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Electron-vibron interactions in charged fullerenes. I. Berry phases
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A simple model for electron-vibron interactions on charged fullerenes C60, n =1,. . . , 5, is solved

both at weak and strong couplings. We consider a single Hg vibrational multiplet interacting with

electrons. At strong coupling the semiclassical dynamical Jahn-Teller theory is valid. The Jahn-Teller
distortions are unimodal for n =1,2,4, 5 electrons, and bimodal for 3 electrons. The distortions are
quantized as rigid-body pseudorotators which are subject to geometrical Berry phases. These impose
ground-state degeneracies and dramatically change zero-point energies. Exact diagonalization shows

that the semiclassical level degeneracies and ordering survive well into the weak-coupling regime. At
weak coupling, we discover an enhancement factor of —, for the pair binding energies over their classical

values. This has potentially important implications for superconductivity in fullerides, and demonstrates

the shortcoming of Migdal-Eliashberg theory for molecular crystals.

I. INTRODUCTION

The spheroid-shaped molecule C6o (fullerene} and its
various crystalline compounds have ignited enormous in-
terest in the chemistry and physics community recently. '

C60 is a truncated icosahedron. From a physicist's stand-
point, the charged molecule is fundamentally interesting,
because the high molecular symmetry gives rise to degen-
eracies in both electronic and vibrational systems. Thus,
the molecule is very sensitive to perturbations. In partic-
ular, electron-phonon and electron-electron interactions
are expected to produce highly correlated ground states
and excitations.

Superconductivity has been discovered in alkali-metal-
doped fullerenes A3C6o (A =K,Cs,Rb), with relatively
high transition temperatures (T, =20—30 K). There are
experimental indications that the pairing mechanism
originates in the electronic properties of a single mole-
cule. The pair binding energy is a balance of electron-
vibron interactions and electron-electron interac-
tions. The relative contributions and signs of the two in-
teractions are under some controversy.

The electron-vibron school has identified certain
fivefold-degenerate H (d-wave-like) vibrational modes
which couple strongly to the t,„ lowest unoccupied
molecular orbital (LUMO). ' Varma, Zaanen, and
Raghavachari as well as Schluter et al. and, more re-
cently, Antropov et al. proposed that these modes un-
dergo a Jahn-Teller (JT) distortion and calculated the in-
duced pair binding energies at severa1 fillings. They used
the classical approximation, and restricted their calcula-
tion to unimodal distortions (defined later). The general
conclusion of this approach is that, while the calculated A,

is sizable, one still requires a large reduction of the
Coulomb pseudopotential p* in order to explain the
highest transition temperatures. On the other hand,
Gunnarsson, Rainer, and Zwicknagl independently esti-
mate a large @*=0.4, i.e., there is no mechanism provid-
ing such a reduction.

However, estimates of the electron-vibron coupling
constant g do not justify the classical JT approximation.
C60 is estimated by frozen-phonon calculations to be in

the weak-coupling regime g ~ 1 where quantum correc-
tions are important.

In this paper (part I) we study the isolated C~"
charged molecule. In particular, we shall reconsider the
same JT model, but diagonalize the quantum Hamiltoni-
an for the full range of the coupling constant. %e shall
find that quantum corrections to the classical JT theory
introduce novel qualitative features, and are quantitative-

ly important for the pair binding energies.
The quantum fluctuations involve interference effects

due to geometrical Berry phases. Berry phases appear in

a wide range of physical phenomena. ' Here we find the
Berry phase in the context of a molecular Aharonov-
Bohm (MAB} effect, originally discovered by Longuet-
Higgins. The MAB effect has important consequences
on the vibron spectrum. For example, it produces half-
odd integer quantum numbers in the spectrum of triangu-
lar molecules, ' an effect recently confirmed spectroscop-
ically in Na3. ' This kind of Berry phase is important
also in scattering of hydrogen molecules. " Recently, it
has been suggested that a geometrical Berry phase may
be relevant in fullerene ions. ' ' Here we show that
Berry phases produce selection rules for the pseudorota-
tional quantum numbers and kinematical restrictions
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which affect the pairing interaction between electrons.
Although the semiclassical and Berry-phase description
is appropriate in strong coupling, the level ordering and
degeneracies are found to survive for arbitrary coupling,
particularly in the weak-coupling regime, which is closer
to actual C6O. For this reason we devote a large portion
of this paper to the semiclassical theory, which helps to
build physical intuition for further extensions of the mod-
el.

This paper is organized as follows: In Sec. II the basic
model is introduced. Section III calculates the JT distor-
tions in the classical limit. Section IV derives the semi-
classical quantization about the JT manifold. The
geometrical Berry phases are calculated, and their effect
on the semiclassical spectrum is obtained up to order
g . Section V describes the exact diagonalization re-
sults, and compares them to the semiclassical theory, and
to weak-coupling perturbation theory. The pair binding
energies are determined in Sec. VI. In Sec. VII we sum-
marize the paper and discuss our main result: that the
effective pair binding energies are larger by a factor of 3
than the pair interaction energy in Migdal-Eliashberg
theory. In the following paper' we shall extend the mod-
el to all A and Hs modes with realistic physical parame-
ters. This will allow us to explore the experimental
consequences of the electron-vibron interactions.

II. THE ELECTRON-VIBRON MODEL

The single-electron LUMO states of C60 are in a triplet
of r,„representation. We consider the Hg (five-
dimensional) vibrational multiplet which couples to these
electrons. t,„and Hg are the icosahedral-group counter-
parts of the spherical harmonics [ Y, ]', and

[ Yi ]~ i, respectively. By replacing the truncated
icosahedron symmetry group by the spherical group, we
ignore lattice corrugation effects. These are expected to
be small since they do not lift the degeneracies of the
L = 1,2 representations.

The Hamiltonian is thus defined as

overall coupling constant g) by symmetry:

H'"~g Qu 0 ~Q, Q

H' "= 3
gRa) g ( —1)~[i~~+(—1) b ~]

s,M, m

X (2,M~1, —m;1,M+m )

XCmsCM+ms (7)

The coupling constant g is fixed by the convention of
0 Brien, who studied this kind of dynamical JT prob-
lem. '7 Representation (7} is convenient for setting up an
exact diagonalization program in the truncated Fock
space.

The real representation

The semiclassical expansion is simpler to derive in the
real-coordinates representation. The vibron coordinates
are

2

q„= g M„[bt +(—1) b ],10

where

M„+p=[2sgn(p}] '~ [5„+sgn(p)5„],
(9)

Mqp=5qp .

[q„] are coefficients of the real spherical functions

Using the relation

fdQY, (Q)r,.(Q)r,.(Q)

~( —1} (L, —M~lm, ;1m&), (6)

where ( ) is a Clebsch-Gordan coefficient, ' yields
the second quantized Hamiltonian

[Yi (Q }bw+ Ym«)bshe ]
2

where 0 is a unit vector on the sphere. The t&„electron
field is

1

1(,(Q)= g Y, (Q)c, .
m= —1

(4)

H=H +H' "

where

H'=~ X (b~br+ ,')+(& V-)g c~—sc, .
M ms

bM creates a vibron with azimuthal quantum number M,
and c~, creates an electron of spin s in an orbital Y&
%'e fix the number of electrons to be n, and set the chemi-
cal potential p~e, which discards the second term.

The H vibration field is

f~(Q)= gMq ~ Yi~(Q)
5

6
Re[ Yi(„~(Q)], p, =1,2,

10

6
Yip(Q) @=0v5

—Im[ Yzi„i(Q)], p, =—1, —2 .

%e also choose a real representation for the electrons,

2
(c„+c „),cXS

Cys . (Cis C —is} s
l 2

c~=c~ .zs Os

(10)

The electron-vibron interaction is local and rotationally
invariant. Its form is completely determined (up to an

Thus the Hamiltonian in the real representation is given
by
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H=H +0''
0'= y ( —a„'+q„'),p fuu

~e-v —
g y (ct,ct,ct )

%co

S

qo+&3q2
X —v'3q 2 qo

—v 3qz —+3q
—&3q, &3q

(12)

m=($, 8,f) are the three Euler angles of the O(3) rotation
matrix T. In the diagonal basis of (13), the electron ener-
gies depend only on two vibron coordinates:

1
0

q(0) = z (15)
0
0

By rotating the vibron coordinates q to the diagonal basis
using the L =2 rotation matrix D' ~, one obtains

r

&xs

X c,
&zs

This form of the JT Hamiltonian is well known. ' '

Since the Hamiltonian is rotationally invariant, its eigen-
values are invariant under simultaneous O(3) rotations of
the electronic and vibronic representations.

III. JAHN-TELLER DISTORTIONS (CLASSICAL)

In the classical limit, one can ignore the vibron deriva-
tive terms in (12), and treat q = Iq„] as frozen coordi-
nates in H' '. The coupling matrix in H' " is diagonal-
ized by'

q„(r,z, m) =
m, m', p'= —2

Mp. D(2). (m)M. piqp (0), (16)

V(z, r, [n, ])= (z +r )

+ [n i (z V'3—r )+n z(z+ &3r )

—n32z] . (17)

V is minimized at the JT distortions (z„,r„,n; ), at which
the classical energy is given by

where M„was de5ned in (9).
By (16), and the unitarity of D and M, ~q is invariant

under rotations of m. Thus, the adiabatic potential ener-

gy V depends only on r, z, and the occupation numbers of
the electronic eigenstates n;, where g; n; =n

T

z &3r—0 0
z+&3r 0 T(m),

0 —2z

T '(m) 0
0

where

cos8 0 sin 8
0 1 0

sin0 0 cos8

cosf sing 0
T= —sinl( cosg 0

0 0 1

' cosP sing 0
X —sing cosP 0

0 0 1

(13)

(14)

E„"=minV(z„,r„,n;) .

The JT distortions at different fillings are given in Table
I. We define $, 6) as the longitude and latitude with
respect to the diagonal frame ("principal axes" ) labeled
(1,2,3) (3 is at the north pole). z, r parametrize the Jahn-
Teller distortion in the real representation (10), as

(u (8,$)) =—(3cos 8—1)+ sin 8cos(2$) . (19)
2 2

In Table I we present the values of the ground-state JT
distortions at a11 electron fillings. We see that electron
fillings n =1,2, 4, 5 have unimodal distortions which are
symmetric about the 3 axis, while n =3 has a bimodal

TABLE I. Semiclassical ground-state distortions and energies for a single H~ coupled mode of fre-
quency co. n is the electron number, S is the total spin, z„, r„are the JT distortions, n; is the occupation
of orbital i, E„ is the ground-state energy, and U„ is the pair energy [Eq. (50)]. Energies are calculated
for strong coupling to order g

(z„,r„)

(0,0)

(g, O)

(2g, O)

v'3

( —2g, O)

( —g, O)

(0,0)

(7l 1,7l2, ll3 )

{0,0,0)

(0,0,1)

{0,0,2)

(1,0,2)

(2,2,0)

(2,2,1)

(2,2,2)

E„/(W~)

2g'+ 2+ 2

2g +2
——g +1+3 2 1

2 3g 2

2+ 3

21g2+ 23+
2

U„ /(Ace)

g +1
23g

—g +1-
3g

—g +1-
3g
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a) —'~q~ =—i +r + g I co;
1

2 2 i=1

co, = —sin/8+ cosg sin8$,

c02 =cosg8+ sing sin8$,

c03=lP+ COSH/,

(I&,I2, I& )= [(&3z+ r ), ( ~3z —r ),4r ] .

(22)

FIG. 1. Polar representation of the Jahn-Teller distortions
u (8,$}, Eq. (19). The distortion is measured relative to a
sphere. (a) The unimodal distortion for the ground states of
n =1,2,4, 5 electrons; (b) the bimodal distortion for n =3 elec-
trons.

For finite JT distortions, we can identify the Euler-angle
terms as the kinetic energy of a rigid-body rotator, ' and
the quantities I,(z, r) as moments of inertia in the
principal-axes frame (1,2,3). Thus, the Euler-angle dy-
namics follows that of a rigid bod-y rotator. ' The unimo-
dal and bimodal cases will be discussed separately.

A. Unimodal distortions

distortion, about the 3 and 1 axes. The two types of dis-
tortions are portrayed in Fig. 1, where we depict the dis-
tortions of (19) for the unimodal and bimodal cases.

For the unimodal cases (which we found for the
ground states of n =1,2, 4, 5, r =0 on the JT manifold),
the "moments of inertia" in (22) are given by the tensor

IV. SEMICLASSICAL QUANTIZATION

1 0 0
I=3z 0 1 0

0 0 0
(23)

At finite coupling constant g, quantum fluctuations
about the frozen JT distortion must be included. In order
to carry out the semiclassical quantization, we deSne a
natural set of five-dimensional coordinates r,z, m. m

parametrize the motion in the JT manifold (the valley in
the "mexican hat" potential V) and r, z are transverse to
the JT manifold, since V depends on them explicitly. The
transformation q(r, z, m) was given in (16), and was de-
rived explicitly in Ref. 18 to be

qz =z—,'W3 sin 8 coszP+r —,'(1+cos 8)cos2$ cos2$

~ [z +r +rz(2$) +3z (8 +s&n 8$ )] (24)

The angular velocity it couples to r as in the kinetic en-
ergy of a three-dimensional vector r parametrized by the
cylindrical coordinates

This corresponds to the rotational energy of a point par-
ticle on a sphere, which is described by the angles 8,$,
and moment of inertia 3z . Since axis 3 has no "mass, "
its angular velocity is dominated by f. This implies that
we must keep the terin r f but can discard the smaller
mixed terms PP. This yields

rcosH sin2$ sin2$—,

q, =z—,'~3 sin28 cosP —r—,'sin28 cos(}}cos2$

+r sinH sing sin2|t,

r=[r c so( $2), r sin(2$},z —z] .

For
~
r

~
&&z, the potential is simply

(25)

(26)

qo=z —,'(3 cos 8—1)+r—,'&3 sin 8 cos2$,

q, =z—,
' V 3 sin28 sing —r—,

' sin28 sing cos2$

rsinH cosP sin2$—,

(20) Thus, the semiclassical Hamiltonian of the unimodal dis-
tortion is

H uni ~rot+yZ Ho

q(r(t), z(t), m(t))=c), qr+c), qz+c) q-m (21)

q 2=z—,'csin 8sin2$+r —,'(1+cos 8)sin2$cos2$

rcosH cos2$ sin2$—.

The velocity in R is given by

6—2

3

H =fico g (atrar+ —,'},
where I. is an angular momentum operator, and H are
the three harmonic-oscillator modes of r. The energies
are given by

Using (20} and (21},we calculate the classical kinetic en-
ergy in terms of the JT coordinates. After some cumber-
some, but straightforward, algebra the kinetic energy is
obtained in the compact and instructive form:

E~=%) 1 3

i L(L+1)+ g (nr+ —,')
6z„

The rotational part of the eigenfunctions is

(28)
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VL" (q)= Yl (Q)l[n;, ])o, (29)

where Q=(8,$) is a unit vector, and
l [n,, ] )n is the elec-

tronic adiabatic ground state. It is a Pock state in the
principal-axes basis. In terms of the stationary Fock basis

l [n, . ] ) where a =x,y, z, the adiabatic ground state is

n;, &= n n;, & n (30)

Each overlap is a Slater determinant which is a sum of n

products of spherical harmonics

([n, ] l[n;, ])o=+C(, )Yi„(Q)Yi, (Q) Yi, (Q),
[~]

(31}

YL wave function must cancel the electronic Berry
phase. This amounts to a selection rule on L:

1 )I. +n (36)

Thus, the ground state for n=1 and 5 electrons has
pseudo-angular-momentum L =1 and finite zero-point
energy due to the nontrivial Berry phases.

B. Bimodal distortion

From Eq. (22) we see that the kinetic energy is given by

The analysis of the bimodal distortions n =3 proceeds
along similar lines. The distortion obeys

(37)

Q —Q. (32)

Spherical harm. onics are known to transform under
reflection as

where C~
~

are constants.
Now we discuss how boundary conditions determine

the allowed values of L. A reflection on the JT manifold
is given by

—,'lql =—z +r' + g I;ro;2

where the inertia tensor is

4 0 0
I=2z2 0 1 0

0 0 1

(38)

(39)

( —1) YL (33}

Thus, by (30) and (31), the electronic part of the wave
function transforms as

The quantization of the pseudorotational part is the
quantum-symmetric top Hamiltonian. Fortunately, it is
a well-known textbook problem (see, e.g., Refs. 20 and
16}. The eigenfunctions of a rigid-body rotator are the
rotational matrices

(34) D' k'(m), (40)

The re6ection (32} can be performed by moving on a
continuous path on the sphere from any point to its oppo-
site (see Fig. 2). It is easy to verify, using (16) or (20), that
this path is a closed orbit of q 6R:

q(Q)~q( —Q)=q(Q) . (35)

Thus we find that the electronic wave function yields a
Berry phase factor o-f (

—1)" for rotations between oppo-
site points on the sphere which correspond to closed or-
bits of q. In order to satisfy (29) using the invariance of
the left-hand side under reflection, the pseudorotational

where L,m&k are quantum numbers of the commuting
operators L, L', L', respectively. L' and L' are defined
with respect to the fixed z axis and the corotating 1 axis
respectively. The quantum numbers are in the ranges

L=0, 1, . . . , ~,
m, k= —L, —L+1, . . . , L .

(41)

The remaining coordinates are two massive harmonic-
oscillator modes

r=(r r, z —z) . — (42)

The semiclassica1 Hamiltonian is thus

Hbl 0f+~+HHO

H«'= L — (L ')
4z 162

2

H =fico g (a ray +—,
' ),

{43)

FIG. 2. Berry-phase calculation for unimodal distortions. A
path between reflected points on the unit sphere corresponds to
a closed orbit in the five-dimensional q space. According to Eq.
{34), such a path acquires a Berry phase of ( —1)" from the n-

electron wave function.

and its eigenvalues are

2

L(L+1)— k + g (n + —,
' }

4z 16z

(44)
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The rotational eigenfunctions are explicitly dependent on
B as

TABLE II. High-spin ground-state properties, in the same
notation as Table I.

(11"'„[q]=D'„)(m)g ~n;, )

C. Berry phases of a bimodal distortion

(45}
(z„,r„)

( —g, 0)
(0,0)

(g,0) (uni)

(n), n2, n3)

(1,1,0)

(1,1,1)

(1,1,2)

E„r(w)
1g2+ 3
2 2

5
2

1g2+ 3

q are coefficients in an L =2 representation, and there-
fore are invariant under C&,C2,C3. C; describe continu-
ous closed orbits in R . In order to satisfy (46) and using
the degeneracy of E ' for k —+ —k, we find that

L =odd, k =even . (47)

In particular, the ground state of (45} is given by L =1
and k =0.

Cl

Unlike the unimodal case, in the bimodal case no single
reflection fully classifies the symmetry of the wave func-
tion. However, one can obtain definite sign factors by
transporting the electronic ground state in certain orbits.
We define the rotations of n about the principal axis L ' as
C;, which are schematically depicted in Fig. 3. The Berry
phases associated with these rotations can be read direct-
ly from the rotation matrix T in Eq. (14). For example,
for f~P+ n ( C3 }, the states

~
1 ) and

~
2 ) get multiplied

by ( —1).
Since D'

k transform as YLk under C;, it is easy to
determine the sign factors of the pseudorotational wave
function. The results are given below:

c, : 11,0,2) ~1,0,2)., ,

C: il, o,z) —il, o, z) ~,

c,: ii, o,z). —(1,0,2).. ,

(46)

C . D(L) ( 1)kD(L)

C3. D~ k~( —1) D~ '
k .

D. High-spin-polarized ground states

It is possible to repeat the semiclassical analysis assum-
ing that the spins are maximally polarized. These high-
spin states are important, as they tend to prevail for
strongly repulsive intralevel Hubbard-U (Hund's rule) sit-
uations. In this case, we determine the JT distortions
considering the Pauli exclusion between likewise spins.
In Table II the JT distortions of the spin-polarized
ground states are listed. Our results for the n=2, 4
(S=1) and n =3 (S=—', ) cases are presented. The latter
is trivial, since in that case n, =n 2

=n 3
= 1, and therefore

there is no JT effect at all. For n =2 (S=1), there is uni-
modal distortion of z = —g which is smaller than the un-
polarized ground state, and is equal to the distortion of
the n =5 case. Inspection of the orbital energies
@&=F2=—g, e3=2g provides a clear explanation for the
identical distortions of the n =2 (S= 1) and n =5 (S=

—,
'

)

cases, since in both cases e3 is occupied by a spin-up hole.
Electronically, however, the two states are very

different. First, we do not have a Berry phase for even
number of electrons, as the individual contributions from
each of the two electrons cancel out. Second, there is a
nonzero electronic orbital angular momentum. For ex-
ample, the symmetry of the two-electron state prior to JT
distortion is P (i.e., t,„), and so it remains following
dynamical JT distortion. ' At finite coupling the two
electrons in their ground states are still coupled in a P
electronic state, with L„b= 1, where L„b is the electron-
ic orbital angular momentum, not to be confused with the
pseudorotational quantum number L. Due to the ab-
sence of a Berry phase, L must in fact be even, in contrast
with the single-electron case, and in agreement with Eq.
(36). Thus, although both cases have threefold degenera-
cies, they arise from different physical motion: purely
electronic (for the n =2, S = 1 case) versus mixed
electron-vibron motion (in the n =5, S=

—,
' case).

C)

Cp

V. EXACT DIAGONALIZATION

C3
C3

FIG. 3. Berry-phase calculation for the bimodal distortion
(n =3). m are the three Euler angles which rotate the principal
axes of the bimodal distortion. C; denote rotations by m around
corresponding axes. On the right we depict the electronic Berry
phases associated with the three closed orbits in q space, given
by Eq. (46}.

The above semiclassical scheme gives a clear and intui-
tive picture of the behavior of the system in the strong-
coupling limit. This limit is appropriate for describing,
e.g., Na3. ' However, in C60 the actual range of the cou-
pling parameter —g =0.3 for a typical mode
suggests that the electron-vibron coupling is actually in
the weak-to-intermediate regime.

Here we diagonalize the electron-vibron Hamiltonian
(7) for a single Hs mode in a truncated Fock space. This
approach yields accurate results unless the coupling
strength is too large, and the higher excited vibrons ad-
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mix strongly into the low-lying states. %'e compare the
results to the asymptotic large-g expressions of the serni-
classical approximation. The ground-state energy for
n =1 has been previously computed in this fashion by
O' Brien. ' Here we present detailed results for all elec-
tron occupations, and also for the excitation spectra.

Our basis is the finite-dimensional Fock space of elec-
trons and vibrons,

N, =2

N, =1

N, =O

~nM, n, ): N„N, g n, =n (48)

where N„=QMnM is the total vibron occupation. By
gradually increasing N ", we have found empirically
that accurate results can be obtained for g &N '"/2, for
levels with unperturbed energy below AcoN '"/2. In par-
ticular, we have chosen N '"=5 (for n=2, 3), which
yields an accuracy of better than 0.05fico for g ~0.6 and
levels with N„~1. The effect of truncation is a general
upward shift of the levels, which gradually increases for
higher excited levels. Level splittings and excitation en-

ergies are therefore less sensitive to the cutoff error.
In Figs. 4, 5, and 6 below, the energies of the ground

state and a few of the excited states are plotted for one,
two, and three electrons, respectively. The four- and
five-electron spectra are related to the two- and one-
electron spectra by particle-hole symmetry. Energies are
plotted as functions of g . We compare the results to the
semiclassical expressions (28) and (44) for large coupling,
and to second-order perturbation theory at weak cou-
pling. We discuss the different cases in detail, below.

A. n =1,5 electrons

E ———g +—+1, 3
2 2 3g

(49)

except for a small shift due, as mentioned above, to a
finite-cutofF error. Above the ground state, there are fam-
ilies of excitations, corresponding to increasing values of
N„. The lowest, for N, =1, comprises 3X5=15 states,
since for n = I, N, = 1 there are just three electron states

The ground state for one electron or hole in the t, „
shell is a threefold-degenerate state (all degeneracies
given do not include spin) of the same symmetry: this
fact is in complete analogy with what happens in the
eE coupled system, where the final dynamical JT-
coupled ground state has again E symmetry. ' Addition-
al splitting of this ground state could occur via spin-orbit
coupling, not included in the present treatment. Recent
spectroscopic data of C60 embedded in solid Ar
confirm indirectly the presence of the pseudorotational
L =1 ground-state degeneracy, with possible spin-orbit
splittings of about 30 and 75 crn ' for the t,„ground
state and for the t

&g
excited electronic state = 1 eV

above. The decrease of the ground-state energy is initial-

ly fast, and becomes gradually slower for increasing g.
We shall return to this point in detail in the following pa-
per. '

As shown in Fig. 4, for large g, the n =1 ground-state
energy correctly approaches the strong-coupling limit,

I

22
g

FIG. 4. Exact spectrum for one electron as a function of the

square of the electron-vibron coupling constant g . The vibron

occupations are truncated at N '"=5. The semiclassical ener-

gies [Eq. (28)] are drawn by dashed lines for the lowest three

pseudorotational multiplets (n~ =O,L =1,3,5). The unit of en-

ergy is the vibron quantum Ace.

and five vibron states available. These states correspond
to a direct product of a P (electronic} and a D (vibration-

al} manifold. As elementary angular momentum theory
requires, they split into L =3, 2, and 1 levels, which are
found, in order of increasing energy. The splitting initial-

ly is proportional to g, for small g, with significant devi-

ations from linearity at g =0.2. As coupling increases,
we note the slower downward trend of the even-L states,
than both the ground state and the associated "soft"
odd-L excitations. This clearly rejects the Berry-phase
selection rule (36) that no euen L should appear among tke

low lying excite-d states in strong coupling. The lowest ex-

citation from the ground state is L =1~L=3, anticipat-
ing already at very weak coupling the strong-coupling re-

sult that this excitation energy should fall fastest, and

collapse as 5/3g . Unlike the L =3 state, the L =2 and
L = 1 excited states do not show any tendency to collapse
onto the ground state in the large-g limit. Therefore they
can be seen as modes involving essentially radial massive

vibrations.
The next group of excitations is for N, =2, and

comprises 3X15=45 states. This multiplet splits into
seven levels corresponding to L =5, 3, 1, 4, 2, 1, and 3.
The lowest (L =5) level crosses two levels of the lower
(N, =1) multiplet in its downwards motion to become
the second excited state above the L =3 level, eventually
constituting the low-energy odd-L rotational multiplet of
the strong-coupling picture. The same route is followed

by the lowest level of N„=3, which is an L =7 state. In
fact, all the lowest split levels from each N, multiplet ap-

pear to have L =2N„+1 and follow the same route. For
N, =2 we can similarly follow the movement with g of
the L =4 level which decreases slowly toward the L =2
state from the lower N, =1 to add to the group of mas-

sive radial vibrations.
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B. n =2,4 electrons

Figure 5 has several features which contrast sharply
with the one-electron case. The N, =0 multiplet has 15
two-electron states. The spin-singlet subspace consists of
a sixfold-degenerate multiplet that splits into an orbital S
and a D multiplet. As the semiclassical Eq. (36) suggests,
the ground state and lowest excitations in the strong-
coupling limit have orbital degeneracies of even angular
momenta. In fact, the lowest two among these states
(L =0,2) both come from the N„=O multiplet, in con-
trast with the one-electron case. The next pseudorota-
tional level (L =4) originates in the 6 X 5 = thirtyfold de-
generate N„=1, spin-singlet multiplet. Actually, at weak
coupling it starts out being second in the ordering
(L =2,4, 3,2, 1,0), but already at very small g it crosses
the lower L =2 partner and approaches the pseudorota-
tional asymptotic level. The convergence with increasing
cutoff N '* is worse than in the n = 1 case, which may be
due to larger JT distortions associated with two electrons.
The spin-triplet (S= 1 }states of n =2 have not been plot-
ted, as they behave in exactly the same fashion as the
n =1 states (see Fig. 4). This figure can be read in terms
of n=2, S=1 states simply by replacing the spin-
multiplicity label 2, used in the case n =1, with 3. By
comparison of Fig. 5 and Fig. 4 we notice that the low-
spin 'P state of N„=1 is exactly degenerate with the
high-spin D state in the same multiplet. This degeneracy
seems accidental.

C. n =3 electrons

For three electrons, the results are shown in Fig. 6.
The eightfold-degenerate N„=O multiplet splits into two
states characterized by degeneracies 3 and 5 ( P and D).
The ground state has the correct symmetry for an L =1,
k =0 state, which is predicted to be the ground state in

N, =l

n=3, S=l/2, N *=5

N, =O s,k=o)
3,%=2)

1,k=o)

D
P
D
P

2
g2

FIG. 6. Exact spectrum for three electrons (S= ~). The
semiclassical energies, Eq. {44), are drawn by dashed lines for
the lowest three pseudorotational multiplets, n ~

=0
(L,k) =(1,0), (3,2), (3,0).

the semiclassical limit. We also expect the lowest excita-
tions to be classified as L =3, k =2 (fourteenfold degen-
erate), and L =3, k =0 (sevenfold degenerate}. In fact,
three levels from the N„= 1 multiplet move down toward
the ground state for increasing g. The one which moves
lowest is ninefold degenerate ( G ). In the g ~ ao limit, it
must therefore merge with the fivefold levels from the
N„=O multiplet to produce the expected L=3, k=2
pseudorotator excitation. The next excitation of the
L =3, k =0 state can be identified as an asymptotic limit
of the Fsevenfold-degenerate state seen in Fig. 6.

A remarkable feature of the n =3 case is the presence
in the N„= 1 multiplet of a state (the S) whose energy is
independent of g. This state is degenerate with the S=—,

'
state D which has no JT distortion.

N, =1 VI. PAIR BINDING ENERGIES

=0
The pair energy for an average filling of n electrons is

defined as

n n+1+ n —1 n (50)

D

-2—
0 2

g2

FIG. 5. Exact spectrum for two electrons (S=0). The semi-
classical energies [Eq. (28)] are drawn by dashed lines for the
lowest three pseudorotational multiplets (n ~ =O,L =0,2,4).
The two-electron S= 1 spectrum is the same as for n = 1, S= 2.

2
U ——g +1-n =1,3, 5

3g 2 (51)

where E„are the fully relaxed ground-state energies of n
electrons. Formally, U is the real part of the two-
electron vertex function at zero frequency. If this energy
is negative for odd values of n, it means that electrons
will have lower total energy if they separate into (n —1)
and (n+1) occupations of different inolecules, rather
than occupying n electrons on a11 molecules. For odd
values of n, this is an effective pairing interaction often
called "pair binding" in the literature. In Sec. IV we
found that, for all odd n, the pair energies are negative,
and given by the large-g asymptotic expression
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The first term is the classical energy. The second term is
due to reduction of the zero-point energy along the JT
manifold, since only radial modes remain hard. This
term is independent of g and positive. The last term is
due to the quantum pseudorotator Hamiltonian, and the
Berry phases which impose a finite ground-state energy
associated with odd L for odd numbers of electrons. This
term, although nominally small at large g, becomes im-
portant at weaker coupling. If (51) is extrapolated to the
weak-coupling regime, the last term will dominate the
pair binding energy. The exact diagonalization shown in
Fig. 7 indeed shows a significant enhancement of the pair
binding energy over the classical value in the weak-
coupling regime.

In the weak-coupling limit, we can obtain analytical
expressions for U„(g) for g «1 by second-order pertur-
bation theory. The unperturbed Hamiltonian is the
noninteracting part H with eigenstates (48). The per-
turbing Hamiltonian is H' " of Eq. (7), which connects
Fock states differing by one vibron occupation. All diag-
ona1 matrix elements vanish, and the leading-order
corrections to any degenerate multiplet are of order g .
These are given by diagonalization of the matrix,

, = O, n, H'",
,

H'' O, n',
ms' ms E —Ha

(52)

0

-0.4

-1.2
0 0.5

g
1.5

FIG. 7. Pair binding energy U (thick solid line), compared to
weak-coupling perturbation theory for g (&1 (dotted line) and
semiclassical theory for g )&1 (dashed lines). U„ is found to be
the same for n =1,3, 5 electrons. The Migdal-Eliashberg ap-
proximation V (thin solid line) is also drawn for comparison.

C60 .
g is the range of physical coupling strength for C6O.

in the degenerate zero-vibron subspace. The sum implied
by the inverse operator (E,' ' —H )

' extends just to the
N„=1 states. The eigenvalues of 5' ' yield the ground-
state energies and splittings for different electron fillings.
These results, for all H~ and also Az modes, and extend-
ed to the N„= 1 multiplet, will be discussed more exten-
sively in the following paper. '5

Here we refer only to ground-state energetics. In par-
ticular, using the perturbative expressions, we obtain, for

a single Hz mode, the small-g pair binding energy

n 1,3, 5, ~ p 0( 4) (53)

The dependence strictly on powers of g alone, with ab-
sence of all odd powers, is a consequence of the already
mentioned hN, =+1 selection rule of Eq. (7). The origin
of the —,

' factor that characterizes the perturbative result

(53) with respect to the classical pair binding energy
(Table I) was also pointed out by Yabana and Bertsch
and will be further discussed in the following paper. "

The molecular pair binding energy can be considered
as an effective negative-U Hubbard interaction for the
1attice problem, provided that the Fermi energy eF is not
much larger than the JT frequency scale co. A mean-Geld
estimate of the transition temperature for the negative-U
Hubbard model in the weak-coupling regime is

T, =EFexp[( N(e~)—
~ U~ ) '], (54)

5g2
(55)

By comparing (53) to (55) we find a striking discrepancy
between the values of the eS'ective pairing interaction:

U=3V. (56)

That is to say, in the weak-coupling regime, the correct
molecular calculation yields a pairing interaction which
is three times larger than the results of Migdal-Eliashberg
theory.

UII. DISCUSSION

In this paper, we have solved the problem of a single

Hz vibron coupled to t,„electrons in a C60" molecule.
The model is too simplified for quantitative predictions
for C60, but it contains interesting physics which will be
important for further studies of this system.

Semiclassically, a dynamical Jahn-Teller effect occurs.
For n =1,2,4, 5, the molecule distorts unimodally, giving
rise to a pseudo-angular-momentum spectrum, plus three
harmonic oscillators. For n =3, there is a bimodal dis-

tortion, which generates a spectrum of a symmetric top
rotator, plus two harmonic oscillators. The pseudorota-
tions are subject to nontrivial Berry-phase effects, which
determine the pseudo-angular-momenta L, and thus the
degeneracies and level ordering of the low-lying states.
Strong Berry-phase effects seem to survive even at
moderate and weak coupling, as shown by the exact diag-
onalization results.

We find at weak coupling that the pair binding energy
is a factor of —,

' larger than the classical JT effect, and a
factor of 3 larger than the pairing interaction of the
Migdal-Eliashberg theory of superconductivity. This
enhancement can be interpreted semiclassically as due to

where N(eF ) is the density of conduction electron states.
In Refs. 3 and 28, the results of the Migdal-Eliashberg
approximation for the superconducting transition tern-

perature were given. Without the Coulomb pseudopoten-
tials this approach yields

T, =co exp[( N(EF )
~

V~ )—'],
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the large zero-point energy reduction of the pseudorota-
tions. From the weak-coupling point of view, this effect
is due to degeneracies in both electronic and vibronic sys-
tems.

Migdal's approximation neglects vertex corrections in
the resummation of two-particle ladder diagrams. This is
justified only in the retarded limit co &&ez. Here we have
considered the opposite limit, where the molecular
ground-state energies are solved first, assuming that the
JT relaxation time is of the same order, or faster than the
intermolecular hopping time. In this regime, we have
found therefore that Migdal's approximation substantial-
ly underestimates the pairing interaction, and T„ for
these ideal molecular solids. This large effect suggests
that some of the enhancement is likely to carry over to
the real case of A3Cso metals, where electron-hopping t
and vibron frequencies are of similar strength.

In the following paper, part II, we shall consider a

more realistic model which includes all important vibron
modes of C60. We shall present quantitative predictions
for the electron-vibron effects on the spectroscopy of C60
ions.
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