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Quasiparticle lifetimes and tunneling times in a superconductor-insulator-superconductor
tunnel junction with spatially inhomogeneous electrodes
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The low-energy quasiparticle scattering and recombination lifetimes for a proximity sandwich of two
superconductors S and S' with different bulk energy gaps, are calculated as a function of the spatial
coordinate and temperature. The spatial dependence of the order parameter and density of states are
calculated on the basis of a microscopic model of the proximity effect, based on the Usadel equations, for
dirty superconductors in thermal equilibrium. A zero boundary resistance between S and S' and a
Boltzmann-like energy distribution of the excess quasiparticles are assumed. In the case of a small

diffusion time constant an effective quasiparticle relaxation rate into and excitation rate out of the re-
duced gap region in the SS' sandwich are obtained as a function of (6nite, but low) temperature and

strength of the proximity effect, determined by the parameter y, by averaging over the energies and po-
sitions of the quasiparticles. In the same way effective tunneling times for electrons and holes tunneling
out of the trap in the SS' sandwich to the other electrode of an SS'IS"Sjunction are determined as a
function of temperature, voltage, and y

I. INTRODUt:ixON

Nonequilibrium processes in superconductivity have
been studied extensively in the past in thin superconduct-
ing films. Excess quasiparticle or phonon densities were
induced by a particles, laser light or the injection of a
(large) current of quasiparticles or phonons by a tunnel
junction. ' The excess quasiparticle densities are mea-
sured with a (second) junction. In fact, the tunneling
current in any Josephson tunnel junction is an example of
such injection current. For low current-density devices
the e6ect on the equilibrium density of states in the elec-
trodes is negligible, but for the very high-density devices
that have been fabricated recently, nonequilibrium
efFects are likely to give rise to important deviations from
standard tunneling models that assume thermal equilibri-
um densities of states and distribution functions in the
electrodes.

The development of superconducting detectors for the
quantitative measurement of the energy of high-energetic
(nuclear) particles or photons has renewed the interest in
nonequilibrium superconductivity. '

. The working prin-
ciple of such detectors is that the energy of the particle or
photon, after absorption in a superconducting layer (the
absorber), is used to break up Cooper pairs into excess
quasiparticles and in the creation of nonequilibrium pho-
nons. As time evolves the energy is distributed over an
increasing number of excess quasiparticles and phonons
in a cascade, until the energy of an excess quasiparticle is
equal or slightly larger than the gap energy hg of the su-
perconductor, and the excess phonon has an energy of
about 2hg. This energy cascade takes place on a psec
time scale and ends within less than a nsec. The excess
energy is also spreading out in space, due to diffusion of

the excess quasiparticles and phonons on a slower time
scale.

The measurement of excess quasiparticles in the super-
conductor can be achieved by the detection of the break-
ing of superconductivity due to local heating (e.g., in su-
perconducting granule detectors or superconducting strip
detectors) or by measuring the excess current due to the
excess quasiparticles through the barrier of a tunnel junc-
tion (see, e.g., Refs. 8 —10). This paper is concerned with
the latter detection method.

The intrinsic energy resolution of a junction detector
for a particle which deposits energy E, is given by
o(E)/E=(F/N)'~, where N=E/to is the number of
created particles, co the average energy to create one ex-
cess particle, and F is the Fano factor (F~ 1). In a prac-
tical device the energy resolution will therefore strongly
depend on the number of excess quasiparticles that is
detected by the junction. A large fraction of the excess
quasiparticles may be lost before the quasiparticles have
reached the barrier and can tunnel. Apart from loss due
to recombination, an important loss mechanism is the
trapping in regions with a lower energy gap, due to ener-
gy relaxation. Such regions may be, e.g., (1) induced by
the proximity effect; (2) the core of a trapped Abrikosov
vortex; (3) due to pair breaking caused by screening
currents induced by an external magnetic field.

In order to have low losses one should extract the ex-
cess quasiparticles as fast as possible from the absorbing
layer by the tunneling process. In principle, this can be
achieved by using a junction with a highly transmissive
barrier. However, the fabrication of such devices, which
should also have very low leakage currents down to the
low operating temperatures, poses severe or even insur-
rnountable di5culties. An artificial trapping layer adja-
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cent to the tunnel barrier can be used advantageously to
collect the excess quasipartieles from the absorber very
fast and effectively. " Larger absorber volumes can there-
fore be used. This increases the detection efFiciency, i.e.,
the percentage of incoming particles or photons that is
absorbed. This can be shown simply as follows. Assume
a bilayer with total volume V, consisting of a thick layer
S with volume V-v with band gap 5 „and a thin layer S'
with small volume u (u « V} and band gap b,g,
(bg, &bs2). Particles in layer S' with energy e=b, , can
become trapped in the S' region by energy relaxation due
to phonon emission, with a relaxation rate 1/ r„obt ai n-

ing an energy 6~2 & c, & hgI. The relaxation rate is largest
for the largest energy diff'erence, thus the final energy of
the trapped particle is predominantly equal to 5 2. As-
suming that the fraction of time that the particles with
energy b, I spend in S' is just the volume fraction u/V,
the efFective trapping rate is 1/r„=(u/Vr, ). Thus the
number of quasiparticles with energy hagi, decreases ini-
tially as N(bg& }-exp( t /r„—) due to trapping. This pro-
cess can be very fast compared to tunneling of particles
with energy b, , or other loss processes. The trapped par-
ticles can be excited out of the trap with rate 1/r, „,and a
dynamical equilibrium between particles with energy 6 I

and those with energy hg2 will be established, such that

dN(b, , )/dt ~„,pp, „s=N(bg, )/r„=dN(bg2)/dt ~,„„„„,„
=N(b, ~)/~, „,

(neglecting other loss processes}. From the results of this
paper it follows that at low temperatures ~,„,&&( V/u )r„
even for large ratios V/u, thus the number of trapped
particles, N(b, 2)=(r,„,/r„)N(bs, ), is much larger than
the number of particles in the bulk. The second large ad-
vantage is that the tunneling rate out of such a trapping
layer is much larger than out of the bulk of the absorbing
layer. Since the (signal) current (arising from the tunnel-

ing process) i, =dN/dt ~,„„is proportional to the particle
density it follows that the tunneling rate for particles
trapped in the small volume v of layer S',

(1/ r)„=(1/N(b, ) )(dN(~ )/dr ) I...—1/u,

is much larger than for particles with energy 6 „which
have a tunneling rate proportional to 1/V.

There is a vast literature on the theory of nonequilibri-
um processes in supercondueting films and devices. ' '
Nonequilibrium processes in superconducting thin films
and devices are generally described with the Rothwarf-
Taylor {RT)equations. ' These are rate equations for the
number densities of nonequilibrium quasiparticles and
phonons, which, in principle, describe the energy ex-
change between these systems and the environment.
Some of the time constants that describe these processes
ean be obtained from the important paper of Kaplan
et al. '-' They calculated the lifetimes of low-energy
quasiparticles and phonons due to electron-phonon in-
teraction in a spatially homogeneous superconductor in
nearly thermal equilibrium: The scattering or thermali-
zation lifetime of a quasiparticle with energy c. and at

temperature T, r, (E, T), is due to the absorption or emis-
sion of a phonon. The recombination lifetime of a quasi-
particle, ~„(e,T), is determined by the recombination
with another quasiparticle, forming a Cooper pair. The
branch-mixing time, ~&(E, T), describes the relaxation of
the population imbalance of the two branches of the
quasiparticle excitation curve, corresponding to quasipar-
ticle wave vectors less and greater than the Fermi wave
vector. The phonon system can be described with two
lifetimes: the scattering lifetime of a phonon with energy
0 due to scattering with a quasiparticle, ~ „,(fl, T), and
the lifetime against Cooper pair breaking, rs(Q, T).

The RT equations and the Kaplan time constants have
been applied by many authors to describe the nonequili-
briurn processes in junction particle detectors. '

However, both the RT equations and the Kaplan theory
assume a superconductor with spatially homogeneous
properties, so that there is no dependence of the number
densities on space coordinates. Such an oversimplified
model is inadequate to describe quantitatively the none-
quilibrium processes in many particle devices, as, e.g.,
particle or photon detectors in which reduced gap re-
gions or trapping layers are present.

In this paper some of the results of Kaplan et al. are
extended to the case of a spatially inhomogeneous super-
conductor. %e consider the practically important case of
a thin-film proximity sandwich of two superconducting
metals with different bulk energy gaps. Such a sandwich
may then be described by two sets of RT equations: one
for the bulk layer and one for the trap, which are coupled
by time constants describing the relaxation and excitation
processes. In Ref. 19 the trapping rates due to a proxirni-
ty layer and due to an Abrikosov vortex were studied for
zero temperature. Here we will extend the calculations
for the proximity sandwich to finite temperatures and
will also calculate the excitation rate out of the trap,
which was equal to zero in the zero-temperature case.

In a junction detector the quasiparticles are extracted
from the absorber electrode by tunneling. The tunneling
time constant v;„„was given by Ginsberg for a homo-
geneous superconductor at high voltages. The validity
range was extended to low voltages later. ' ~,„„is pro-
portional to the thickness of the superconductor from
which the tunneling electrons are extracted. However, in
the case that the trapping layer is adjacent to the barrier,
this tunneling length for quasiparticles in the trap is
much smaller than that of the quasiparticles in the bulk
electrode. This means that tunneling of the trapped
quasiparticles is much faster than that of the bulk quasi-
particles.

Due to the proximity effec the order parameter and
consequently the densities of states vary in space. This
has a pronounced effect on the quasiparticle lifetimes as
well as the tunneling times, which also become a function
of the space coordinates. Previously this effect was taken
into account using oversimplified models: either BCS-
like densities of states in the bulk and in the trap, or in
the McMillan-tunneling model of the proximity effect.
Here we calculate the time constants for a proximity
junction at a finite temperature using the solutions of a
microscopic proximity-efFect model based on the Usadel
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equations. Some aspects of this model are described in
Sec. II.

In Sec. III the equations for the quasiparticle lifetimes
in a proximity sandwich are developed as an extension of
the equations of Ref. 15. The results are compared with
those given there.

Under the assumption that the diffusion time constant
over the thickness of the sandwich is much smaller than
the quasiparticle lifetime constants, these lifetimes can be
averaged over the position and the energies of the
quaisparticles. In this way effective quasiparticle life-
times are defined by the introduction of the size of an
effective trapping region, which gives the same total
scattering rate as the reduced gap region. This averaging
procedure was done earlier in the limit of zero tempera-
ture. ' In Sec. IV we will extend the formalism developed
there to the finite (but low) temperatures at which most of
the practical devices are used. The quasiparticle scatter-
ing rate will be divided into two rates ~, ' and ~, ', due
to, respectively, phonon emission and absorption.
Effective rates are calculated for quasiparticles in and
above the trap separately, as functions of the strength of
the proximity effect that determines the size of the trap.

In Sec. V we calculate the effective tunneling time for
quasiparticles in the trap as a function of the strength of
the proximity effect, temperature, and voltage bias of the
junction.

It is noted that the proximity effect model that is used
applies only to sandwiches of dirty superconductors, so
that, in principle, all calculated time constants are valid
for that case only. However, it is expected that most of
the results will also apply, at least qualitatively, for super-
conductors near or in the clean limit.

II. THE PROXIMITY-EFFECT MODEL

The inhomogeneous state of a dirty superconductor in
the weak-coupling limit can be described by the Usadel
equations:

x V[6 (co„,r)VQ(co„,r)], (la)

where 6 and F are the Green's functions of a supercon-
ductor, 6 is the order parameter, and co„ the Matsubara
frequency. Equation (lb) is the self-consistency relation
for the determination of the order parameter b,(co„,r }.

As a model for the inhomogeneous state we consider
the proximity effect between a thick superconducting lay-
er S (extending along the x axis perpendicular to the SS'
interface from 0 to d, ) and a thin layer of another super-
conducting material S' ( —d &x & 0},which are in a good

(lb)

p/G G ~ [~2 +y2] —i/2 p —y[~2 +y2]
—1/2

(lc)
co„=n.T(2n+ I ), n =0, 1,2, . . . ,

electrical contact. We assume that

y„=(p,g, /pg' )(d /g" ),
yii =(Rs /pg" )(d /g')

(3a)

(3b)

Here, p, (p) is the normal-state specific resistivity of the S
(S'} metal and Rs is the product of the SS' boundary
resistance with its area.

The parameters y and yz have a simple physical in-
terpretation. The value of y is largely determined by
the electron densities in the S and S' metals in the SS'
sandwich. A large value of y corresponds to a high
density of quasiparticles in S' compared to that in S near
the SS' boundary. In this case the diffusion of these
quasiparticles into the superconductor leads to a strong
suppression of the order parameter in the S region at dis-
tances of the order of g, from the boundary. In the oppo-
site case (y «1) the infiuence of the S' layer on the su-

perconducting properties of S metal is weak and the or-
der parameter in the S region is nearly spatially homo-
geneous. Thus y plays the role of an effective pair-
breaking parameter near the SS' boundary, as discussed
in Ref. 24.

The parameter y~ determines the effect of a finite tran-
sparency of the SS' boundary. The case yz (&1 corre-
sponds to a vanishing potential barrier at the SS' bound-
ary (vanishing barrier resistance, Rii =0), i.e., the S and
S' metals are in good electric contact. The opposite situ-
ation, y~ &&1, corresponds to a low transparency of the
potential barrier, i.e., the S and S' metals are weakly cou-
pled. In the latter case the McMillan model of the prox-
imity effect is applicable. The relation between both
proximity-efFect models was discussed recently in Ref. 24.

The calculations presented in this paper apply to the
case of a Nb( T, =9.2 K}/Al( T,' = l.3 K) sandwich. It is
known that the Nb/Al interface has a 1ow resistance.
Therefore it is assumed below that no barrier exists at the
SS' interface, hence y&=0. In this case the supercon-
ducting properties of the SS' sandwich are determined by
the parameter y and the critical temperature ratio
T,*/T, . As was shown in Refs. 24 and 27 a variation of

(2)

i.e., both materials are in the dirty liinit, where T, (T, ),
d, (d}, I, (I), and g, =(D, /2mT, )'/ [g' =(D/2 T, )' ]
are the critical temperature, the thickness, the electron
mean free path, and the coherence length of the S(S')
layer, respectively. D, and D are the normal-state
diffusion coefBcients of electrons in these materials. The
coherence length g' in the S' layer is related to the bulk
coherence length g, of the S' material by
g, =g'(T, /T,"}' . In this way one can treat T,' as an
independent paraineter. The last condition in Eq. (2) also
implies that the functions 6, F, and 6 can be assumed to
be constant over the S' layer. Details on this model of
the proximity effect are given in Ref. 26 for an SN
sandwich (T,"=0) and in Refs. 24 and 27 for the more
general case of an SS' sandwich.

It was shown that in both cases the extent of the
influence of the proximity effect is determined by two pa-
rameters:
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the T,'/T, ratio can easily be taken into account by a re-
normalization of y by introducing an effective proximi-
ty parameter y' =y a, where u is a function of the ratio
T,*/T, . In Fig. 1 of Ref. 24, a=a(T,'/T, ) is presented
The results, obtained in this paper for the Nb/A1 system,
can therefore straightforwardly be applied to other ma-
terial combinations under the condition y~ (& 1.

The set of equations (1) for the S and S' layers under
the proper boundary conditions, were solved numerically.
As an illustration the density of states in S,
N(e= im—„}=ReGs( s), at the SS' boundary, is plotted
in Fig. 1 for different y values. N is normalized to the
total density of states at the Fermi level in the normal
state N(0) (spin up and down). In the S' region the den-
sity of states, N'(s ) [normalized to N'(0) ], is spatially
homogeneous due to the condition d «g', and takes the
value at the boundary N(e, ,0) because ye =0. It is seen
that the energy gap in the density of states 6 is
suppressed relative to the bulk value b,o. [b,o (50) is the
bulk BCS equilibrium value of the order parameter at
temperature T of metal S (S')]. In the S region the
behavior of X depends on the spatial coordinate x.
N(s, x) is plotted in Fig. 2 of Ref. 19 for y =10 at
different distances x /g, from the SS' boundary (at x =0)
in the S region. The value of hg is the same for all points
in S, the difference being in the values of N(s, x) at
b,s & e & b,o, which become small as x /g, ~ 3.5. This
means that a large region of the S material near the SS'
boundary has a reduced gap value hg & 50. On the other
hand the energy gap in the S' layer is increased compared
to the bulk value 5 )5o.

The gap 5 at zero temperature is shown in Fig. 2 as a
function of y . It is seen that hg decreases with increas-
ing y in accordance with the pair-breaking nature of
this parameter, as discussed above. The physical conse-
quence of the gap suppression by the proximity effect is
that quasiparticles with energy equal to the bulk gap ho
have a finite lifetime, even at zero temperature, because
of the presence of a finite density of states below ho in the
energy interval 5 &c, &60. At finite temperature T)0
this will lead to quasiparticle lifetimes that are different
from those calculated by Kaplan et al. ' for a spatially
homogeneous superconductor. This effect is the main
subject of investigation in this paper. First we extend the
formalism and calculations of Ref. 15 to the spatially in-

homogeneous case of an SS' sandwich. Then we apply
the formalism to calculate effective quasiparticle trapping
and tunneling times in a tunnel junction with electrodes
consisting of SS' sandwiches.
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nons (electron-phonon interaction) and direct electron-
electron interaction. ' ' Here we make the usual as-

sumption that the main scattering mechanism is due to
electron-phonon interaction. This is true for most metals

for which the condition QD /pF T, « 1 holds, where QD

is the Debye energy and pF the Fermi energy. ' In this

case the self-consistency equation (lb} should be substi-

tuted by the set of Eliashberg equations. In the case of
a spatially inhomogeneous superconductor these equa-

tions have the following general form
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T,*/T, = 1.3/9. 2= 0. 1 4

o 040
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FIG. 1. Normalized quasiparticle densities of states at the
SS' interface of an SS' sandwich, with T, /T, =0.14 (corre-

sponding to a Nb/Al sandwich) at temperature T ((T„for y
ranging from 0.1 to 10 and yz =0. The bulk BCS energy gaps
at T=O of Nb and Al are indicated with hp(0) and hp(0), re-

spectively.

III. QUASIPARTICLE LIFETIMES

Finite quasiparticle lifetimes in a metal are due to in-
elastic scattering of electrons. Therefore one should first
specify a mechanism of inelastic scattering to introduce a
general expression for these lifetimes. Two processes are
usually considered: emission or absorption of real pho-

0.0 2.0 4.0 6.0 8.0 10.0

FIG. 2. The energy gap b,g, of an SS' proximity sandwich

with T, /T, =0.14 and y& =0, as function of the proximity pa-
rameter y
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X(c,, r)=eZ(e, r)=e —f de'ReG(e', r) f dQa (Q)F(Q) e'+e+Q+i5 e' —e+Q —i5

+ f(s')+n(Q) f(e')+n(Q)
—c.'+ c.+Q+ i5 —c.

' —c+Q —i5
(4a)

E(e,r)=h(e, r)Z(e, r)= f ds'ReF(E', r) f dQa (Q)F(Q), . +E'+E+Q+i5 E' —s+Q —i5

f(e'}+n(Q) f(e')+n(Q)
e'+—e+Q+i 5 e' —s+—Q i 5—

—pc f d e' ReF( e', r }tanh( e'/2T) .
p

(4b)

Here, h(e, r) and Z(e, r) are the energy and space-
dependent order parameter and renormalization function,
respectively. The function a (Q}F(Q) is the spectral
function of the electron-phonon interaction, Q being the
phonon energy. p& is the Coulomb pseudopotential, c, is

a cutoff energy of the order of the Debye energy QD, and

f(s), n(s) are the Fermi and Bose distribution functions,
respectively.

In the Eliashberg formalism the normal and anomalous
parts of the electron self-energy, Z and 6, respectively,
have imaginary parts (proportional to the electron-
phonon coupling constant A, for small I, ). Generally the
imaginary part of the self-energy determines the quasi-

particle lifetime. As was shown in Ref. 19, one can intro-
duce an electron scattering rate I (e, r) in a spatially inho-

mogeneous superconductor following the approach of
Ref. 15 and obtain

I (e, r) =eZz(e, r) lZ, (e, r) —E,(e, r)b2(e, r) l(Z f (e,r)e) .
(5)

I

Here, E, 2 and Z, z are the real and imaginary parts of E
and Z, respectively, and are determined directly by Eqs.
(4a) and (4b} I (e,r) determines a quasiparticle decay rate

=21'(e,r),1

e, r

where r(e, r) is the coordinate and energy-dependent
quasiparticle lifetime. Here, we consider the case of rath-
er weak coupling, when the typical electron energy of in-
terest, c=kT„ is small compared to typical phonon fre-
quencies, Q= QD, so that the energy dependence of Z,
and E, can be neglected. Then the real part of the order
parameter, b, ,(r) =E,(r)/Z, (0), can be determined from
the Usadel equations, Eqs. (1). The functions Z2 and E2
are obtained from Eq. (4), so that a generalization of Eq.
(8) of Ref. 15 for r ' in the spatially inhomogeneous case
is obtained:

'(e, r)=r, '(e, r)+~, '(e, r)+r„'(e,r), (7a)

2m h(r)
~, '(e, r)= dQa (Q)F(Q) ReG(r, e —Q) — ReF(r, s —Q)

X [n(Q)+1][1—f(e —Q)], (7b)

r, '(s, r}= f dQa (Q}F(Q) ReG(r, e+Q) ReF—(r, e —Q) n(Q)[1 —f(e+Q)],
fiZ, 0 1 — e o

(7c)

(e,r)= dQa (Q)F(Q) ReG(r, Q —s) — ReF(r, Q e) [n(Q)+—1]F(Q—e) .A(r)
(7d)

r, '(e, r)=r, '(e, r)+~, '(E,r) . (8)

Further simplification is possible because the electron

Here ~, ' is the scattering rate with emission of phonons,
' is the rate with absorption of phonons, and ~, ' is the

recombination rate, in which two quasiparticles form a
Cooper pair with the excess energy emitted as a phonon.
Summing up v; ' and ~, ' one can define the quasiparticle
scattering rate ~, ':

energy is small compared to the typical phonon energy.
In this case the function a (Q}F(Q) can be approximated
by its low-frequency form bQ and a characteristic time
constant for a given material can be introduced:

To=Z ) ( 0 )A' /2 7Th (k T~ )

Values for Tp for several materials are tabulated in Ref.
15.

For the determination of ~o/~, (E,r }and role„(e, r) one
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ture, increases, so that the scattering rate becomes larger.
The number of occupied states also grows when coming
closer to the SS' boundary and the recombination rate
therefore increases as well.

IV. EFFEC:TIVE QUASIPARTICLE RELAXATION
AND EXCITATIQN TIMES IN SS' SAND%'ICHES

In this section we calculate the average lifetime of a
quasiparticle against the trapping in the reduced gap re-
gion of the SS sandwich, as well as the lifetime against
excitation out of the trap.

right-hand side of (13)] is given by the factor c(x, t),
whereas the energy dependence is determined by the
Boltzmann-like factor. We will assume that the quasipar-
ticle diffusion is so fast that c(x, t } is not spatially depen-
dent on the time scale of the trapping process. This is
mostly the case since the diffusion time constant
7D d, /D, is much smaller than ~„. Further the low-

temperature limit is considered, c. ~ 6 ))T. Then

f(E,x, t ) reduces to

f( e, xt)=f(e)
()OIT— (6 Bo)/T— —(a —ao)iT

A. EfFective trayying time
C(

—(a —ao)/T
(14)

The time constant ~„for a single electronlike quasipar-
ticle with energy c & 50 to relax into the reduced gap re-
gion so that it can be considered to be trapped, is given
by the rate r,, '

by which the total number of quasiparti-
cles with energy e & ho, N, ) t, , changes due to phonon

0

emission:

In Eq. (12b) the factors C cancel, thus (r,, ')s becomes in-

dependent of the excess quasiparticle density, and the
trapping rate for excess and equilibrium quasiparticles is
equal.

N, )B, given by the numerator in (12b), is approxi-
0

mately equal to

tot
~tr

dN

dt

dN, )B

dt

dN', )B

N, )~ +N,')g

N, )B —N(0)d, C—f de N (e)e
0

=N(0)d, CB(T},

where N (s) is the normalized BCS density of states
and B(T) is the function

B(T)=f ds e
0 ~2 2

Here, N, && and N,'&z are, respectively, the number of
0 0

particles in S and S' with s & b,o.
First we consider the trapping process in the S layer,

with d, »g„where (r,, ')s is defined as

N
(12a)

d

f dx f de1q (e,x }N(e,x )f(e,x )

(12b)

f dx f deN(e, x)f(s,x)

The relaxation time constant r, '(e, x) is defined by Eq.
(7b), but with the condition that the energy of the emitted
phonon is large enough, that the quasiparticle becomes
trapped: Q c—60—:Q~„. The lower integration limit
in Eq. (7b) is thus equal to 0;„.It is easy to verify that
for the holelike quaisparticles the same time constant
(r„)s is found.

We consider the case that excess quasiparticles may be
present. The nonequilibrium distribution function is as-
sumed to be given by

f(e,x, t )=fo(e)+c(x, t. )e (13)

where fo(c, )is the equilibrium Fermi-Dirac distribution
function. The space and time dependence of the none-
quilibrium part of f(E,x, t) [the second term in the

=Tf Qx(x+2bo/T)e "dx
0

Q(n/2)hoT, .T ((2ho( T)

T, T&ho(T) . (16)

In the limit T~O, r, (s,x) is approximately equal to
~, '(ho, x ), and can be taken out of the integral over the
energy in Eq. (12b), which then reduces to

d

d, o (rb , o)x
(17)

I

This result was obtained earlier. '

In Ref. 19 an effective length L,m was defined, as the
thickness of a layer in the S material that is in the normal
state (5 =0), which gives the same total scattering rate
as the reduced gap region. L,z is given by

=L,B( T=O)
o r, (bo,x) ' r, (h =0) (18a)

where

2mb(bo) 1 82r, '(b, =0)=
3Z, (0}A

(18b)

is the relaxation rate for particles in S with energy 60
down to the Fermi energy (use was made of the BCS rela-
tion 2iko/T, =3.S2}. Here ~o is the material-dependent
time constant for S, given by Eq. (9).

The definition of L,z can be extended to finite tempera-
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are constant at low temperatures and that their values
only depend on b,g determined by y . I.«and I.'« in-

crease with increasing temperature, reaching the T
dependence in the intermediate temperature range. The
crossover temperature, T' —=b,o

—hg(y ), is indicated by
a star in the corresponding curve. In Fig. 4 of Ref. 17
L,z and L',&are given as a function of y at T=O.

To calculate the efFective trapping time ~„, for an elec-
tronlike quasiparticle in the SS' bilayer with energy
8 w kp one needs to find the quasiparticle number ratios
in Eq. (11}.These ratios read

function

B'(T,y )=f dsN'(s, 0)e
0

(27a)

B'(T,y )=T, y ~1 . (27b)

For y & 1 we have N'=N . At temperatures
T«(60—hg) one can replace N'(s, 0) in (27a) by its
lower limit value, so that B'( T, y ) is

in analogy with Eq. (16). Because y~ =0, we have
N'(E, O) =N(e, 0). For not too small y values the densi-
ty of states N(s, 0)= 1 for E ~ 50, so that

N. &~ +N:&~

N. &~ +N:&~

=(1+a) '=1;

=(1+a ') '=a, (26a)

B'(Ty }=Tbo(50 bg) —'/, T«(bo —b ), y (1 .

(27c)

For small y we have approximately N(s, 0)=N (s),
from which it follows that

with B'(T,y )=B(T), y «1. (27d)
I
c)so C'N'(0) B'(T) d «1.

CN(0) B (T) dJ
a=

N, &go
(26b)

The latter inequality is obtained from the fact that
d «d, and the other factors in (26b) are of the order 1,
as will be shown further on. C' is the constant in Eq. (14)
for the distribution function in the S' layer. B'(T) is the

I

A relation between C' and C is obtained from the con-
dition that the quasiparticle flow across a plane parallel
to the SS' interface should be continuous (conservation of
charge). Applying this condition in particular to the
current I(S~S') from S to S' across the SS' interface,
we have the equality for Is in S and Is in S' at the inter-
face

Iz(S S')=N(0)C f deN(s, 0)e ' vF~BN/Bs~

=I&.(S'~S') =N(0)C' f ds N'(s, 0)e ' vgBN'/Bs~ (28)
0

where the group velocity is given by v=v~~BN/Be~, and vz (v~) is the Fermi velocity in S (S ). In equilibrium
I(S~S'}is counterbalanced by the quasiparticle Sow in the reverse direction. Since N =N' at x =0 it follows immedi-
ately that N'(0)C'/N(0)C ) =vF /v~. The ratio a is thus given by

where

vz B'(T,y )

d,
'

vF B(T)

(2T/nh0)' =0.60(T/T, }'/, y~ + 1, T &&2bo(0)

= (2~0T/~)1/2(602-bg2)i/2, y„(1, T«(bo —~g)
1, y ~1, T~bo(T) or y &&1 .

(29a)

(29b}

(29c)

(29d}

For large y one has b,g «b, 0 so that (29c) goes over in
the limit of (29b). The total trapping rate [Eq. (11)] is
now obtained as

1.82 «( y~ } «(+p
Tp 7p

(30)

This equation was obtained before in Ref. 19, but without
the factor P(T, y ). The efFective trapping time is re-
duced if the area A of the superconductor S is larger than
the area A' of S'. This efFect is easily taken into account
by multiplying the right-hand side of Eq. (30) with A '/A,
assuming (a) that the fraction of time the quasiparticles

spend in the area with the reduced gap region is propor-
tional to the fraction of the area to the total area of the S
electrode, and (b) that all densities of states and distribu-
tion functions in the area with the reduced gap region are
not dependent on the coordinates in the plane of the
sandwich.

Since the time constants for the holelike quasiparticles
are also given by Eqs. (12a}and (24a), Eq. (30) is also ap-
plicable to the trapping of holes.

B. Quasiparticle excitation out of the trap
At finite temperature an electronlike quasiparticle in

the trap may absorb a phonon which has enough energy
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dN tot

dt dt
(31)

where N", &z is the number of particles in the trap, thus
0

with energy 6 (c.(hQ. The time constant for a single
trapped particle to be excited out of the trap is defined by

that it can excite the quasiparticle out of the trap. The
quasiparticle and phonon cascade, following the absorp-
tion of a particle or phonon, ends on a timescale much
shorter than the trapping and excitation time constants.
At low temperatures the recombination time constants
are much larger than the time constants considered here
so that recombination processes can be neglected. In that
case there is a steady-state quasiparticle distribution
(which is not necessarily the thermal equilibrium state
since an excess quasiparticle density may be present) dur-
ing which there is an exchange of particles between trap
and bulk. The rate of particles being excited out of the
trap is equal to the rate of particles being trapped,

'TQ

exc

—(6 —6 )IT=e

1.82L,ff(T)B(T)

In the limit of low temperatures the temperature
dependence of (rp/~, „,)s is dominated by the exponential
factor

L,*ff,(T) is shown in Fig. 8 as function of temperature,
for different values of y

The first term in square brackets in (33b) gives the exci-
tation rate out of the trap in S, which will be considered
now. From Eqs. (11a), (14), and (18) it follows that

idN, )(), /dt's =1.82N(0)L, ff(T)CB(T)lrp .

Writing out N, ) t, and substituting idN, ) t, Idt i one ob-
0 0

tains

gy tot
exc dt

(32)
T«(b, p

—b, )«2b, p(0) . (37a)

Combination of Eqs. (31) and (32) gives

dt
(33a}

dt

dt
(33b)

The quasiparticle number ratios in (33b) are defined by 5

C'N'((}) E'( T, y ) vFE'( T, y )5= 0 = ™=, ™. (34)
N(t, CN(0) E(Ty ) vF'E(Ty )

For the latter equality use has been made of (28). The ra-
tio of the (normalized) number of states of quasiparticles
in the trap in S' and in S is

I

E'(T y ) d f deN'(e, O)e
(35a)

f dx f deN(E, x)e
Q ~g

One can again make use of the relation N'(E, O) =N(e, O)

In the high-temperature limit T»(kp 6s) the ratio
E'/E reduces to

E'(T, y )/E(T, y )=d/L,*ff,(T,y ) . (35c)

E'(T, y )/E(T, y )-const, T (»6 phd) . (35b)

This limit corresponds to the situation that the traps in
S' and S are nearly filled up with quasiparticles.

The ratio E'/E is also found in the effective tunneling
length L,'ff, (T) [Eq. (43b)], which is discussed in the
next section, and which is related to this quantity as

(sir,„,)s- T, (b, p
—bs) « T & bp(0) . (37b)

Since L,ff(T) increases with increasing y, (rp/r, „,)s
also becomes larger with y

In the S' layer an equation for ~,'„„given by the term
in the second pair of square brackets in (33b), analogous
to that of ~,„,in S, is straightforwardly derived as

TQ

I
+exp S'

(t, q )ir 1.82L',ff( T )B'( T }=e b,0
d dcN c,Oe

(38)

For (rplr }s. the same dependencies on temperature in
the low and interinediate regions hold as for (rplr, „,)z

In Figs. 7(a) and 7(b), (rplr, „,)s and (rplr,'„,)z are
shown as functions of the reduced temperature, calculat-
ed from Eqs. (36} and (38}. It is seen that the tempera-
ture dependence given by (37b}holds nearly for the whole
temperature regime considered in the figures, especially
for small y . For larger y the stronger temperature
and y dependences (37a) are observed.

The total excitation rate of Eq. (33) can now be written

Here we made use of Eqs. (15) and (19) and the fact that
in the trap N(e, x) is bounded and of the order of
N(bp, 0), so that the integration over energy leaves only a
factor 1/T. From (37a) it is seen that the excitation rate
decreases exponentially with decreasing temperature,
reflecting the exponential decrease of the number of pho-
nons with decreasing T. With increasing y, hence in-
creasing kp 6g (rplr )s also decreases strongly in this
limit. In the intermediate-temperature region,
T»(t( p As ), the energy integral in the numerator gives
approximately (hp —5s )N(bp, 0),'and is thus nearly tem-
perature independent. In this limit only the factors
L0ff( T)B(T) give rise to a dependence on temperature
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other. In a junction detector this tunneling process is
used to measure the excess quasiparticle density in one of
the electrodes as an excess current. In junctions with
spatially homogeneous electrodes the tunneling time ~,„„
is fairly long, especially if thick electrodes are used, since
~,„„is proportional to the thickness. In practical energy-
resolving detectors this means that a large fraction of the
excess quasiparticle density may be lost, due to loss pro-
cesses that are faster than the tunneling time. A trapping
layer is therefore not only advantageous to collect the
quasiparticles efBciently from a bulk superconductor, but
also because the tunneling time out of the trap is much
shorter, due to the smaller thickness of the trap com-
pared to that of the bulk.

The total tunneling current is the sum of electron and
hole currents. As far as the branch imbalance relaxation
is a fast process compared to tunneling, the number of
electrons and holes in the trap are considered to be equal.
Ho~ever, the dependencies of the corresponding tunnel-
ing times on the bias voltage are qualitatively different.
Therefore one should consider separately, tunneling times
for electrons and for holes both in the trap and in the
bulk, and from electrode 1 to electrode 2 and in the re-
verse direction. Here and further on, the indices 1 and 2
refer to the SS' and S"Selectrode, respectively.

The tunneling rate of an electronlike quasiparticle in
the trap from electrode 1 to 2, rI„'„'(1~2) is defined in the
following way:

1 1
(40)

0 0001 I

0.05 0.1 0.5

FIG. 7. Temperature dependence of the excitation rate out of
the trap in an SS' temperature ( T, /T, =0.14,y& =0) with y
ranging from 0.1 to 5: (a) excitation rate (vo/~, )& out of the trap
in S; (1) excitation rate (~o/~,

'
)& out of the trap in S'.

where N,"(&
&

is the total number of electrons in the trap

in electrode 1. The rate can be related to the electron
part of the tunneling current from the trap in electrode 1

to electrode 2,

+exc

7 p 1 1—+
s I+5 ~o

&o 5 1

+exc s' +o

in terms of Eqs. (36) and (38) and 5 as

(39)

I,'('~ (1-+2)=e
dt

f deN, (e, O)Nz(e+eV, O)
eRQ ig

For the holes the same excitation rates, Eqs. (36), (38),
and (39), are found.

V. TUNNELING TIMES IN AN SS'IS"SJUNCTION

The tunneling time of a junction gives the rate with
which a quasiparticle tunnels from one electrode to the

Xf, (e)[1—f,(e+eV)] . (41)

It is noted that the factors N', (0) and Nz(0) are con-
tained in the resistance of the junction Rz. Keeping in
mind that the quasiparticles in the trap are both in the re-
duced gap regions of the S and of the S' layer, we can
write

d2I ~O

N, (0)A'f dx f dsN&(e, x)f, (e)+N', (0)A'd f deN', (e,O)f, (e)
(1~2)=e RN

(e) 2 0 b, l

f d Ns&( , e)N0z( ee+,V)f0&(e)[1—f2(s+eV)]
4)g

(42a)

(42b)
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I„,(1—+2)= —I"(1~2), 0 & V & Vs . (Sla)

In the opposite case of negative voltage, tunneling is
mainly caused by holes

Because at low temperatures I/rI„"„'(1~2) and conse-
quently I'"'(1—+2) vanishes for voltages in the range
0 & V & V, the tunneling current is then mainly due to
electrons

0.0001

0.0000
0.00 0.50 1.00 1.50

eV/6,

FIG. 9. Electron and hole tunneling currents, I,",z (1~2),
0

resp. I,'"&z (1~2), of quasiparticles in the trap of the SS' elec-
0

trode (1) of an SS'IS"S junction (T,&/T, =T2/T, =0.14,
y»=y»=0, corresponding to a Nb/Al junction) to the S"S
electrode (2) at a temperature T/T, =0.15, and with proximity
parameters y &=1 and y 2=0.1. Solid curves: exact voltage
dependence [Eq. {41)]; dashed curves: approximate voltage
dependence [Eq. {45)].

rI„"l(1—+2)( V, T)=rI3l(1~2}(—V, T) . (49)

The total current of positive charge tunneling from
electrode 1 to 2 is thus

&(gz —6, ), where V =(h2 +b, ,s)/e is the sum gap
voltage of the junction. This is due to the fact that in this
voltage range there are no states in electrode 2 to which
the quasiparticles in the trap in electrode 1 can tunnel.

At higher temperatures one should consider the full ex-
pression of the tunneling current, Eq. {41),for describing
the voltage dependence of I/rI„'„'(1~2). In Fig. 9 the
normalized electron current I &a (1~2)(eRN/bo} from

0

Eq. (41) is shown as function of voltage at T/T, =0.15
for y, =1 and y z=0. 1 and 0.5. Also is shown the ap-
proximate voltage dependence given by Nz[b, ,s(y
=1}+eV,y z=0 I) a.nd N2[h, s(y~, = 1)+eV,y
=0.5] at T« T„where N2 is normalized such that it
has the same amplitude as I';&'a (1~2) at eV=2bc. The

0

sharp features in N2 are smeared out at this relative high
temperature T/T, =0.15, which should be compared
with

~g) (y )=I)—b,2 (y 02. 1)~/T, =0.52

and

Ia,s(y, = 1)—a,s(y, =o.S)I/T, =0.23,

respectively, since the voltage-dependent factor in v „'„'

was separated from the temperature-dependent factor un-
der the condition T« ( b,2s b&s }. —

It can be shown straightforwardly that the tunneling
time for holes from the trap in electrode 1 to electrode 2
is related to the electron tunneling time by

Ito, (1~2)=I'"'(1~2), —
Vs & V &0 . (5 lb)

At finite temperatures and positive voltage there is a
finite hole current, which decreases strongly with increas-
ing voltage, as is seen in Fig. 9. At zero-bias voltage the
hole and electron currents from electrode 1 to 2 cancel,
as is reflected in the equal tunneling times at V=O.

For the tunneling time of electrons with energy e & 4o,
thus out of the bulk, one has an expression similar to that
for electrons in the trap, Eq. (42), but with the following
substitution for the limits of the integrals over energy in
(42b),

00

ds ~ de

In order to get a first-order approximation of
L,'ff, b„,„(T) in the low-temperature limit, we use for the
high-energy part of the densities of states, i.e., s&b,c,
the approximations N, (s,O)=1(y »1) and N, (s,O)
=N (a) (y «1) in the numerator (corresponding to
the density of states at the S'I interface), and
N, (a,x)=N (bo) in the denumerator of Eq. (44b) (ap-
proximate average density of states in the SS' electrode),
resulting in

Xm « l

d, )[(m/2)(bo/T)]', y »1,T «26c.
(52)

As one may expect the efFective tunneling length becomes
equal to the electrode thickness if trapping is negligible.
For deep traps, large y, L ff t b s, becomes large than'„
due to the decreasing number of states at the interface
with the barrier from which the quasiparticles can tunnel.
Thus one finds that I.',ff, b„&z is at least equal to the thick-
ness of the S layer and increases with decreasing tempera-
ture. Therefore we have the condition

L,'ff, b„u, »Leff~ t„t =(1 ' 4)g

since d, »g„ from which it follows that the tunneling
rate out of the bulk is negligible compared to that out of
the trap. The same argument holds for the tunneling rate
of holes out of the bulk.

Now we will consider the tunneling rates from elec-
trode 2 to 1 for a junction with h&g &52 . The corre-
sponding equations for the tunneling times can be derived
straightforwardly. This results in the following time con-
stants for tunneling out of the trap

N2(0)L,ff, (y 2, T)+N2(0)d2
~,"(2~1)=e R~

N, (S„—ev}
I {1 2)=I'"'—I" (50) (53a)
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r', „"„'(1~2)(V, T) =~,"„'„(2~1)(—V, T) . (53b}

I F . 10 the tunneling currents I (2—+1)(e)n ig.
-1/r,'„'„(2~1)and I'"'(2~1)-1/r, „„(2~1),as well as(&)

from electrode 2 to 1 are shown, for the cases y &

= 1 and
=0.1 and O.S. Also depicted are the approximate~m2

voltage dependencies due to the term N&. For voltages
0 & V & (b,2 b, ig ),—I"reflects the bump in the quasipar-
ticle density of states in electrode 1, given by
N, (62 —eV), which vanishes for (h2 —5, ) & V & V .
I'"' is due to the high-energy part of N, (b,i +e V) which
goes to 1 for ( b 2g +e V) ))b, ,~. For 0 & V & (b 2g

—& i~ ),

I„, becomes negative, which implies that the positive
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FIG. 10. As Fig. 9, but for tunneling from the trap in the
5"S electrode (2) to the SS' electrode (1), I,'&z {2~1),resp.
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0

charge current is flowing from 1 to 2. This can be under-
stood from the fact that in this voltage range there are
more empty electron states in electrode 1 to which the
electrons from electrode 2 can tunnel, than there are
empty hole states in electrode 1 for electrons tunneling
from electrode 2 to 1 ~

VI. DISCUSSION AND CONCLUSIONS

In Secs. IV and V we have derived expressions for the
relaxation rate, r,, ' [Eq. (30)], into, and excitation rate,

' [Eq. (39}],out of the reduced gap region in a SS'
CXC

onproximity sandwich at finite temperatures and as .uncti
of the strength of the proximity effect, given by the pa-
rameter y . Second, in Sec. V the tunneling times for
electrons and holes, rI„'„'( I —+2) [Eq. (46)] and r',„"„'(1~2)
(49), w', „'„'(2~1)(53a) and r', „"„'(2—+1) (53b) out of the re-
duced gap region adjacent to the tunnel barrier to the
counter electrode of an SS'IS"Sjunction were calculated
as function of temperature and bias voltage. These time
constants are averages over all quasiparticles above or in
the trap. The derivations have been made under some as-
sumptions, which will be discussed now in somewhat
more detail.

First, the proximity model from which the spatially
dependent order parameter and Green's functions are
calculated, applies to dirty, weak-coupling superconduc-
tors [Eq. (2}]. It is evident that in the clean limit the spa-
tial dependencies and the time constants become at least
quantitatively different. However, large differences in
temperature and voltage dependencies are not expected.
Further, it was assumed that there is no interface resis-
tance (i.e., ys =0) at the SS' interface of the proximity
sandwich. This assumption is mostly true for clean metal
interfaces, as they can be produced by standard tech-
niques for the fabrication of multilayers and junctions.
Finite boundary resistances may be produced artificially.
Then the spatial dependence of the order parameter
changes from the smooth variation for y&=O, to the
steplike dependence for large yz, corresponding to the
McMillan model of the proximity effect. In this limit one
can derive the effective trapping and tunneling time con-

Thestants straightforwardly from the Kaplan theory. e
dependence of b, (x ) on y~ is discussed extensively in Ref.

an S'19, as are the superconducting properties of an ~
sandwich.

Second, it is assumed that there is no external magnetic
field present. In the use of SS'IS"Sjunctions as detec-
tors, often a magnetic field H parallel to the junction bar-
rier is applied in order to suppress the Josephson current

d Fiske resonances (see, e.g., Refs. 33 an 4). Than i
field strengths that are used can be a substantial fracti
of H„(H, ) of type-II (I) superconductors. The field will

penetrate over a distance of the order of the penetration
depth into the S' (S") layer of the SS' (SS") electrode.
This will increase the pair-breaking strength of the prox-

1 and decrease the order parameter in the
(S")layer. Consequently the efFective proximity parame-
ter wi11 be increased and becomes a function of H. The



49 QUASIPARTICLE LIFETIMES AND TUNNELING TIMES IN A. . . 12 967

magnetic field also introduces a quasiparticle trap at the
vacuum-superconductor interfaces of the junction. These
aspects are the subject of a further study.

A third aspect is the nonequilibrium energy distribu-
tion function for the quasiparticles [Eq. (14)] we assumed
in the calculation of the effective time constants. This
Boltzmann-like distribution was obtained by Vardanyan
and Ivlev for a superconductor under continuous mi-
crowave and laser irradiation. They considered the case
that the phonons are in thermal equilibrium, i.e., perfect
thermal coupling to the bath. This means that the (ex-
cess) phonons produced by quasiparticle recombination
escape from the superconductor before they can be ab-
sorbed in a pair-breaking process. Chang and Scalapino
showed that, if phonon trapping is of importance, the
phonon system cannot be considered to be in thermal
equilibrium. For that case they solved a set of coupled
kinetic equations for the quasiparticle and phonon-
distribution function, which contain continuous energy
injection terms that depend on the excitation mechanism
of the quasiparticles and phonons. The resulting quasi-
particles distributions are fairly much different from the
Boltzmann function, especially in the case of microwave
excitation. Our results for the time constants, in princi-
ple, only apply if the nonequilibrium distribution func-
tion is Boltzmann like. This excludes the case of continu-
ous quasiparticle or phonon injection at high energies,
since that will give rise to a hot band in the distribution
function. However, if the number of (continuously) in-
jected quasiparticles is small compared to the equilibrium
number and the injection energy is low, then the none-
quilibrium distribution function is expected to be approx-
imately equal to the equilibrium function, which has a
Boltzmann-like behavior at low temperatures, as given by
Eq. (14) and the developed formalism may be applied.
Other types of nonequilibrium distribution functions
have been described in literature using an effective
quasiparticle chemical potential p' and an effective
quasiparticle temperature T' ( T' & T }, giving
f(s)=[1+exp((e—p')/T*)] '. ' Such a distribution
function was shown to be very useful to describe none-
quilibrium superconductivity in strongly disturbed sys-
tems, corresponding to large values of T'. It is easy to
show that for the case of small disturbance [i.e.,
(T' T)/T«1] th—e p' —T' model equation can be
written in the form of Eq. (14), which has the advantage
that only one parameter is needed, namely c(t ), which, in
principle, gives the "amplitude" of the nonequilibrium
distribution function.

For superconducting energy-resolving detectors one
would like the phonon system. to be decoupled from the
bath as much as possible (perfect phonon trapping), since
any loss of deposited energy through phonon loss reduces
the energy resolution. After the absorption of a high-
energetic particle or photon in the superconductor a cas-
cade of relaxing quasiparticles and phonons is created.
This cascade ends finally in some excess quasiparticle and
phonon distributions, which are relatively small devia-
tions from the equilibrium distribution functions if the
number of excess quasiparticles, respectively, phonons is
small compared to the equilibrium number. This is most-

ly the case, especially if the detector has a large volume,
needed for having a large detector area, and/or efficiency.
Second, at low temperatures the quasiparticle recombina-
tion rate v, ' is very much smaller than the phonon pair-
breaking rate ~z . This implies that most of the excess
energy is stored in the quasiparticle system and only few
excess phonons with energy larger than 260(T) exist.
About the processes that take place during the energy
cascade little is known, nor about the final quasiparticle
distribution. The Boltzmann distribution function for the
excess quasiparticles therefore seems the most probable
choice as a first-order approximation of this final distri-
bution. From these arguments we assume that Eq. (14) is
a good approximation for the nonequilibrium quasiparti-
cle distribution function, resulting from the energy relax-
ation process after the absorption of an high-energetic
particle or photon.

Nonequilibrium systems are often described with the
Rothwarf-Taylor (RT) equations. The derived time con-
stants can be used to describe the quasiparticle exchange
between the reduced gap region and the bulk in a proxim-
ity sandwich, with two sets of RT equations for the trap
and the bulk. In the case of an SS'IS"Sjunction, in prin-
ciple, two more sets of RT equations are involved for the
description of the S"Selectrode, which are coupled with
those of the SS' electrode by the tunneling times. The
tunneling case is even more complicated, since the tun-
neling times are different for electrons and holes, con-
trary to the trapping, excitation, and recombination time
constants. In the foregoing sections we have implicitly
assumed that electron and hole branches of the energy
spectrum are equally populated, so that the same distri-
bution functions can be assumed for the holes and elec-
trons. This assumption is justified if the branch-mixing
time ~& is much shorter than the average lifetimes
against trapping and excitation. In the case that the ini-
tial excess quasiparticle density consists of high-energetic
particles (e ))60) branch mixing and energy relaxation
are very fast with time constants of the order of ro or
much less: v&=~0(2T, /s 60} and ~, =so(3T, /s )

(s»bo, T «T, ).' One may thus assume that the holes
and electron branches are equally populated after the
quasiparticles have relaxed to the band gap and before
the trapping process sets in with a time constant that is
generally much larger than vo. This situation is con-
sidered to be realistic in the cases where the excess quasi-
particle density is due to the impact of a high-energetic
particle or photon, which creates first an excess density
on the high-energy part of the electron branch of the en-
ergy spectrum. Similar arguments hold for particle injec-
tion by a junction at high energies. On the other hand if
the injection is at energies close to the band gap energy,
where branch mixing becomes slow, the branches may be
imbalanced from the beginning. However, also if both
branches are equally populated after the relaxation pro-
cess, they may become imbalanced again by the tunneling
process. In a tunnel junction, inainly particles from one
branch have a large tunneling rate as can be seen from
Figs. 9 and 10. At low temperatures the branch-mixing
time for low particle energies becomes very large so that
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an imbalance between the holes and electrons in the trap
can occur if the tunneling time out of the trap is shorter
than the branch-mixing time. This may be taken into ac-
count by splitting up the quasiparticle equation in the set
of RT equations in one for electrons and one for holes,
which are coupled by the branch-mixing process.
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