2

(8 6)

for f~~/a &) 1, while in the strongly localized regime

) p-1 io'

Lhop, sL
6p d —2

E' (~(Up)p~"] '"(~[R+bpl'pp) "'
P

(8.7)

FIG. 16. Log-log plot of the localization length versus
8 = (6 —6„)/4„for the columnar defect in three dimen-

sions. The difFerent curves represent choices of A„which is

adjusted to achieve the most linear behavior.

AEpt, sL Ep 7c(R + bp) ppL~~ (8.5)

A reasonable criterion for the strongly localized regime
is 8MF = Upa/E~ —1 &) 1. Since the kink energy grows
more slowly than L~~2 for d ) 2, the FL will become

The borderline case of d = 2 is more subtle and will
not be treated here. ss The pinning effects described in
this paper are thus applicable only for L &( Lh p and

A finite density of FL's introduces another

length scale Eg Fg = pFL . The dilute Bose glass forl/d —X

E~ FL )& 8~ p is subject to the same constraints, and is
unstable to the above hopping mechanism for L && Lh p.
In the overdense limit of E~,FL &( E~,g, the hopping mech-
anism is no longer relevant. A remnant of the unpinning
transition may still be observed for f~ && f~,pr, Sim.-

ilar considerations hold for the case of grain boundary
pinning.

B. Estimates of physical quantities

Assuming that the above conditions are satisfied. , the
single-FL model should describe the behavior of the sys-
tem. As noted in Fig. 4, however, even within this model,
a transition only exists for sufficiently strong point pin-
ning. A reasonable criterion for the FL to be delocalized
at T=Ois

Up & Ep = EG/z~, (8.8)

where E~ and zG are the low-temperature coarse-
graining parameters determined in Sec. IIIIC. To cal-
culate Ep, we need estimates of eq, EP, and pP. The
FL stiffness constant eq is independent of the disorder,
and given by Eq. (2.2). For YBCO, the anisotropy fac-
tor p —0.2. Note that for small-scale distortions, which
occur at high impurity concentrations, the FL stiffness is
reduced by a factor of p, increasing the effectiveness of
point pinning. For YBCO, A ~ 1.4 x 10 5 cm, which
gives ep 1.4 x 10 s erg/cm, and, in the small-scale
regime,

iq —6 x 10 erg/cm (8 9)

EP and pP both depend upon the type of impurity
considered. Assuming first oxygen vacancies, a semimi-
croscopic treatment gives the pinning energy

E~ = EP = 1.4 x 10 ergs. (8.10)

FIG. 17. Single vortex line with many columnar defects.
Even though pin (a) has the largest binding energy Uo energy
fiuctuations due to point randomness make it favorable for
the FL to visit pin (b) by forming a "kink, " as shown here.

Note that this result holds only when the distance be-
tween neighboring impurities is larger than ( b, i.e. ,

pJ ( & (( 1. A similar (though slightly smaller) result
is obtained from Eq. (2.8), using rp 0.29 nm, and
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including the enhancement factor $ s/ro .A reasonable

upper bound on the vacancy density per CuO plane is

n~ = 0.1/( &, above which superconducting properties
themselves may be substantially changed. The bulk den-
sity is just pJ = nz/s, where s is the spacing between
CuO planes. Using ( s --1.5 nm, and s = 1.2 nm, we

find

pP = 4 x 10 cm (YBCO).

Equation (2.20) then gives zG. —3 nm, so

(8.11)

Eo —5 x 10 erg/cm (oxygen vacancies). (8.12)

Precipitates or other mesoscopic inclusions lead to rather
different energy and length scales. One candidate is non-
superconducting regions of Y~BaCu05 in YBa2Cu30,
as have been observed by Murakami et. al. ~ in melt-
textured samples. Taking characteristic sizes and sep-
arations &om their Fig. 16, ro 1 pm and p~
(10 p,m) s 10s cm s. From Eq. (2.6), we find

EI 4 x 10 ergs. Using this time the long-distance
value for ~q, z~ = 6 x 10 cm, yielding

Eo —7 x 10 erg/cm (precipitates). (8.13)

5 x 10 r erg/cm (ion track),
4—20 x 10 erg/cm (dislocation line).

Comparison with Eq. (8.12) shows that oxygen vacancies
are probably too weak to delocalize a FL &om an ion
track, while unpinning &om a dislocation line i8 possi-
ble. Pinning energies from precipitates, Eq. (8.13), are
substantially higher, and may allow for unbinding even
&om ion tracks. The difficulties in obtaining a sufficiently
large, high-quality sample with such large-scale defects
are, however, formidable.

C. Suggestions for observation

Based on the results of the previous section, the best
candidate for observing FL delocalization is a twin-&ee

Et is important to note that, the samples of Ref. 17 con-
tained substantial numbers of other defects such as twin
and grain boundaries, which are not accounted for in the
treatment of this paper. The estimates above are meant
as suggestions for possible cleaner samples with large-
scale bulk defects.

The line energies in Eqs. (8.12) and (8.13) should be
compared with Us as obtained from Eq. (2.3). We con-
sider two types of columnar defect: heavy-ion tracks and
dislocation lines. Ion tracks are man-made pins created
by bombarding a superconducting sample with heavy-ion
radiation. Such artificial pinning sites have been created
by several groups, 4'5 using a variety of ions. Screw dis-
locations occur naturally in some samples, depending
upon the method of preparation. The radii for these two
types of defects can be quite different, with co 3.0 nm
for Cs ion tracks in Ref. 4, while co 0.5—1.0 nm (of
order an atomic lattice spacing) is appropriate for a dis-
location line. i@ Using these values, Eq. (2.3) gives

crystal containing dislocation lines separated by dis-
tances much greater than the penetration depth. Given
such a sample, there are several ways in which the local-
ization length of the FL may be probed.

The most direct method is surface imaging of the FL
array. Ideally, one would like to map out the displace-
ment of a pinned vortex line as a function of temperature,
averaging over many such pinned vortex lines, to obtain
E~(T). In practice, surface pinning and interactions may
make the displacement of the FL end point scale difFer-

ently than in the interior of the sample. Probably such
complications could be dealt with, but further investiga-
tion is certainly required. A more serious problem is an
experimental limitation of the decoration techiiiques cur-
rently used for such imaging. In these experiments, a
magnetic "smoke" is introduced above a sample in a vac-
uum chamber. The magnetic particles attach themselves
preferentially to the regions of Qux around the vortex
lines, forming an image at the surface. Unfortunately,
this deposition is quite slow, and must be performed at
low temperatures. The observed Bux lattice is thus prob-
ably frozen into some metastable pinned state at higher
temperatures, selected according to the sample's cooling
history. Since the point at which the system &eezes is
unclear, the temperature of a particular image, as well
as the extent to which it has equilibrated, is unknown.

Recently, Harada et al. have developed a holographic
technique capable of real-time iinaging. Once this tech-
nology is in place, it will be possible to determine sample
temperatures and equilibration times by direct observa-
tion. This should allow the experimenters to measure FL
displacements directly.

Since these imaging techniques are difficult and cannot
probe the interior of the sample, it is useful to look for
a signature of the localization length in a bulk measure-
ment. Here, we consider the effects of a nonzero localiza-
tion length on low-temperature transport measurements.
Since the FL is pinned, transport is dominated by ther-
mally activated Qux creep, in which the energy barriers
to motion lead to nonlinear I-V characteristics. These
characteristics have been considered for point disorder in
Ref. 3 and for a columnar defect in Ref. 7. In both cases,
the creep is dominated by critical excitations, in which
a region of FL jumps forward in response to the Lorentz
force from the applied current.

In the localized phase at low temperatures, at least
naively, two types of excitations are present (see Fig. 18).
For very small currents, the Lorentz energy dominates
only for very large FL segments and displacements.
When this excitation becomes much larger than the local-
ization length, its energetics are dominated by the colum-
nar defect. As the current is increased, excitations may
be possible on scales smaller than the localization length.
These short FL segments are pinned by point impurities,
and thus have a different energy scale for their barriers
to motion.

For the large excitations, Ref. 7 gives the barrier energy

X/2

@B(L'[/ ~~ ~f/) UR
I I

(8.»)(UR ) cubi

(4) ~ 0'

where we have replaced the bare defect energy Uo by its
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1/2

)
(s.2o)

The typical scales of the excitations are

/'e, a & Epc1/2

(Ep) Jyoa'

2:a(L(~/o) .

(8.21)

(8.22)

These point-impurity-like excitations exist for I
ll

&& Ill,
or J &) JP, where

/'eqal Epc ( a \

Jp ~
EEp) &«' E&ii)

(s.23)

FIG. 18. Two types of critical excitations on a localized
FL. For currents smaller than the zero-temperature critical
current, a voltage is produced by thermally activated pro-
duction of vortex loops. When this current is large enough

(J )) Jcp), small loops, such as (a), unbind at scales much
less than the localization length. The energy barriers domi-
nating this process are set by the point disorder. For much
lower currents, larger loops, such as (b), control the depin-
ning. When these loops are much larger than the localization
length (J (( Jop), the energy barriers are controlled by the
renormalized columnar defect strength.

po J exp [ ER(J)/—kRT], (s.24)

can be evaluated in the two limits. In both cases, one
finds a nonlinear relation,

/ Joi"
po J exp (8.25)

where

1 J && JCP,
(u/(1+ C

—(u), J )) Jcp, (s.26)

For the point impurity regime to exist at all, we
require E~~ && a. In this limit, Eq. (8.16) gives

UR (a/I~~) U, (a/E~~)' Ep/a. A comparison
of Eqs. (8.19) and (8.23) shows that Jp/Jc = O(l). It
is therefore possible to define a single crossover current
scale Jcp Jc Jp.

Since the barriers are known, the thermally activated
form,

(s.is)

URc / ab CJc-
4o*a (&(()

(s.ig)

The small-scale results of Ref. 3 can also be taken over.
In terms of the parameters of Sec. IIII C, the barrier en-

ergy is

renormalized value UR in the presence of point defects.
It has the limiting behaviors [see Eq. (6.23)]

(a//(() U„E())) a,
UR

Uo, ~ll a)

where we have approximated the line energy u(8 = 1) in

Eq. (6.23) by the critical defect strength U, . The longi-
tudinal and transverse dimensions of the half loop are

1/2

(s.i7)
( ex ) Jdo'
URc

J4o
Equations (8.15), (8.17), and (8.18) are valid when L~~ &&

l~~ and Iz )) x~(l~~/a)~. For large l~~/a, these conditions
are equivalent, and require that J « Jc, where

and

1/2

(8.27)

By fitting to these scaling forms, Jpp could be deter-
mined experimentally and used to extract Ill.

Another bulk probe which should be able to detect the
localization length is neutron scattering. Like the real-
time surface imaging, this technology for high-T super-
conductors is still in development. 42 Once on line, how-

ever, scattering measurements should reveal some signal
of Fi localization at wave vectors q, —2m/E~~.

In lieu of good experimental data, simulations offer
another way to test the theory. The zero-temperature
numerics of Sec. VII are clearly not sufEciently powerful
to settle questions about critical exponents, nor do they
address dynamics at the transition. Monte Carlo simula-
tions have been performed on a single FL and a columnar
pin without point disorder in Ref. 14. Further simula-
tions along those lines, incorporating bulk randomness,
should be possible. Numerically determined I-V char-
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acteristics, as well as direct measurements of E~ and E~~

through the FL conformations, would shed much light on
the issues addressed in this paper.

IX. CONCLUSIONS

The interplay between different types of pinning in
type-II superconductors leads to an extrexnely rich va-

riety of efFects. In this paper, we have discussed what
is perhaps the simplest such case, the competition be-
tween point impurities and a single extended defect for
one fiux line. For a defect with n extended dimensions,
the lower critical dimension dl satisfies (dl —n)( = 1
above which a nontrivial unbinding transition can exist
for strong point disorder. This is the case in three dimen-
sions with a columnar pin, leading to the phase diagram
in Fig. 4. Several techniques were used to analyze the
critical behavior of this transition, the most reliable of
which is probably the e expansion. This yields the re-
sult vg 1.4, in good agreement with our numerical
simulations, which 6nd v~ ——1.3+ 0.6. The best candi-
date for observation of this effect is in a YBCO sample
with widely spaced dislocation lines and a high density
of oxygen vacancies, either through nonlinear I-V mea-
surements, surface imaging, or neutron scattering.

A number of other theoretical investigations of
some aspects of this problem have appeared recently.
Kolomeisky and Straley, i using a renormalization-group
technique, obtained results for d~ and the critical expo-
nents which agree with ours to lowest order in e, though
they 6nd an upper critical dimension d„=4, at which
these exponents lock in to the values given in our Sec. IV.
Tang and Lyuksyutov also agree on d~, and use the
Migdal-Kadanoff RG to argue that the coefficient of the
b, 2 term is positive, in agreement with the functional
RG result. They also performed numerical simulations

in three dimensions, using a mapping of the FL prob-
lem to the growth of a driven interface. ii They find

v~ = 1.8 6 0.6, which includes our functional RG result.
Hwa and Natterman2~ employ a Quctuation-dissipation
theorem to develop the RG in two dimensions around
the nonperturbative delocalized 6xed point. They also
find a positive O(62) term, leading to our e-expansion
result.

Based upon the general agreement of these approaches,
we believe the static transition and its critical behav-
ior are now fairly well understood. As pointed out in
Sec. VIII, the fiux creep becomes nontrivial near the crit-
ical point. For larger applied currents, the FL must even-
tually depin even at zero temperature. Such a depinning
transition should be similar to that studied for charge
density waves and interfaces. 44

Once interactions with other fiux lines and other ex-
tended defects are included, even the statics becomes
more complicated. The case of a single FL and a finite
density of columnar pins has been studied in Ref. 45.
Reference 9 shows that the inclusion of many Qux lines
does not result simply in a Bose glass (though it may ap-
pear so up to a very large crossover length scale). Even
the physics of many fiux lines and many extended defects,
such as the so-called "intrinsic" pinning between the CuO
planes, without point impurities, is quite complex. Cer-
tainly the dynamics of such phases is even more rich. We
must leave these many questions for the reader.
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