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The quasiparticle excitation spectrum of a type-II superconductor placed in a high magnetic
field near H, z(T) is shown to be gapless. The gap turns to zero at the points in the magnetic
Brillouin zone that are in correspondence with the vortex lattice in real space. When the field

decreases below a certain critical value, branch crossings occur and gaps start opening up at the
Fermi surface. The strong dispersion around the gapless points leads to an algebraic temperature
dependence in the thermodynamic functions and the algebraic voltage dependence in the tunneling
conductance between the microscope tip and superconductor in a scanning tunneling microscope
experiment. The crossover from the localized midgap states at the core of an isolated vortex to
the coherent quasiparticle band at high fields is re6ected in a qualitative change of differential
conductance.

I. MOTIVATION

The properties of a superconductor placed in an ex-
ternal magnetic 6eld have been a subject of considerable
interest for a long time. Particularly significant in this
context is the mixed phase of a type-II superconductor
in which the external field can coexist with superconduc-
tivity in the form of a quantized Hux lattice. Discovery
of high-temperature superconductors (HTS's), exhibit-
ing strongly type-II behavior, has only fueled further in-
tense studies of such systems. The familiar Abrikosov-
Gorkov (AG) microscopic theory based on the semiclas-
sical approximation for a magnetic 6eld yields a very
good description of most conventional type-II materials.
This theory completely neglects Landau level quantiza-
tion of electronic energies in a magnetic field, which is
justi6ed for a range of fields and temperatures such that
fur « k&T in a clean system (Ru, = eH/mc) For.
large impurity concentrations this condition translates
to ~, (& 2+v, where v. is the scattering lifetime. Un-
der these conditions electrons occupy a huge number of
closely separated Landau levels so that either tempera-
ture or impurity scattering completely erases the signi6-
cance of the quantized energy levels in a magnetic field.
Recently Tesanovic et al. examined the opposite limit to
the one described by AG theory and discovered that the
inclusion of Landau levels leads to reentrant behavior at
high fields where the superconductivity is enhanced by
a magnetic field. Numerous other interesting eKects are
predicted as manifestations of the Landau-level structure
in superconductors. This behavior is mostly pronounced
in the low-carrier-density systems where the high-6eld
limit can be achieved by application of experimentally
available Gelds. It is we?1 known that HTS's are inher-
ently strongly type-II systems, i.e., their behavior in a
magnetic 6eld is not the consequence of doping the ma-
terials by impurities. Instead, they are actually quite
clean systems with the strong type-II behavior being due
to their low carrier densities. There is a sharply defined

Landau level structure in such a superconductor and it
should be included in any complete study of HTS's in a
magnetic field. We expect that the effects of the Landau-
level quantization will be xnost pronounced at low tem-
peratures and high fields, near the semiclassical H,z(T).

Particularly interesting in this context is the problem
of the quasiparticle excitation spectrum in the mixed
state of the superconductor. Recent scanning tunnel-
ing microscope (STM) experiments have revealed the lo-
cal distribution of quasiparticle states in the vortex core.
Several theoretical works have followed explaining ex-
perimental results of Hess and co-workers, based on the
solution of the Bogoliubov-deGennes (BdG) equations for
the quasiparticle excitation spectrum in the isolated vor-
tex case. This situation is obtained when the external
xnagnetic field is rather low (typically 10 z —10 s T) so
that vortices are well separated. It is natural to inquire
what would be the result of such an STM experiment at
higher fields () 1 T). Such an experiment would probe
the electronic structure of the vortex lattice since the
STM probe would be able to scan more than just a sin-
gle vortex. A clean HTS sample would be an excellent
candidate for such an experiment: at low temperature
and high fields the mean &ee path of the electrons in
these systems will become much longer than the separa-
tion of the vortices. Therefore, the quasiparticle excita-
tions will propagate coherently through many unit cells
of the vortex lattice. This coherent propagation will lead
to qualitatively new features in the STM pattern.

In Sec. II of this paper we present the solution of BdG
equations for the quasiparticle excitation spectrum of the
vortex lattice. We show that the type-II superconductor
in a high magnetic Geld has a gapless excitation spec-
trum with the strong dispersion around gapless points at
the Fermi surface. This high-field gapless behavior, first
discussed by Dukan et al. , is dictated by topological con-
siderations and is shown here to persist even relatively far
below the H,z(T) line. We also discuss the mechanism of
the gap opening in lower fields. In Sec. III we discuss the
behavior of the thermodynamic properties and the den-
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sity of states for such a gapless superconductor. In Sec.
IV we show that the S-N-S tunneling conductance and
the STM conductance of the superconductor in a high
magnetic field have an algebraic voltage dependence.

II. THE QUASIPARTICLE EXCITATION
SPECTRUM
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We consider a three-dimensional (3D) weakly inter-

acting electronic system in a magnetic Geld with the
model interaction V{ri,r2) = —Vb{ri —r2), arising &om
the electron-phonon and electron-electron pairing mech-
anism. We assume V is only weakly dependent on mag-
netic field. The Hartree-Fock Hamiltonian for such a
system is

HHF = ) @ (r) —ihV + —A iII (r)d r

+ 6 r 4't~ r 4&~ r d r + H.c. , 1

where b, (r) is the superconducting order parameter given
by the self-consistent equation

&(r) = V{~t(r)~l(r)) (2)

We take the order parameter to be uniform along the
field direction. In the mean field (MF) approximation
A(r) forms the Abrikosov lattice of vortices that in the
Landau gauge A = H( y, 0, 0) h—as the form~

t' b
b, p(r) = 6) exp

~
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where l~ = /he/eH is the magnetic length and b, is
the amplitude. The vortex lattice is characterized by
unit vectors a = (a, 0, 0, ) and b = (b, b„,0) (b = 0,

6y a for quadratic lattice and b =
2 a, b„= ~2 a

for triangular lattice). The fiux through the unit cell is
given by the expression ab„= vrl&. The above form of
the order parameter is entirely contained in the lowest
Landau level of the Cooper charge 2e and represents the
excellent approximation as long as the region of interest
is close to the H, 2(T) line in a phase diagram. In lower
fields, H = H,2(T)/(2j+ 1), A(r) contains contributions
from higher Landau levels (j & 1) that can be easily
obtained by the action of the operator
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where Pg q „(r) are the eigenfunctions of the magnetic
translation group (MTG) in the Landau gauge belonging
to the nth Landau level:

H~(x) is the Hermite polynomial of the order j. Ampli-
tudes Az can be generated from the self-consistent equa-
tion (2). Because of the symmetry, only Ai 4i, (r) for
the quadratic and b, 2 s&(r) for the triangular lattice will

contribute to the general form of the order parameter
A(r) = P Ai(r). Only these functions have the same
position and vorticity of zeros to produce the order pa-
rameter of the correct symmetry. Nevertheless, we can
show that the higher level contributions (k g 0) are not
crucial for our problem. They introduce extra wiggles in
the spatial dependence of the order parameter far from
the vortex positions and do not bring any new essential
features in the form of the excitation spectrum.

In order to diagonalize the Hamiltonian (1), we use
the magnetic sublattice representation with basis func-
tions characterized by quasimomentum g perpendicular
to the direction of the field. Since the electronic charge
is half as large as the Cooper pair charge, we choose the
electronic unit cell spanned by vectors 2a and b in order
to enclose one full electronic Aux in the unit cell. Then,
the Magnetic Brillouin Zone (MBZ) is defined by vectors
a* = (b„/l2H, b /l&~—) and b* = (0, 2a/lH2). In this basis
we can write the BdG transformations as

1 b„- f orb.
4i,„q„(r)= exp (ik, () ) exp

~

i m, —imq„b&
~2"n!~xlH )

- 2

xexp i q + x —1 2 —+ q + lH 0 + q~+
a l~ ( a ) l~

( is the spatial coordinate and k, is the momentum along
the field direction. Product L L„L, is the volume of the
system.

The Cooper pairs are formed from the electrons hav-
ing opposite crystalline momenta q and spins within the

l

same Landau level (diagonal pairing) and from the elec-
trons belonging to the Landau levels separated by Ru, or
more (off-diagonal pairing). In sufficiently high magnetic
fields so that 4 &( Ru we can use the quantum limit ap-
proximation (@LA) (see Dukan et al. in Ref. 2) which
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takes into account only diagonal pairing and ignores off-

diagonal pairing completely. This is justi6ed only if an
additional condition is ful6lled, i.e., if the number of oc-
cupied Landau levels n, is less than = EJ;/T, o, where
E~ is the Fermi energy and T,o is the zero-Geld transi-
tion temperature. This is a situation that can readily
be achieved in low-carrier-density systems by application
of fields in the 10—30 T range. In lower 6elds, where n
is large, off-diagonal terms have to be included as well:
their number grows as n„while the number of diagonal
terms grows as n, and for sufficiently large n, )) Ez/T, o

these terms will eventually come to dominate. For the
moment, we ignore Zeeman splitting but we will show be-
low how our results can be generalized to the case when
the Zeeman effect is included.

Taking the order parameter in the form A(r)
I

g . b,~ (r) and after performing the BdG transformations

(6) we get the following set of equations:
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where A„(q) = g. b,~ (q) is the matrix element of
A(r) = P . b,~ (r) between electronic states (k„q, n) and

(—k„—q, m) and is given by
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(q) constitutes a magnetic lattice in q-space (i.e., a
lattice which is invariant under MTG transformations in
q-space) and belongs to the (n + m —j)th Landau level
of charge e/2 in this space. In the same way as in real
space, the operator (4) can be constructed in q-space:

IIt(q) =
l

—i
1 ( . 8

2lH ( Bq„

8
+2~*4 l

Bq )
(10)

Ek q„——6 h2k2' + n .(n+1/2) —p + Ia-(q)l'.

in order to obtain all b,~ (q) from LVoo (q) belonging to
the lowest level in this space. The behavior of b,~ (q)
is very important for the excitation spectrum and should
be investigated in detail. The set of LV„(q) can be clas-
sified by the position and order of its zeros: All LV (q)
with (n+m —j+4k) for quadratic and (n+m —j+6k) for
triangular lattices (k is an integer) have the saine set of
zeros with the similar dispersion around each zero. They
differ considerably only far &om these points. There-
fore, the contributions Az 4g(r) [Az sic(r)j with k P 0
for quadratic (triangular) lattices to 6(r) = g. A~(r)
have similar matrix elements around singular points to
the matrix elements LV„=o(q) obtained for the order pa-
rameter entirely in the lowest Landau level. Their in-
clusion does not bring any new qualitative feature in the
form of the excitation spectrum and we proceed by taking
only j = 0 contributions to b, (r) . In high magnetic fields
(b, « Ru, ) we follow the QLA and ignore the off-diagonal
pairing. Then, BdG equations (8) can be solved analyt-
ically yielding the quasiparticle excitation spectrum of
the form

I

in direct correspondence with the position of the vortices
(z; = z, + iy;), e.g. , q~lH = z, /l~. While these zeros are
of the 6rst order, we have found that n = 1+2k branches
for quadratic and n = 2+ 3k branches for triangular lat-
tices have in addition zeros of the second and third order,
respectively. Con6guration of the zeros in the MBZ and
corresponding vorticities are such as to preserve exactly
one positive vorticity per unit cell of the order parameter
in real space. Figure 1 shows the Ek~ q 0 branch in the
spectrum (11) of the triangular vortex lattice.

Lowering the magnetic field (but still in the region of
6 & Ru, ), the number of occupied Landau levels grows
and the off-diagonal coupling becomes important (see the
discussion above). The Cooper pairs are formed from the
electrons in states (k„q, n) and (—k„—q, n 6 m) where
m (( OD/fuu, (O~ is a Debye &equency). Inclusion of the
off-diagonal matrix elements b,„(q) makes solving the
BdG equations (8) a cumbersome problem of diagonaliz-
ing the 2(n, + M) x 2(n, + M) matrix that can be done
numerically. Initially, it seems that the inclusion of the
off-diagonal matrix elements A„(q) destroys the gapless
behavior of the excitation spectrum (11): Off-diagonal
matrix elements 6„„+i,(q), where k is an odd integer,
have zeros on the lattice dual to the lattice formed by
zeros of diagonal b,„„(q)and there are no points in the
MBZ where zeros of all matrix elements coincide. How-
ever, our numerical results show that there are always
n gapless branches in the excitation spectrum with the
position of zeros in the (q, q„) plane exactly the same as
those found within QLA. The role of off-diagonal matrix
elements is to shift the value of Fermi momentum k~„
at which the gapless behavior occurs in QLA to the new

I
value k& estimated from the condition

There are n gapless branches in the above spectrum.
The gap b, „(q) turns to zero on the Fermi surface at
the set of points (q~ =

q&~ +iq ~) in the MBZ which are

h2k~2

2m

(12)
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Zeeman splitting is closed to the cyclotron splitting mak-

ing the nth spin-up Landau level nearly degenerate with
the (n + 1)th spin-down one. In this case the lattice of
zeros found in the g = 0 case makes a transition to the
dual lattice described above for the off-diagonal matrix
elements b, (q) with n+ m odd. Then, when g =. 4
the dual lattice transforms back to the original lattice,
and so on. When 0 ( g ( 2 one should pair electrons
with the momenta along the field axis k, and —k, + q,
for all possible q,„required to offset the Zeeman split-
ting. In this case, one should consider a nonuniform
(along the field direction) order parameter of the form
b, (z, y) exp(P„q, „t,'), where b, (x, y) is given by (3). The
diagonalization of the BdG equations (8) is a very com-
plicated task now due to the determination of the vectors
q . Nevertheless, we still find the gapless points in the
excitation spectrum for the case where only few Landau
levels are occupied.

III. THERMODYNAMIC PROPERTIES
AND DENSITY OF STATES

The strong dispersion around gapless points at the
Fermi surface leads to unusual temperature behavior of
the thermodynamic functions at low temperatures. Our
calculations show that the heat capacity at low temper-
atures behaves as

( 6 ) Ng (kgT) i (kgyTI
(2vrlH)2 ghee) a2

g b,

(14)
where a = 2 for the quadratic and n = 5/3 for the trian-
gular lattice. N~ is the number of the gapless branches
at some value of b, /hu, (see the discussion above). The
(k~T/b, ) behavior in (14) is due to the presence of
second- (third-) order zeros for the quadratic (triangu-
lar) lattice in some of the branches of the energy spectra,
while the (kJ3T/b)s behavior is a consequence of lin-
ear dispersion around first-order zeros in all of the gap-
less branches. CoeKcient a„ in (14) that measures slope
around zero, depends strongly on the chosen lattice sym-
metry but also on the strength of the magnetic field. In
lower fields more Landau levels cross the Fermi surface
and mix together making the slope around zero steeper
(e.g. , increasing a„, compare Fig. 1 and Fig. 2). Fur-
thermore, it was mentioned before that in lower Qelds the
contribution to the order parameter from higher Landau
levels should be included as well. This will introduce
wiggles in the region between zeros in r-space, making
the slope around zero in the energy spectra even steeper.
Also, as the value of (~ ) increases the number of gapless

C

branches N~ decreases, making the algebraic temperature
dependence in (14) weaker.

It is interesting to see how the superconducting den-
sity of states changes &om the standard BCS form due
to the presence of zeros at the Fermi surface in the quasi-
particle excitation spectra. Our calculations show that
the low-energy density of states per gapless branch of the
spectrum has a behavior

i (El' i (E~N. (E) =Nf(0) —
I

—
I

+ —.
(

—
Ia„(A) a„gEp

where a = 1 for the quadratic and n = 2/3 for the trian-
gular lattice. Ny(0) is the density of states of the free 3D
system of electrons in a magnetic field at the Fermi level.
The term (~)2 in (15) comes from first-order zeros while

(&) is due to second- (third-) order zeros in the gap-
less branches of the excitation spectrum of the quadratic
(triangular) vortex lattice.

IV. THE TUNNELING PROPERTIES

In this section we present a theoretical study of var-

ious tunneling characteristics of a superconductor in a
high magnetic field exhibiting the gapl, ess behavior de-
scribed above. We present the results for the triangular
vortex lattice that is known to be the lowest energy state
in the mixed phase. First, we consider a simple problem
of tunneling between two superconductors separated by
a thin insulating layer. The geometry is such that the
tunneling occurs primarily along the vortex lines. The
tunneling problem was studied by Bardeen and Cohen
et at. in the approximation of the semiconductor band
model where the chemical potentials of two superconduc-
tors differ by the applied voltage, i.e. eV = pL, —p,R. The
potential drop eV occurs in the insulating region between
superconductors, which is typically a metal oxide. Cohen
et al. introduced the concept of a tunneling Hamiltonian:

HT' = ) Tgpci cp + H.c.
I&] Ip]

where ci, (cp) are set of operators describing electrons in
a left (right) superconductor. The tunneling matrix ele-
ment Ti,p transfers particles through the insulating layer
and is not spin dependent. The tunneling in the super-
conductors will take place over a very narrow span of
energies around the Fermi level, therefore it is adequate
to treat the transfer rate Tg~ as constant To evaluated at
[kp ] and [pp]. This is a proper formalism for the voltages
in our problem (eV « b 1 meV).

Following Ref. 14, tunneling current through the insu-
lating layer between the superconductors is given by

+oo g
I(V, T) = 2e ) ~Ti,p~ A~(k, s)A—I, (p, s+ eV)

vjÃ
x [nF(s) —np(s + eV)]

where AR(k, e) and Al, (p, s+ eV) are the spectral func-
tions of the right and left superconductor, respectively.
[k] = (k, k„n) ([p] = (p, p„m)) is a set of quantum
numbers representing the quasiparticle states in the left
(right) superconductor and np (s') is a Fermi distribution.
We anticipate that the most significant contribution to
the tunneling current for small voltages (eV « b, ) will
come &om the states around the gapless points in the
quasiparticle excitation spectrum. In the vicinity of these
special points (q;, kp) at the Fermi surface the energy
spectrum (11) can be approximated as

E(q, k, ) ~

k,
~

+6 a (q l +q„l ) (18)
(EF
( kp.

where o. is the order of the zero, while the coeKcient a
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measures slope around zero. E~ is the Fermi level and
kF is the Fermi momentum. We are interested in the tun-
neling along the vortex lines, i.e., along the direction of
magnetic field. For such a tunneling, in-plane quasimo-
menta are conserved up to the reciprocal lattice vector in

the first MHZ. The quasiparticle fmm the left with quasi-
momentum q q; can tunnel in four equivalent states
in the right superconductor with the same contribution
to the tunneling current. After some algebra expression

(17) reduces to

I)((V, T) = NgRNgLIT0( g ) [nF(E&i, )
—nF(E«, )]b(E« —eV —Ez& )

A'r )qz &o

+(nF(E«. ) —nF(E,~.)]~(E,. —«- E«, ) (19)

where we have assumed that there are N~R and Ngl, gapless branches in the excitation spectra of the right and left
superconductor, respectively.

Differential conductance cr = BI~~/BV can be evaluated numerically from (19) for finite temperatures. For T = 0
we can find the analytical expression for the differential conductance as

o(V, T = 0) ARa1R t' eV l (b,La1L l (bRa3RI f eV l f'6 La 3L)= &gL, NgR 1 + 3
oo +Lo1L E+R 1R ) 0 +Ro1R ) k +LG3L ) k DRG3R ) E,DRQ3R )

where cro is the tunneling differential conductance between two normal metals in a magnetic field and is given by

(20)

4vre N1L(0) N1R(0)
2vrlz 2vrtz

N1L(0) and N1R(0) are one-dimensional densities of states of a normal metal. B in (20) are numerical factors
associated with the geometry of the vortex lattice and the order of zeros n in the excitation spectrum (18). They are
equal to

I (
—) +' 1 1 1 1B (Z) =27r (2+n)2 3 z F —,—;—+ ;Z

~

—~ dz
I'(-.') n 2 n 2 iz —1) (22)

where Ii (a, 6; c; z) is the hypergeometric function and I'(z) is the gamma function. Comparing (20) and (15) we see
that the differential conductance has the same algebraic dependence on voltage as the density of states on energy.
This dependence is a consequence of the presence of gapless points in the quasiparticle excitation spectrum. (eV)
dependence in (20) comes &om the presence of first order zeros while term (eV)zi3 comes from third order zeros in a
spectrum of a triangular vortex lattice. At finite temperatures this algebraic dependence will acquire the exponential
tail due to the thermal excitations of the quasiparticles over the Fermi surface.

In order to discuss the possible results of scaninng tunneling microscope (STM) experiment in the presence of a
vortex lattice, we need a model of the tunneling current between the microscope tip and surface of the superconductor
in a magnetic field. We will consider the same geometry of the experiment as described for S-N-S tunneling above,
i.e. , electrons from the tip can tunnel only along vortex lines. The tunneling current will be related to the spectral
functions As (r, e) and Aiv(r, s) in a way described by the expression (17) with the diiference that these functions now
depend on the position of the tip r. In our calculation we will assume that the presence of the surface does not affect
the quasiparticle wave functions of the superconductor. The differential conductance is then given by

2vrlZ ) ) ) ~u (r)~ nF(E —eV) + ~v (r)~ nF(E + eV)
q)0 q N1

where nF(E) is a derivative of a Fermi distribution and
r = (z, y) is a position of a tip. u (r) = u P~q (r)
and v (r) = v Pzq (r) are the solutions of BdG equa-
tions 8 for the superconductor in a magnetic field. Sum

g~ in (23) goes over the gapless branches of the quasi-
particle excitation spectrum, since the most important
contribution to the tunneling current at small bias volt-
ages comes from the gapless points at the Fermi surface.

Figure 3 shows the differential conductance (23) at zero
temperature as a function of the bias voltage when the
microscope tip is at the position of the vortex. For small
tunneling voltages it has the algebraic voltage depen-
dence, refIecting the behavior of the low-energy density
of states (15). It has a peak for the value of the volt-
age approximately equal to the maximum value of the

order parameter. Note that this result differs from the
one obtained in Ref. 4. for the isolated vortex case where
the conductance is strongly enhanced at zero bias. It is
important to understand that our calculation is done for
the fundamentally different physical situation than the
isolated vortex one considered in Ref. 4. In high mag-
netic fields vortices are very close to each other so that
at low temperatures quasiparticles can propagate coher-
ently over many unit cells. This coherent propagation
will infIuence all the properties of the superconductor as
we have shown in this paper: In particular, the formation
of the coherent quasiparticle band leads to the minimum
in differential conductance at zero bias. In lower mag-
netic fields, where the electronic mean free path is much
shorter than the separation of vortices, the quasiparticle
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FIG. 3. The difFerential conductance as a function of a bias
voltage when the STM tip is at the position of the vortex (in
arbitrary units).

0.0

states are efFectively bound to a single vortex exhibiting
a well-known local maximum in difFerential conductance
at zero bias, characterizing localized midgap states. The
relationship between these two limits is essentially that
of a single-impurity problem versus an ordered lattice of
scatterers. Figure 4 shows how the difFerential conduc-
tance (23) depends on a tip position for the fixed value
of a biased voltage V/b, = 0.2. This figure has a sixfold
symmetry pattern of a triangular vortex lattice. DifFer-
ential conductance has maxima at the positions of the
vortices. The conductance decreases as the tip moves
away &om the vortex and reaches its minimum value at
the positions where the order parameter has its maxima
(these points form the hexagonal lattice).

V. CONCLUSION

In this paper we have shown that the BCS theory of
a superconductor in a magnetic field can be solved ex-
actly leading to the gapless behavior of the quasiparti-
cle excitation spectrum in high magnetic fields. We have
also discussed the mechanism of gap opening in the lower
fields. As a result of the strong dispersion around gap-

k~ ~~
-1.0 -0.5 0.0

X 0
0.5

FIG. 4. The difFerential conductance as a function of the
position of a STM tip for V/b, = 0.2. Full circles represent
minima of difFerential conductance vrhile diamonds shower the
xIlaxlma.
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less points, we have found the algebraic behavior of the
heat capacity at low temperatures as well as density of
states at low energies. The difFerential conductance of
an S-N-8 junction and difFerential conductance between
the STM tip and the superconductor are found to have
an algebraic dependence on biased voltage. This unusual
behavior of a type-II superconductor in a high magnetic
field can be in principle detected in suitably designed ex-
periments at low temperatures.
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