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Properties of a Fermi liquid at the superfluid transition in the crossover region
between BCS superconductivity and Bose-Einstein condensation
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The self-consistent equations, which have been derived recently as a microscopic model for the cross-
over between BCS superconductivity and Bose-Einstein condensation in a three-dimensional interacting
Fermi system [R. Haussmann, Z. Phys. B 91, 291 (1993}],are solved numerically by repeated Fourier
transformation. We find a superfluid transition temperature T, which increases monotonically with in-

creasing attractive coupling strength. Furthermore, we determine the chemical potential p, the fermion

distribution function n(k), and the complex effective mass 2m of the fermion pairs at T=T, . The
bound fermion pairs cause a power-law tail -k in n (k} for large k and behave as short-living quasi-

particles in the crossover region, which is indicated by a large imaginary part of 2m *.

I. INTRODUCTION

Recently we have proposed a microscopic theory' for a
three-dimensional liquid of fermions with an instantane-
ous short-range interaction of variable strength, which al-
lows the formation of bound fermion pairs and a
superfluid phase transition under certain conditions.
This theory is given by two sets of self-consistent equa-
tions, which we have derived within the framework of
many-particle quantum-field theory with temperature-
dependent Green's functions. '

In our previous paper' we have discussed the self-
consistent equations in the two limiting cases of weak and
strong attractive interaction forces between the fermions.
In these cases the problem can be treated analytically by
performing some controlled approximations. Thus in the
weak-coupling limit we have found a normal Fermi liquid
which becomes superfluid below a certain critical temper-
ature T, according to the Bardeen-Cooper-SchriefFer
(BCS) theory. In the strong-coupling limit the fermions
are bound into pairs by the strong attractive interaction
forces, if the temperature T is well below the dissociation
temperature Ta;„=eslka, which is determined by the
binding energy eb of the pairs. The bound pairs form an
interacting gas of bosons, which becomes superfluid
below T, via the Bose-Einstein condensation, while the
strength of interaction between the bosons tends to zero
in the ultimate strong-coupling limit.

However, in the crossover region between weak and
strong coupling the system is a mixture of free fermions
and bound fermion pairs, which behave as rather short-
living fermionic and bosonic quasiparticles, respectively,
because a pair will decay into two free fermions and two
free fermions will recombine into one pair. These decay
and recombination processes imply rather complicated
spectral functions of the quasiparticles. Therefore, the
self-consistency of the equations is essential so that no
analytically tractable approximations can be made but in-
stead the complete self-consistent equations must be
solved numerically. Thus, in this paper we present a nu-

merical treatment of our self-consistent equations. This
will be done by iteration of the equations and repeated
Fourier transformation of the Green's and vertex func-
tions until convergence is achieved. The numerical
Fourier transformation is highly nontrivial because the
functions have rather subtle singularities. In Sec. II and
in the Appendix we briefly describe how we have solved
this problem with comparatively modest numerical efFort.

In Sec. III we present the result of our self-consistent
theory. We concentrate our numerical analysis on the
superfluid transition and calculate T, and the chemical
potential p, as functions of the interaction strength from
weak to strong coupling. At T, we determine some other
quantities, which reflect the crossover scenario from BCS
superconductivity to Bose-Einstein condensation. We
calculate the fermion occupation number n (k) and show
that the bound pairs cause a power-law tail -k for
large k. Of special interest are the kinematical properties
of the bound fermion pairs, which are represented by the
effective boson mass 2m' defined in a similar manner as
in Ref. 4. We find that 2m is nearly twice the fermion
mass in the strong-coupling limit, while it becomes com-
plex in the intermediate and weak-coupling range due to
the existence of unbound single fermions.

The superfluid transition temperature T, as a function
of the coupling strength was calculated by Nozieres and
Schmitt-Rink in 1984. They considered a three-
dimensional gas of fermions with an attractive two-
particle interaction and used an approximation scheme,
which is equivalent to a ladder approximation with free-
fermion Green's functions. As a result they obtained a
T„which interpolates between the two limiting cases, the
BCS theory, and the Bose-Einstein condensation. A
second approach is due to Drechsler and Zwerger.
Starting from a functional integral representation of the
interacting fermions Drechsler and Zwerger introduced
the order parameter h(x, r) via a Hubbard-Stratonovich
transformation. Integrating out the fermion degrees of
freedom and expanding in powers of h(x, r) they ob-
tained a Ginzburg-Landau theory. Though this theory
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was originally designed for a two-dimensional system, it
has been extended recently to three dimensions. Sa de
Melo, Randeria, and Engelbrecht have proposed a time-
dependent Ginzburg-Landau theory, and in close analogy
to Ref. 5 they determined the superAuid transition tem-
perature T„which exhibits a small maximum in the
crossover region.

All these previous theories are based on an approxima-
tion scheme which uses free ferm-ion Green's functions to
take the fermionic degrees of freedom into account, while
the bosonic properties lead to the superAuid transition.
In the two limiting cases of weak and strong coupling this
approximation leads to correct results. However, in the
crossover region this approximation is inUalid because
the fermionie quasiparticles are far from being free parti-
cles. Therefore in an improved theory the fermion
Green's function must be determined self-consistently.
This will lead to qualitative new results as we will show in
this paper. In the strong-coupling limit the theories of
Refs. 4—6 and 8 lead to a Bose gas of fermion pairs, while
missing an interaction between the noncondensed bosons.
Within our self-consistent theory we have shown recent-
ly' by performing a next-to-leading-order approximation
that in the strong-coupling limit there exists a small
repulsive interaction between the bosons a~ =2a~ due to
the Pauli exclusion principle. (The result a&=2ar has
been obtained independently in Refs. 7 and 8 from the in-
teraction between the condensed bosons. ) This interac-
tion causes an increase of the effective boson mass and a
decrease of T, as it is expected from the theory of the
weakly interacting Bose gas (see Sec. 28 of Ref. 2). From
this observation we have argued' that T, as a function of
the coupling strength should increase monotonically from
weak to strong coupling. This is true at least asymptoti-
cally in the strong-coupling limit, where nearly all fer-
mions are bound to pairs. In this paper we will show by
solving the complete self-consistent equations numerical-

ly that for a three-dimensional system T, is indeed a
monotonic function in the whole coupling range, and that
there exists no maximum of T, in the crossover region.

II. THE SELF-CONSISTENT EQUATIONS
AND THEIR NUMERICAL TREATMENT

Above T,. the normal-Quid Fermi liquid is described by
the scalar fermion Green's function 9'(k, co„), which
represents the fermionie properties, and the vertex func-
tion I (K,Q„), which is a generalized scattering ampli-
tude ( T matrix) and which represents the bosonic proper-
ties of the system. For T )T, the self-consistent equa-
tions are given by' the Dyson equations

Q(k, co„)=— 1

i Aco„+(iri—k /2m —p) —X(k, co„)

X(x,~) =9(—x, —r).l (x, r)

and the Bethe-Salpeter equations

4MI (K,Q„)=
m aF '+M(K, Q„)

[ Q(x, r ) ] —c.5( x).A' $ 5( r n—fii3)
4M

m

(3)

(4)

where c is an infinite renormalization constant, which
effects dimensional regularization. The approximation
scheme, which we have used for deriving Eqs. (1)—(4) is
known as the Brueckner-Hartree-Fock method in nuclear
physics. The functions with different arguments are re-
lated to each other by Fourier transformation

d k 1
Q(x, r)= f —g exp[i(kx —co r)] Q(k, co„), (5)

(2n. ) P

d E 1I'(x, r)= J —g exp[i(Kx —Q„r)] I'(K, Q„) .
(2~)' 13 „

Qo(k, co„)=1/[ itic'„+R k—/2m —p], (8)

we obtain from (4) and (3) the vertex function I (K,Q„)
and then from (2) and (1) the fermion Green's function
Q(k, co„) in first order. This iteration procedure is repeat-
ed successively to obtain I and 9 in higher orders until
convergence is achieved.

Obviously the success of our method depends on the
realization of an eScient and precise numerical Fourier
transformation suitable for 0 and I . From Eqs. (1) and
(3) one can see that Q(k, co„) and I'(K, Q„) decrease rath-
er slowly for large (k, co„) and large (K,Q„), respectively.
This implies a rather subtle singular behavior of the real-
space functions Q(x, r) and I (x, r) for (x,r)~(0,0). The
singular behavior can be weakened partially by subtract-
ing the "free" functions 00 and I 0, which are known
analytically so that only the differences AS'= S' —S'o and
Sr=r —r, must be transformed numerically. On the
other hand the nontrivial physical properties of the fer-
mion system are included in the functions 0 and I at in-
termediate values of their variables. Therefore we need a
Fourier-transformation procedure, which resolves the
functions well at small, intermediate, and large scales of
the variables (k, co„), (K,Q„), and (x, r), respectively.
This means we need a resolution on a logarithmic scale of
the variables. In the Appendix we describe the Fourier

(6)

X(k, co„) and M(K, Q„) are transformed analogously.
Here r is the imaginary time (temperature paraineter)
varying in the interval 0(r(fiP=fi/k&T, and co„and
Q„are the fermionie and the bosonic Matsubara frequen-
cies, respectively. ' The superfluid transition at T = T,
is determined by the Thouless criterion'

[r(K=0,Q„=0)]-'=0,
which means that the vertex function I (K,Q„) has a
pole at zero frequency and zero momentum.

Once we are able to perform the Fourier transforma-
tions, we can solve the self-consistent equations iterative-
ly. Starting with the free-fermion Green's function
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transformation procedure, which we have constructed for
solving the equations and for calculating the quantities in
Sec. III and which is appropriate to transform functions
like 0 and I .

III. NUMERICAL RESULTS AND DISCUSSIONS

The state of the fermion system is determined by three
parameters, the temperature T, the chemical potential p,
which is related to the fermion density nF, and the
strength of the attractive interaction between the fer-
mions, which is determined by the inverse s-wave scatter-
ing length aF . This can be seen in the self-consistent
equations (1)—(4). While p and az ' are contained ex-
plicitly in (1) and (3), respectively, the temperature
T is included via the Matsubara frequencies
co„=(2n+1)mk&T/4 and Q„=2nnk&T/A with n EZ.
Since the interaction between the fermions is assumed to
be of zero range, one can show easily that the self-
consistent equations are invariant under the scaling trans-
formation a~~~a~, T~~ T, p~~ p. This scale in-
variance is very convenient for investigating the system
at constant fermion density nz= —2 Q(x=O, r= —0) be-
cause the scaling transformation can be used to normalize
the parameters with respect to nF. Since the fermion
density is transformed by nz~sc nz we introduce the
dimensionless quantities

+ O. S

0

0

v = 1/{kFaF)

FIG. 1. The superQuid transition temperature T, (u) as a
function of the dimensionless coupling strength u =1/kFaF for
constant fermion density nF. The full line represents the numer-
ical result of our self-consistent theory. The dotted line is ob-
tained by neglecting self-consistency and is similar to the results
of the previous theories (Refs. 5 and 8). The left-hand dashed
line corresponds to the BCS theory, (10).The right-hand dashed
line corresponds to our first-order asymptotic formula (11) in-
cluding the interaction between the fermion pairs.

represented by the right dashed line in Fig. 1 and given
by the asymptotic formula

T/T, BE, pleF, v = I /k~a~, (9)
T,(u)~T, &K[1

—(3m) 'u ] .
which are scale invariant and normalized with respect to
nz because kF=(3m nF)' is the Fermi wave number,
e~=8 k~/2m is the Fermi energy of an ideal Fermi gas,
and T, BE=[2+% /2mkz ][(nz/2)/g(3/2)] / is the
Bose-Einstein-condensation temperature of an ideal Bose
gas of nF/2 bosons (fermion pairs) per volume with mass
2m.

A. Super8uid transition temperature T,
and chemical potential p,,

At the superfluid transition T, and p, can be deter-
mined uniquely by the Thouless criterion (7) if az and
nz are known. Using the scale invariance and Eqs. (9}we
obtain T, and p, from our numerical calculations in units
of T, zE and eF, respectively, as functions of the invariant
coupling strength u. In this way the fermion density nF is
effectively fixed. In Fig. 1 we present our numerical re-
sult for T, (v) as full line. First of all we see that T, (v} is
a continuous function of u, which means that the cross-
over from BCS superconductivity to Bose-Einstein con-
densation is continuous, which agrees with all previous
theories. In the weak-coupling limit u~ —Do the BCS-
transition temperature {dashed line on the left) is ap-
proached asymptotically,

T, (v)~(e m./)(8 e/)(ez/ke) exp(vm/2), (10)

which tends to zero exponentially. On the other hand, in
the strong-couphng limit u ~+ ~ the Bose-
Einstein —condensation temperature T, ~E is approached
asymptotically from below. In our preceding paper' we
have calculated the leading correction due to the repul-
sive interaction between the composite bosons, which is

We have found that our numerical calculations work
quite well in the crossover region —1 ~ u 5 + 1

and yield T, (v) with a relative accuracy of about 1%. In
the limiting cases the numerical inaccuracies are some-
what larger. For strong coupling the additional inaccura-
cies are mainly due to an uncertainty in the fermion den-
sity nF = —2 Q(x=O, r= —0) because for v ~ +1 nearly
all fermions are bound to pairs and the leading contribu-
tion to nF originates from the boson density
n&= —[8mebaz] ' I'(x=O, r= —0}, which is included
only indirectly in (1) via the self-energy X(k, co„}(see Ref.
1). This fact is the reason why the full line in Fig. 1 does
not approach the asymptotic dashed line quite well for
u ~+ 00. On the other hand for weak coupling u & —1 a
more and more well-defined Fermi surface occurs in h
space, which leads nearly to a discontinuity in the fer-
mion occupation number n(k) at k =kF and thus to os-
cillations of Q(x, r) in real space. While we have resolved
the Fermi surface quite well, the oscillations have not
been treated appropriately, so that additional numerical
errors occur in our results for weak coupling v ~ —1.

In Fig. 1 one clearly sees that the full line increases
monotonically with increasing interaction strength u.
This is the numerical evidence of the statement we have
given earlier' based on the observation that asymptotical-
ly in the strong-coupling limit v~+ ~ the transition
temperature T, increases monotonically and converges to
T, BE from below (right-hand dashed line). For compar-
ison we have determined T, (v) neglecting self-
consistency, which is shown as dotted line in Fig. 1. To
do this we have inserted the free fermion Green's fu-nc-
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tion (8) into (4) and (2) and then determined I and 0 by
(3)—(1). This approximation does not include the repul-
sive interaction between the pairs and is equivalent to the
approximations of the previous theories. ' The dotted
line in Fig. 1 clearly shows a maximum in the crossover
region, which is a considerable effect. This result looks
similar like that of Nozieres and Schmitt-Rink and that
of Sa de Melo, Randeria, and Engelbrecht. While
Nozieres and Schmitt-Rink have pointed out that the
maximum is presumably an artifact of their approxima-
tions, we find that there is no maximum if and only if the
interaction between the bound pairs is included. Recently
Stintzing and Zwerger extended the Ginzburg-Landau
theory including the interaction between the noncon-
densed fermion pairs by taking the ~%~ term into ac-
count and thus confirmed our results in the strong-
coupling limit.

In Fig. 2 the chemical potential p, at the superAuid
transition is shown in units of the Fermi energy
eF =A' kz/2m as a function of the dimensionless coupling
strength U = I/kzaF. The full line represents our numer-

ical result. In the weak-coupling limit v-~ —00 we find

p, ~eF according to the BCS theory. Including the
first-order correction due to a weak attractive interaction
between the fermions, the chemical potential reads ap-
proximately

p, =eF [1+(4/3m. )v '], (12)

which is shown as the left dashed line in Fig. 2. The con-
vergence of the full line to this dashed line is quite good.
In the strong-coupling limit v ~+ ~ we have

p, ~—es/2= —R /2maF or p, /eF~ —U+, which is

represented by the right-hand dashed line in Fig. 2. This
means that in the strong-coupling limit p approximately
becomes half of the binding energy et, of the pairs (com-

pare with Ref. 4). The correction ps =2@+a& should be
interpreted as bosonic chemical potential, which is al-

ways positive at T, because of the repulsive interaction
between the fermion pairs. One clearly sees that our nu-

merical result of p, (full line) interpolates quite well be-

tween the two limiting cases (dashed lines). Numerical
inaccuracies seem to be small here. The previous
theories ' have found a chemical potential p, (U), which
looks qualitatively similar like ours. However, there are
differences in detail. While in our theory p approaches
—

e& /2 from above rather slowly for v ~+ (x), in the pre-
vious theories ' the convergence must be exponentially,
as it is found also in our theory if self-consistency is
neglected [the free-fermion Green's function (8) inserted
into (4) and (2), see above] because there the interaction
between the noncondensed bosons is neglected.

B. The fermion occupation number n (k)

Until now we have considered the macroscopic quanti-
ties T and p, which determine the thermodynamic state of
the system for a given coupling strength v. However, the
functions Q(k, co„) and I'(K, Q„) we have calculated nu-

merically contain also information about the microscopic
details of the system. A microscopic quantity of special
interest is the fermion occupation number n (k), which
describes the distribution of the fermions among the
single-particle states with momenta haik. Due to the at-
tractive interaction part of the fermions are free and part
of the fermions are bound to pairs. Thus n(k) is non-
trivial.

In Fig. 3 we show our numerical results of n (k) for
different values of the coupling strength v and for T = T, .
For v = —1 (and smaller values) n (k) represents a degen-
erate weakly interacting Fermi gas. Most of the fermions
are free fermions, which occupy the states of momenta haik

within the Fermi sphere 0 k kz with a rather well-

defined Fermi surface at k =kF. The Fermi surface is
smeared out by the finite temperature T = T, and by the
weak interaction between the fermions. This form of
n (k) for U ~—ao is expected from the BCS theory. For
v =+2 (and larger values) the fermionic system is nonde-
generate because of n(k)((1 for all values of k. Since
the chemical potential is p « —eF nearly all fermions are
bound into pairs. While for free fermions n (k) would de-

cay exponentially (for T )0), the bound fermions are
represented by the power-law decay n (k) —k for large

v= —1

0.5

0 1

v = 1/(k, a, )

2 3

FIG. 2. The chemical potential p, at the superAuid transition
as a function of the dimensionless coupling strength v = 1/kFa+.
The full line represents our numerical result. The asymptotic
result for the weakly interacting Fermi gas (12) is shown as left-
hand dashed line. The right-hand dashed line corresponds to
the binding energy of the fermion pairs divided by 2.

FIG. 3. The fermion occupation number n(k) for various

coupling strengths v = —1,0, +1,+2 at T=T, . %'hile for

weak coupling v = —1 the discontinuity of a Fermi surface at

k =kF is indicated, n (k) is small compared to 1 and given ap-

proximately by (13) for strong coupling v = +2.
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n (k)=8nnbaz/(1+k aF) (13)

for v ~+ Dp up to leading order where nb =nr/2 is the
density of pairs. An interaction with finite range ro
would smoothen the singularity of gr, (r) at r =0. This
would cause an exponential cutoff' in yp(k) and n (k) for
k & r p ~ Therefore, in realistic cases the power law
-k would be observed for not too large momenta
k & ro '. However, in our theory the range ro is assumed
to be zero.

The power law n(k)=S(k~/k) for large k is not re-
stricted to the strong-coupling limit, but it is observed for
all coupling strengths v and even in the weak-coupling
limit. This can be seen in Fig. 4. The amplitude S of the
power-law depends monotonically on the coupling
strength v. It is always positive and decreases with de-
creasing u. In the strong-coupling limit Eq. (13) yields
S =(4/3m. )v, which accords quite well with our numeri-
cal result for v =2 in Fig. 4. In conclusion we find that
for an interaction of short-range ro bound fermion pairs
are related to a power-law tail -k in the fermion oc-
cupation number n(k) for momenta A'k in the interval
max( kr, ar ') ~ k 8 r p

'. Nozieres and Schmitt-Rink
also calculated n (k) and obtained a result, which looks
qualitatively similar like our Fig. 3. However, they did
not observe the power-law decay of the tails.

We have restricted our considerations to temperatures

k, which can be seen clearly as straight lines in the double
logarithmic plot of Fig. 4. This result is caused by the
relative motion of the fermions within the pairs and in
the strong-coupling limit it can be interpreted as follows.
For an effective zero range interaction the relative motion
of two fermions in a pair is described by the wave func-
tion'

Ipp(r)= [(2na~)' r] ' exp( r/—a~)

In momentum space it is

yp(k)= —(8~/ar)'~ [a~ +k ]

which leads to n (k)- ~yp(k)~ -(1+k aF) . Thus, in a
more profound calculation' we have obtained

T =T, ( u). However, this restriction is not necessary.
Since the superfluid transition at T, is of bosonic nature
and n (k) is a fermionic quantity, we expect no qualitative
change of the results of Figs. 3 and 4 if the temperature T
is somewhat above or below T, . This statement can be
verified numerically and is confirmed by our observation
that the structure of n (k) is determined by the free and
bound fermions, but not by the condensation of the pairs,
which is related to the superfluid transition.

C. Kinematical behavior and the complex
effective mass of the fermion pairs

Superfluidity is usually correlated with the existence of
bosonic quasiparticles, which condense at low enough
temperatures T (T,(v) In o. ur fermionic system these
bosonic quasiparticles are identified as fermion pairs. For
strong coupling v ~+1 the fermion pairs are tightly
bound and rather small and well-defined bosons. On the
other hand, in the intermediate and weak-coupling re-
gime u ~ + 1 the fermion pairs are short-living quasiparti-
cles, which interact with a sea of free fermions. Especially
in the weak-coupling limit v && —1 where the BCS theory
is valid, the pairs are rather large and penetrate each oth-
er because the diameter of the pairs is large compared to
the mean distance between the fermions. Therefore, we
expect an unusual kinematical behavior of the bound
pairs for weak and intermediate couplings v ~ +1.

The microscopic properties of the bosonic quasiparti-
cles are represented by the vertex function I'(K, Q„). In
the strong-coupling limit u »+1 the vertex function is
identified with the boson Green's function up to a con-
stant factor, and for T = T, we have found'

[I (K,Q„)] '= —
[8mebaF] 'Z '( —iRQ„+A K /4m «)

(14)

for sui5ciently small Q„and K, where up to first order

2m'=2m[1+(3m) 'u + . ]

is the effective boson mass and

Z=1+~ 'v + .

is a renormalization factor. To investigate the kinemati-
cal properties of the bosons we must turn over to the
linear-response formalism, which depends on the real
time t or equivalently on the associated real continuous
frequency z. To do this we introduce the corresponding
susceptibility g(K, z), which is the analytical continua-
tion of I'(K, Q„) where iQ„~z is substituted. Thus
from Eq. (14) we obtain

I

0 1

log, p (k/kF }
FIG. 4. Double-logarithmic plot of the fermion occupation

number n (k) vs k. For large k the power-law tails n (k)-k
caused by the bound fermion pairs are clearly seen as straight
lines for ail couplings u = —1,0, +1,+2.

[y(K,z)] '=dAz —cA' K /2m

in the strong-coupling limit, where d and c are parame-
ters related to 2n ' and Z. Below we wiB identify d and c
as parameters of the time-dependent Ginzburg-Landau
theory. From the theory of complex functions it is
known that the analytical continuation of a function f (z)
is uniquely determined if f (z) is known at an infinite
number of points z„, which form a sequence with one
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2m'=m (d'+id")/c . (18)

Such a formula for the effective mass has been found also
in the Cxinzburg-Landau theory. In Figs. 5 and 6 we
present the numerical results of the rea1 and the imagi-
nary part of 2m * as functions of the coupling strength v,

respectively. For strong-coupling v ~ 1 the real part de-
creases with increasing coupling strength v, while the
imaginary part is nearly zero. The weak repulsive in-
teraction between the bosons described by the scattering
length as =2a~ (Ref. 1) causes a real part Re(2m ') some-
what larger than 2m, which up to first order is given by
(15). This fact is expected because for strong coupling
v ~ I the system behaves like a weakly interacting Bose

accumulation point. However, in our case there are two
accumulation points z„=iA„~+i ~ and z„=i0„~—i 00, respectively. Therefore there exist two analyti-
cal continuations. This implies that y(K, z) is analytic in
the upper complex half plane Im(z) &0 and in the lower
complex half plane Im(z)(0, but not on the real axis
Im(z}=0.

The formula (17) is not restricted to the strong-
coupling limit. Since Eq. (17) can be interpreted as a
Taylor expansion of [y(K,z)] ' with respect to z and K
up to first order, it is valid also for general couplings u if z
and K are sufficiently small. [The Thouless criterion (7)
requires the zeroth-order term to be zero. ] Thus the pa-
rameters d and c can be determined by comparing Eq.
(17) with the numerical result of [y(K,z) ]

' for
infinitesimal small z and K. Since for z =iQ„=O it is

[g(K,O)] '=[I'(K,O)] ', the coefficient c can be deter-
mined directly from the vertex function. Thus we obtain
a real c with a high numerical accuracy. The symmetry
equation I (K, —Q„)=[I (K,Q„)]" relates the two
analytical continuations to each other, y(K, z')
= [y(K,z) ] . Therefore in Eq. (17) the parameter
d =d'kid" is complex for Im(z)&&0, respectively, with
real part d' and imaginary part d". Therefore, in order
to obtain d we determine the analytical continuation of
[y(O, z)] ' in the upper complex half plane Im(z) &0. To
do this we approximate [y(O, z)] '

by a polynomial
diriz+d2(iriz) + +d&(fiz}' of degree l and determine
the coefficients d, 12, . . . , d& by requiring
[y(O, z„)] '=[I (O, Q„)] ' at z„=iQ„=i2nnks T/A
with n =0, 1,2, . . . , NI, where Xl must be chosen ap-
propriately. The procedure works well if d and the other
coefficients converge to some limiting values for increas-
ing I. We find a quite good convergence for the real part
d' if we use only odd powers of z. On the other hand for
d" we need odd and even powers of z. Since in the latter
case the convergence is much slower, the accuracy of our
numerical values for d" is not so good as for d'. We ob-
tain d' and d" with numerical inaccuracies of about
0.3% and 3% relative to ~d~

= [d' +d" ]'~, respectively.
Now, by comparing (14) with (17) substituting iQ„~z

we obtain Z and 2m ' from d and c. Since the renormal-
ization factor Z is canceled in physical quantities (at least
for strong couplings, see Ref. 1, Sec. 3B), and therefore it
cannot be observed, we restrict our considerations to the
complex effective boson mass

E

CV

CK

2-

1 0 1

v = 1j(kFaF}
2 3
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FIG. 6. The imaginary part of the effective boson mass 2m *

vs the dimensionless coupling strength v. The full line

represents our numerical result. The left-hand dashed line cor-
responds to the BCS theory, (20). The negative part near
v =1.3, which would indicate an instability of the system, is

presumably a numerical artifact.

FIG. 5. The real part of the effective boson mass 2m vs the
dimensionless coupling strength v. The full line represents our
numerical result. The left-hand dashed line corresponds to the
BCS theory, (19). The right-hand dashed line represents our
asymptotical strong-coupling result (15).

gas (see Ref. 2, Sec. 28). In Fig. 5 one clearly sees that for
u &2 the numerical result of 2m' (full line} converges
quite well to the asymptotical formula (15) (right-hand
dashed line). Contrary to T, (u) in Fig. 1 in this case the
numerical result is very accurate because 2m' does not
depend explicitly on the fermion density nF. For inter-

mediate and weak coupling u ~ 1 part of the pairs is bro-
ken up into free fermions. This causes a finite lifetime of
the bosons, which is reflected by a positive imaginary
part of the effective mass in Fig. 6. (The small negative
imaginary part for values of v between 1.1 and 1.7 would

cause an instability. Presumably it is an artifact of our ap-
proximate analytical continuation described above. ) The
interaction of the bosons with the free fermions causes a
decrease of the real part Re(2m') with decreasing cou-
pling strength u, as it can be seen in Fig. 5. Thus near
v =1 the real part has a maximum, which is, however,
rather tiny. At v =0 real and imaginary part are nearly
equal and for v &0 the imaginary part becomes dom-

inant, while for v )0 the real part is dominant. Finally,
for weak coupling v —1 the imaginary part is much
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larger than the real part, which means that the system is
overdamped. In the weak-coupling limit the effective
mass 2m ' can be calculated asymptotically. In this limit
we obtain

Re(2m '
) =m

37T2 k~T,
[3—v(m. /2) ], (19)

3n k~T, ~
7g(3) e'~ 2

(20)

respectively, where k~ T, is given by (10). These asymp-
totic results are shown as the left-hand dashed lines in
Figs. 5 and 6 and are in accordance with our numerical
results (full lines}. We have observed that the numerical
accuracy of the full lines becomes somewhat worse for
weak couplings u ~ —1.

The results (19}and (20} agree with the conventional
time-dependent Ginzburg-Landau theory of a BCS super-
conductor. "' We have obtained the correct expressions
for the relaxation time ro and the coherence length g,

'

which give ~o/g =Im(2m')2/A. To obtain the correct
values of the real parts (19) and d' it is crucial that in the
integrals the density of states N(e) is not replaced by the
constant value N(er) at the Fermi energy ez If one.

would use N(er ) the factor [3—v (n./2) ] in (19) would be
replaced by 1. However, c and the imaginary parts d"
and (20) are insensitive with respect to that.

Within the Ginzburg-Landau theory of the crossover
scenario the effective boson raass 2m' has been investi-
gated previously by Zwerger for d=2. There a real
effective boson mass has been found, which increases
monotonically with increasing coupling strength and
looks similar to our Fig. 5. However, a direct compar-
ison of this result for d =2 with the result for d =3 is not
reasonable.

The Ginzburg-Landau theory of the crossover scenario
has been extended to a time dependent -Ginzburg-Landau
theory by Sa de Melo, Randeria, and Engelbrecht. They
derived the time-dependent Ginzburg-Landau equation

diA ' = —c V +a+b~b(x, t)~ b(x, t),. aa(x, t)
dt 2m

[y(K,z)] 'b(K, z) =0 . (22)

Thus inserting (17}and performing a Fourier back trans-
formation we obtain the time-dependent Ginzburg-
Landau equation (21} with a =0 at T= T, and the last
terra neglected in the linear response approximation.

The theory of Sa de Melo, Randeria, and Engelbrecht
includes the interaction between the condensed bosons

(21)

where h(x, t) is the order parameter, and obtained expli-
cit formulas for the coefficients a, b, c, and d =d'+id"
These results can be compared with our coefficients d and
c for the following reason. The fact that y(K, z) is a sus-
ceptibility implies the linear response equation
h(K, z}=y(K,z)h(K, z), where h is the conjugate field of

Since in a superfluid system the conjugate field
h (K,z) is zero, this equation becomes

and thus yields a~ =2az according to our result. How-
ever, the repulsive interaction between the noncondensed
bosons is missing, which is a typical property of mean-
jield Ginzburg-Landau theories. Hence, this theory does
not yield the first-order correction terms of c and d in the
strong-coupling limit, which correspond to the first-order
correction of the effective boson mass (15). On the other
hand in the weak-coupling limit our asymptotic formulas
(19) and (20) must coincide with the corresponding re-
sults of Ref. 8 because in this limit both theories are
equivalent (see Ref. 1). However, while we find agree-
ment for d", the explicit result of d' in Ref. 8 differs from
our result because in the integrals of Ref. 8 the density of
states N(e) was replaced by the constant value N(ez} at
the Fermi energy, which gives an incorrect result (see
above). Furthermore, the value of c in Ref. 8 is larger by
a factor 9 than our result, which is presumably due to a
calculational error. In the crossover region Sa de Melo,
Randeria, and Engelbrecht have found an algebraic
singularity of the coefficient d and the effective mass 2m *

at an interaction strength Uo, which corresponds to the
chemical potential ju=0 (see Fig. 2). While for v )vp

(where p&0) the imaginary parts are d"=0 and
Im(2m~)=0, for v (vv (where p)0) these imaginary
parts are nonzero. However, this singularity is an ar-
tifact of the approximation made in Ref. 8. While the
same singularity can be found in our theory if the free-
fermion Green s function (8) is inserted into (4) and (2}, it
is not present in our self consisten-t theory. This fact is
confirmed by our numerical results of the effective boson
mass 2m' because in Figs. 5 and 6 the full lines are
smooth for couplings near vo =0.5.

IV. CONCLUSIONS

The numerical analysis has shown that the self-
consistency is essential in the theory of the crossover
from BCS superconductivity to Bose-Einstein condensa-
tion. Since our theory includes the interaction between
the condensed and noncondensed fermion pairs the
superfluid transition temperature T, (v) is a monotonical-
ly growing function of the coupling strength v without a
maximum in the crossover region. (This result was found
in d =3 dimensions. ) The bound fermion pairs are
represented as a power-law tail -k in the fermion oc-
cupation number n(k) for momenta haik in the interval
max(k~, a~ ' }«k «r 0 ', where ro is the effective range
of the interaction. While for strong coupling U ~1 the
system behaves like a weakly interacting Bose gas, in the
intermediate and weak-coupling range u & 1 the fermion
pairs are bosonic quasiparticles with a short lifetime ex-
pressed by an imaginary part of the effective mass 2m
The self-consistency guarantees that all quantities are
smooth functions of u, in contrast to the results of Ref. 8.

Our numerical procedure is a powerful method for
solving the self-consistent equations, which is not restrict-
ed to the superfluid transition at T =T, but can be ap-
plied for arbitrary temperatures T. For future investiga-
tions of special interest are therrnodynaraic quantities
like the specific heat C„(T) and the compressibility a T( T)
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at given values of the invariant coupling strength
u =1/k~a~. Furthermore the microscopic functions 0
and I can be used to derive the linearized hydrodynamic
equations and to determine transport coefficients like the
thermal conductivity A,(T) and the shear viscosity ri(T).
This must be done by an analytical continuation analo-
gously, as we have shown above, because hydrodynamic
equations represent a direct generalization of the time-
dependent Ginzburg-Landau theory. The resulting phys-
ical quantities could then be used for a comparison with
experiments.
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APPENDIX

f(p)= I dxe 't' f(x) . (Al)

We assume that the values of the function f =f (x )

are known at the discrete points

x =y 'sh (ybxm), (A2)

where m =0, +1,+2, . . . , +E. This choice of discrete
points automatically yields a good resolution on a loga-
rithmic scale, ranging from the small value hx up to the
very large value X=+(2y) 'exp(ybxN). A conven-
tional fast-Fourier-transformation procedure' cannot be
used here because the points (A2) are not equidistant.
Therefore, we have to construct a special "slow Fourier
transformation, " which is suitable for our problem. To
do this we approximate the function f (x ) for continuous
values of x in between the points x by cubic spline-
interpolation polynomials' and then evaluate the Fourier
integral (A 1) exactly. Thus, once we have determined the
coefficients of the spline polynomials, the Fourier integral
(A 1) has been reduced to a sum over m, which can be
evaluated easily numerically. This procedure works well

I

Here we brie6y describe our numerical Fourier trans-
formation procedure, which we have used for calculating
9 and I'. The numerical work can be reduced consider-
ably by exploiting the rotational symmetry of the system,
which implies that the functions Q, X and I,M depend
only on the absolute values k, E, and r of k, K, and x, re-
spectively. Thus the Fourier transformation formulas (5)
and (6) become effectively two dimensional. We need a
one-dimensional continuous Fourier transformation for
transforming the functions in this variables k~r or K~r
and ~~e„or ~~A„, respectively. Furthermore, we
need a discrete Fourier transformation for transforming
the functions in the variables co„~~or Q„~z.

For simplicity we consider first the one-dimensional
continuous Fourier transformation

for intermediate and large values of p. Since the Fourier
integral (Al) is evaluated exactly in the intervals in be-
tween the discrete points x, the oscillating factor e
causes no difficulties even for large p. However, for very
small p the procedure breaks down numerically because it
contains terms of the orders p, p, p, and p
which must cancel for p~O. Therefore, for small p we
need a second numerical procedure. In the latter case we
assume that e '~ oscillates at most once in between two
adjacent points x . Then the whole integrand e '&"f(x)
may be approximated by spline-interpolation polynomials
so that the integral can be evaluated exactly. Thus the
Fourier integral (Al) is reduced again to a sum over m,
which can be evaluated numerically. Finally, the two nu-
merical procedures must be combined to obtain a high-
quality Fourier transformation. To do this we choose an
optimized smooth cutoff function b(g) and split f(x)
into two functions f"'(x)= [1 b(px—) ]f (x) and
f' '~( x)=b(px)f (x), which are transformed by the first
and the second numerical procedure, respectively.

Our procedure can be generalized to a discrete Fourier
transformation

f (r) = g e " f (to„) . (A3)

Here we take the values f =f(to'„') only at those
Matsubara frequencies co(„) into account, which lie
closest to points x given by a formula of type (A2). For
all other co„ in between we approximate f (co„) or

16) T
e " f (co„) by spline-interpolation polynomials. Then
we proceed in precisely the same way as in the continu-
ous case. Inserting the spline polynomials we can evalu-
ate the sum (A3) over the Matsubara frequencies exactly.
Thus a sum over m containing the spline coefficients
remains, which can be evaluated numerically. It turns
out that the zero temperature limit T~O, which corre-
sponds to the limit discrete ~ continuous is no problem
for our transformation procedure because of the use of
the spline interpolation.

We have tested our numerical Fourier-transformation
procedures very carefully. It turns out that 100 points
x or co™are sufficient to transform a function f (x) or

f (co„), which has a nontrivial structure on a logarithmic
scale over six or even ten decades.

Now we turn back to the Green's function 9 and the
vertex function I . Since they depend on two variables we
need 100X 100 points defined by formulas similar to (A2)
to discretize (k, co„), (K, Q„), and (r, r), respectively. We

perform the Fourier transformation first in one variable
and then in the second variable. Thereby it is important
to subtract the singularities of the functions 9' and I
carefully, as we have described in Sec. II. Thus, using

Eqs. (1)—(4) and the Fourier transformation (FT) we ob-
tain the following iteration procedure to determine 9' and
r:

FT FT (4) FT FT

Q(k, ai„)~Q(k, r )~S'(r, r)~M (r, r) +M (K, r) ~M—(K,0„)
(3) FT FT (2) FT FT (1)

1(K,n„) r(K, r) r(r, ~) r(r, r) X(k, ~) r(k, ~„) uk, ~„) .
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Fortunately, in repeating the iteration procedure no numerical instabilities have occurred. %'e have found that 13 itera-
tion steps are sufficient to achieve a convergence better than O. l%%uo, which is better than the numerical accuracy. Since
eve have used only 100X 100 points for discretizing the functions, the numerical work is comparatively moderate. Thus,
a high performance computer is not necessary.
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