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EfFects of disorder in a dilute Bose gas
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We discuss the e8ects of a weak random external potential on the properties of the dilute Bose gas at
zero temperature. The results recently obtained by Huang and Meng for the depletion of the condensate
and of the superfluid density are recovered. Results for the shift of the velocity of sound as well as for its

damping due to collisions with the external 6eld are presented. The damping of phonons is calculated
also for dense superfluids.

I. INTRODUCTION

The role of disorder in Bose systems has been the ob-
ject of several theoretical works in the last few years. '

In this context an important issue is to understand the
effects of disorder on the behavior of the dilute Bose gas
(DBG) where one expects to obtain analytic results at
least for weak disorder. This problem was recently con-
sidered by the authors of Ref. 3 who investigated the
consequences of a random external potential on the de-
pletion of the condensate and of the superfluid com-
ponent of the system. A striking result emerging from
this analysis is that disorder is more active in reducing
superfluidity than in depleting the condensate.

The main purpose of this work is to investigate the
consequences of disorder on the propagation of phonons.
In particular we study the shift of the sound velocity as
well as its damping generated by scattering with the ran-
dom external potential.

Our formalism is based on dispersive quantum hydro-
dynamics at zero temperature. This formalism not only
accounts in a natural way for the behavior of the dilute
Bose gas, but can be employed, in the hydrodynamic re-

gime, to predict important properties of dense superfluids
such as liquid He.

The paper is organized as follows. In Sec. II we devel-

op the formalism of quantum hydrodynamics in the pres-
ence of random external potentials. In Sec. III we recov-
er, in the limit of weak disorder, the results of Ref. 3 for
the depletion of the condensate and of the superfluid den-
sity. In Sec. IV we explore the consequences of disorder
on the dynamic structure factor. In particular we calcu-
late the change in the velocity of sound and the damping
of phonons induced by disorder. The expression for the
damping is also extended to the case of strongly interact-
ing superfIuids.

E= ' f d3r u2(r )+ f—d r f d r'y '( ~r r'—) p'(r) p'(r')
2 ' 2

+— rp'ru r (l)
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Ho= —'yk'ling, l'+ —gX '(k)IpI, I'
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1
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The quantity y '(k) is the Fourier transform of y '(r)
Terms of third and higher order in p' have not been in-
cluded in Eqs. (I) and (3), since in the DBG limit they do
not contribute to the leading order. Applicability of Eq.
(I) is limited to the region of low temperatures where the
whole system is superfluid.

The quadratic functional of Eq. (2) gives the expression
for the energy in the framework of the "harmonic disper-
sive hydrodynamics, " where the compressibility of the
system, given by y(k), is momentum dependent. In the
long-wavelength limit the hydrodynamic Hamiltonian (2)
coincides with the usual phonon Hamiltonian with the
velocity of sound given by c = [po/g(0) ]'~ .

Let us neglect for the moment the anharmonic term
H& and consider only the harmonic Hamiltonian Ho. By
quantizing the fields y and p' we can cast the Hamiltoni-
an into the diagonal form

The superfluid behavior of the system fixes the irrota-
tional law for the velocity field: v, =Vy. In terms of the
Fourier components of the density and of the velocity po-
tential, the energy functional can be written as the sum of
a quadratic and a cubic term in the fluctuations yk and

pk. E=HO+H&, where

II. FORMALISM OF QUANTUM HYDRODYNAMICS
80 —g&kc kck

k

(4)

Let us consider a uniform superfluid system at T =0.
Our approach to the problem starts from a macroscopic
description: %e write the energy functional of the system
in terms of the superfluid velocity v, and the variation of
the density with respect to the equilibrium value
p'=p —po. %e find

where c & (c&) are the creation (annihilation) operators
relative to an elexnentary excitation carrying impulse k
and we have ignored the constant term due to the zero
point motion. Equation (4) shows that the system can be
described as a gas of noninteracting elementary excita-
tions with energies
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co1, =Qpok /y(k) . (5) fact by applying linear-response theory [Eq. (11}]to the
external field (9) one finds the general result

The quasiparticle operators c k, ck are related to the
operators pk and p & through the following expressions:

1/2k

2ppk
fink qk {q'k) (ci, +c i, ),

(6)
k2 1/2

po
~Pl Pk {Pk)

2Nk
(Cl, —C 1,),

where we have introduced the fiuctuation operators 5$|,
and 5pj, which, in the absence of disorder, coincide with
the operators y& and p k.

In the dilute Bose gas limit the frequencies cok are
given by the most famous Bogoliubov spectrum

cog = (k +4Pouo }'k

and the compressibility y(k) takes the form

4ppm
y(k) =

k +4ppUp

In terms of the scattering length a, the interparticle po-
tential uo is written as Uo =4m.a /m.

Let us now add a perturbative field in the form of a
random external potential U(r) coupled to the density
through the interaction Hamiltonian

holding also for strongly interacting systems. Equation
(13) reduces to the first term in the right-hand side of Eq.
(12) in the Bogoliubov limit where Eq. (5}holds. It is im-
portant to notice that if one makes the white-noise as-
sumption (10), the correction to the ground-state energy
(13) contains an ultraviolet divergence, since y(k)
behaves as k for large k. A more physical choice for
(1/V) {l Ul, l ) would not yield such a divergence.

From result (12) it turns out that, without including in-
teraction terms among the quasiparticles, described by
the anharmonic term H„ the energies of the elementary
excitations are not affected by the random external field;
in particular the velocity of sound is still given by the Bo-
goliubov value c =(povo)'~ /m. In Sec. IV we will calcu-
late the first correction to the velocity of sound as well as
its damping due to the random external potential.

HI. SUPERFLUID DENSITY
AND DEPLETION OF THE CONDENSATE

The current density associated with the one-Quid Ham-
iltonian (1) is given by

QUi, p' i, .
1

V k
(9)

j(r)= =pov, (r)+p (r)v, (r),
S

(14}

—( IU„I') =
m2

(10)

and where the average is assumed to be of Gaussian type.
In Eq. (10) m is the mass of the particles and the dimen-
sion of Ro is consequently (energy) X (length) .

In the presence of weak disorder the expectation value
of the density operator on the ground state can be evalu-
ated by means of linear-response theory:

whereas the expectation value of the velocity potential
operator is not affected by the external static field:

(pi, ) =0. By writing both the Hamiltonians Po and P'in

terms of operators ck, c k we get the result

k
(lUi l ) z +Qcogcici

k ~k k
(12)

In Eq. (9) Ul, is the Fourier transform of the external po-
tential. In order to investigate in a simple way how the
random potential affects the behavior of the system, we
will often make the white-noise assumption in which the
external potential is described by a single parameter Rp.

where we have separated the first- and second-order
terms. By taking the Fourier transform of the current
operator we obtain

]
Jq

= l qpog q+ pl k php q t
V k

(15)

The first term is longitudinal, whereas the second one
contains both a longitudinal as well as a transverse com-
ponent. By inserting in Eq. (15) the expressions for the
velocity potential and density (6) in terms of the quasipar-
ticle operators c &,c&, one can distinguish in a natural
way between different contributions to the current opera-
tor. The first term in (15) is coupled to single elementary
excitations: %e call this term the one-phonon contribu-
tion to the current. The second term can be either the
product of one quasiparticle operator and of the external
field (hereafter referred to as disorder contribution) or the
product of two quasiparticle operators (two-phonon con-
tribution).

Let us choose q in the z direction: q=(0, 0,q} and let
us consider the transverse component of the current
operator j q. In terms of the elementary excitation opera-
tors it is written as

j x j x(1)+j x(2)

for the harmonic Hamiltonian 8=So+ f . The first
term in (12) gives the correction to the ground-state ener-
gy due to the external field. This quantity can be calcu-
lated also beyond the dilute Bose gas approximation. In

1 . pokgik„——
Vk 2

+ ~ x(2)
q 7

U, , lq
—kl'

cii ik

(16)
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where the operator j "' ' arises from two-phonon effects
and does not depend upon the external field.

There is an important point to stress here. The trans-
verse current operator [arising from the second term in
the right-hand side of Eq. (15)] is fixed by the anharmonic
term in the Hamiltonian. This implies that, for a calcula-
tion of the corresponding matrix elements to the lowest
order, we can safely use the eigenstates and eigenvalues of
the harmonic Hamiltonian 80. The situation is different
in the longitudinal channel, since the longitudinal com-
ponent of the current operator (15) contains a term, the
one-phonon contribution, which is zeroth order in the
anharmonic perturbation. In the next section we will see
that the anharmonic term 8', has to be explicitly includ-
ed in the Hamiltonian in order to study the longitudinal
channel in the proper way.

The normal component of the fluid is obtained by con-
sidering the static transverse current-current response
which, at T =0, can be written as

I&0lj, ln &I I&0lj —qln &I
x'(q) =g ' +

CO~ n
(17)

The normal density is then obtained from the long-
wavelength limit of Eq. (17) (Ref. 9):

p„=limy (q),
q~o

while the superfluid density is defined as p, =po —p„. In
Eq. (17) IO& is the ground state and the sum is performed
over a complete set of excited states with energies co„. If
we now insert the expression (16) for the current operator
into Eq. (17) we can distinguish the contribution to the
response function arising from two-phonon effects from
the one fixed by disorder. The former can be shown to
vanish in the long-wavelength limit as q . The latter is
easily obtained by a direct calculation of the matrix ele-
ments using the diagonal Hamiltonian (4}. The final re-
sult for the normal density is given by

In the DBG limit the integral in (19) can be calculated
analytically by inserting the Bogoliubov value (7) for the
energies cok and using the white-noise approximation for
( I /V) & I Uz I &. One gets

m' n
pn

=
3y2 Ro

07T
J

1/2

(20)

m 2RO ((1 .
na

In two-dimensions one finds

(21)

m 1p„= Ro —.
8m

(22)

Both Eqs. (20) and (22) are in agreement with the results
of Refs. 3 and 12.

We now calculate the depletion of the condensate due
to the random potential. To this purpose let us write the
macroscopic component of the particle field operator
qi(r), in terms of density and phase fluctuations. The
macroscopic component of the particle operator is for-
mally given by

r)=Qg ei4(r) (23)

where 80 is the operator of the number of particles in the
condensate and 4(r) is the phase operator related to the
velocity potential by the usual relation y(r)=4(r)/m.
In the DBG limit, where no n=po-—/rn, the following ex-
pansion is valid up to first order in the density and phase
fluctuations

tM(r)=&n 1+ p (r)+i@(r)
2nm

(24)

where n is the particle density. The applicability of result
(20) is subject to the condition of weak disorder p„((po
or, equivalently,

k 1p„=p,—yk„', —
& IU„I'& .

V~ "~k V
(19)

5& =a —&a &=i&n 54 + 5p
2 npl

(25)

By taking the Fourier transform of Eq. (24) one finds

The fact that the random external potential gives rise
to a normal component in the fluid' can be also regarded
as the consequence of the fact that translational invari-
ance is broken by the external field and therefore the
current is not conserved. "

Result (19) needs some comments. First of all Eq. (19)
shows that the normal component induced by the ran-
dom external potential is not fixed just by the long-
wavelength properties of the system. In order to assure
the convergence of the integral in (19), the behavior of
the elementary excitation spectrum at high momenta is
important. A second point concerns the validity of the
one-fiuid Hamiltonian (1} when a normal component is
present in the fiuid. Result (19) can be interpreted as the
first term of the perturbative expansion of the normal
density in the external field U. It is finally worth noticing
that in the case of an ideal Bose gas (cok =k /2m) the in-

tegral in Eq. (19) diverges at small k's revealing the insta-
bility of the ideal Bose gas in the presence of disorder.

——+ l&p' &I'.
2 4mpo

(26)

The first term in the right-hand side of Eq. (26)
represents the contribution to the momentum distribu-
tion given by the phase fluctuations. In the long-
wavelength limit this term gives the main contribution
and is responsible for the well known 1/q divergence of
n (q). ' In the region of higher momenta also the density
fluctuations & 5p q5pz & become important. The constant
term —

—,
' arises from the commutation relation between

with &8~&=v'n 5 o+I/(2v nm)&p' & (we have used
& 4~ & =0). The momentum distribution is thus given by

n(q)=&5dt5d, &+I&d, &I'

'&5e,5i, &+ &5P,5p, &

m 4mpo



49 E&FECTlS OF DISORDER IN A DILUTE BOSE GAS 12 941

density and phase operators. It is worth noticing that the
random potential explicitly affects the result for the
momentum distribution because the expectation value of
the particle operator 8 on the ground state is no longer
zero for q+0:

n(q)= 1 q +nvo to—+——(~U ~ ), (28)
n1, q4

2' 2m q 4 V q ~4
q q

where the first term coincides with the prediction of the
Bogoliubov model. The depletion is obtained by integrat-
ing result (28) and we find the usual Bogoliubov value
with a correction proportional to p„:

hn =n no=——g n(q)=, (na) ~ + p„. (29)
1 8 3g2 3

V q+p 377 4m

Result (29) is in agreement with the findings of Ref. 3. In
particular it shows that the relative depletion of the con-
densate due to disorder is a factor —,

' smaller than the cor-
responding reduction of the superfluid density. This re-
sult holds for any choice of the average ( I/V)(

~ Uz ~ )
since the same integral over momenta is involved in the
calculation of both p„and b, n [see Eqs. (19} and (28)].
We stress, however, that Eq. (29) holds only in the pres-
ence of weak disorder. It cannot be easily extrapolated to
large external fields.

IV. VELOCII'Y AND DAMPING OF SOUND

In the present section we discuss the effect of disorder
on the dispersion of the phonon mode at T =0. To this
purpose we first calculate the compressibility of the sys-
tern y(0) defined by the relation

(0)= B E
2

(30)

where E is the ground-state energy of the system. The
contribution to E due to disorder is given by Eq. (13) or
equivalently, in the Bogoliubov limit, by the first term in
the right-hand side of Eq. (12). After taking the second
derivative with respect to the density we find the result

ky-'(o)=y,-'(o) 1+g—(
~
U„~'&

4a)k
(31)

(p'&= — —U y(q) . (27)
2 nm 2 nm V

By using the Bogoliubov results for the density and
phase fiuctuations (corrections to these quantities due to
disorder give rise to higher-order effects), we finally ob-
tain the result

to the total energy as well as to the first derivative BE/Bp
(proportional to the chemical potential), the contribution
of disorder to the compressibility is well defined also
within the white-noise assumption. This is due to the fact
that the quantity B2y(k)/Bp, differently from y and
By(k)/Bp decreases as k when k~ ~ and the corre-
sponding integral is well behaved for large k.

We are now ready to calculate the velocity of sound.
Using the relation

C2 ps

y(0)
(33)

typical of superfluids and Eqs. (20) and (32) for p„and
y(0), we obtain the result

C =Cp 1+ 5 pn

4Po
(34)

psqS h,„,„(q,co)= 5(t0 —cq) .
2c

(36)

The normalization factor p, q/2c ensures that the phonon
exhausts the compressibility sum rule

y(0)=21im Of
—S(q, t0)dto

1
(37)

consistently with relation (33) for the sound velocity.
In the second part of the section we calculate the

damping of phonons due to collisions with the external
potential. To this purpose we calculate directly the prop-
agator defined by the time-ordered product

D „(q,t ) = r( T(p ' (t)—p
' (0) ) )

= —r'( [e(t)p s(t)p
'

q(0)

+8( —t)p ',(0)p ~(t) ]), (38)

in terms of which the dynamic structure function is writ-
ten as S(q,co}=—(1/n )ImDrr(q, co).

As anticipated in Sec. II, in order to calculate to the
proper order the effects of the external random potential
in the longitudinal channel it is essential to include the
anharmonic term (3) in the Hamiltonian of the system.

We calculate the imaginary part of the propagator
D r r (q, co) perturbatively in the interaction Hamiltonian

holding within the white-noise assumption. Equation
(34}shows that the velocity of sound increases with disor-
der and that consequently the phonon peak in the dynam-
ic structure function

S(q, to) =f dt e'"'( [5p ~(t), 5pq(0)] ) (35)

is shifted to the right according to the law

where yo(0) is the compressibility of the DBG. By mak-
ing the white-noise assumption (10) it is possible to relate
result (31) to the normal density p„given by Eq. (19). We
find

1
8;n, =8,+ f'= g k.k'4 kP I —r 1—r

~

+ —XU~P'-r,
V r,

(39)

y-'(O) =y,-'(O) 1+—"
4 po

(32)

It is worth noticing that, differently from the correction

up to terms of second order in the random potential P;
The calculation is straightforward and the details are
given in the Appendix. The relevant contribution to the
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turn hydrodynamics is expected to provide the proper
description in the hydrodynamic regime. To this purpose
we have to add to the anharmonic term (3) a contribution
cubic in the density fluctuations yielding, for 8„ the
more general expression'

1—gk k'0'kP k —kq
2 Vkk.

21
Xp kP k' kP——k' ' (44)

By accounting for the diagrams relevant for the calcula-
tion of the damping we get the relevant result (see the
Appendix for details)

FIG. 1. The relevant diagram of the fourth order in 8;„, [Eq.
(39)]. The full line represents D &&, the dashed line D22, and the
long-dashed line D».

imaginary part of the propagator arises from the diagram
of Fig. 1. By adding this contribution to the phonon
peak (36) we find, for small q, the result

S(q, co) = 5(co—cq )+p, q

2c (A@2—c2q~)2 2V

(40)

where the second term holds for co not too close to cq:
~ro

—cq &cq. In the hydrodynamic limit (q~O, co~0)
result (40) becomes

S(q, co)= 5(co —cq )
p, q

2c

qm Po 1

(ro —cq ) 12m c

(41)

Equation (41) corresponds, in the limit of weak disorder
[see Eq. (21)], to the first two terms of the series of the
most divergent diagrams characterizing the behavior of
the propagator D

& &, near the pole. The sum of this series
yields the following result for S(q, ro) near the pole:

2
Psq 2cql (q} (42}

(co —cq )+4cq I (q)

with the width I'(q) given by

(43)

Equations (42) and (43) explicitly show that the phonon
peak is broadened by the presence of disorder.

It is not difflcult to extend results (42} and (43) to the
case of a strongly interacting Bose superfluid where quan-

24~c' V ' c' dp p

In superfluid He the second term in Eq. (45) turns out to
be of the same order as the first one. Vice-versa in the
DBG the derivative with respect to the density of c /p is
of higher order in the scattering length and its contribu-
tion can be consequently neglected. Notice that the
damping mechanism discussed above is dominant at
small q compared to the damping I ph ph due to anhar-
monic interactions among phonons, which exhibits a q
law (see Ref. 13). In the dilute Bose gas and using the
white-noise approximation we find the result

I'(q} 20 Pn 1

(q) 3 po qu
(46)

S(q)= f dcoS(q, co)
0

k k'q+ 2 ' fdk (~U ~2)
2c 2 (2m)

(47)

By making the white-noise approximation for
(1/V)(

~ Uk ~ ), one can relate the second term to the nor-
mal density (19):

Psq 2 mS(q)= +q p„
12m na

(48)

Equation (48) shows that the static structure factor, at
low q, is exhausted by the phonon peak. One immediate-
ly shows that the phonon peak exhausts also the inverse
energy weighted sum-rule fixed by the compressibility of
the system [Eq. (37)].

For the energy weighted sum rule we find the result

2 2 2

m, =f des AS(q, co) =p, +p„=po, (49}
0

Starting from result (40) we can finally calculate the
low-q behavior of various energy moments of the dynam-
ic structure factor. These moments can be written as the
sum of the phonon contribution [first term in Eq. (40)]
and of the collisional term [second term of Eq. (40}]. The
latter contribution is always proportional to q . For ex-
ample, by integrating Eq. (40) with respect to r0, one finds
the following result for the low-q expansion of the nonen-
ergy weighted sum rule (static structure factor):
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which coincides, as expected, with the model independent
f-sum rule, proportional to the total density of the sys-
tem. In this case the contribution of the collisional term
is crucial in order to satisfy the sum rule also at low q.
This contribution can be always expressed in terms of the
normal density, independently of the white-noise assump-
tion. It is interesting to remark that a similar behavior is
exhibited by transverse spin excitations (magnons) in anti-
ferromagnets. ' Also in this case the magnon exhausts
only a fraction of the energy weighted sum rule, the
remaining part being, in this case, exhausted by mul-

timagnon excitations. The one-magnon contribution to
the energy weighted sum rule is proportional to the spin
stiffness coefBcient which plays the role of the superfluid
density. This analogy between disordered bosons and an-
tiferromagnets is due to the fact that in both cases the
current is not conserved due to the lack of translational
invariance.

The fact that the phonon peak does not exhaust the f-
sum rule implies that the Feynman approximation

poq
2""'=2S(,)

(50)

for the energy of elementary excitations does not coincide
with the phonon dispersion at low q. Actually using re-
sult (47) for S(q) one finds co+(q)~cqpo/p„a value
higher than cq. It is also worth noticing that the Feyn-
man ratio (50) is affected by the q correction in S(q).
Such a correction is absent in translationally invariant
systems.
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APPENDIX

In this appendix we evaluate the imaginary part of the
density-density propagator D» (q, co) in the long-
wavelength limit, to first order in Ro. We use time-
dependent perturbation theory with the perturbative field
given in Eq. (39).

We need the free field propagators:

iD„(q,co)= f dt e' '(T(p'(t)p' (0))}0

that the expectation value is taken on the ground state
relative to the unperturbed Hamiltonian Ho.

The density-density propagator is obtained from the
general formula of perturbation theory

iD»(q, t)= (T(p,'(t)p' q(0)S)},1
(A4)

where the time evolution operator f is defined by the
series expansion

(
—&)"

n=o n

X f dt, . f dt„T[8,„,(t, ) P,„,(t„)] .

(A5)

D»(q, co) =D ii(q, co)

2

+ (D»(q, t0))
poq

X—g—( i U„ i }k,D (k, co)
k

It is better to use diagrams to represent the different
terms arising from Eq. (A4) after using Wick's theorem
for time-ordered products. The anharmonic potential 8,
is represented by a vertex with three lines, whereas to the
external random potential corresponds a vertex with just
one line.

At finite frequencies the leading correction to the imag-
inary part of D„(q,co) comes from terms which are
fourth order in the interaction Hamiltonian 8;„.These
terms correspond to diagrams containing two vertices rel-
ative to the anharmonic potential and two random poten-
tial vertices.

It turns out that only one diagram is relevant and this
is given in Fig. 1, where we have represented D

&& by a full
line, D» by a dashed line, and D» by a long-dashed line.
In fact the external random field is time independent.
This means that only the density-density propagator,
which has a zero-frequency component, can be connected
to the random potential vertices. The contribution aris-
ing from the diagram in Fig. 1 to the density-density
propagator is given by

pÃ=l
N Mq+l0

D'„(q, )=f "dt '"&&(q,(t)g,(0))},
N

l. q

poq co co& +l0

iD,2(q, co)= f dt e'"'(T(pq(t)p q(0)) }0

(A 1)

{A2)

X [D „(~k+q~, O)] (A6)

(D ii (q, ~))'= PR
(QP CO& )

(A7)

The square of the free propagator D &i in Eq. (A6) can be
approximated, for co not too close to the pole
( ~

t0 —
coq ~

)co& ), with the expression

CO CO& + l 0
(A3)

where the subscript after the brackets ( ~ }0 means

Result (40) for the dynamic structure factor follows
directly from Eq. (A6) by using the relation
S{q,co)= —(1/m)lmD»(q, co) and after taking the q~O
limit.
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The imaginary part of the density-density self-energy
can be directly evaluated from Eq. (A6). In the long-
wavelength limit one gets

1 1 k—ImX„(q, ro)= — —g —( ~Uk~ )k, 5(ro —cok) .
2 poq V~ V

(AS)

Result (43) for the damping in the phonon region follows
from Eq. (AS) by using the relation

C'Oe1(q)= [ —ImXtt(q, ro=cq)] . (A9)

In the case of strongly correlated systems the damping
of the phonon mode can be obtained in the long-
wavelength limit by using the anharmonic term (44). In
this case another diagram is relevant to the calculation of
the damping and it is given in Fig. 2. The imaginary part
of the self-energy is given by

FIG. 2. The other relevant diagram of the fourth order in

8~„,=8,+ f with 8, given by Eq. (44). The full line represents

'2
1 1 1 cok 4 d c k—ImX„(q, co)= — —g—(~U„~ ) k, +p 5(co —

cok )
2po V& V '~kq dp p

(A 10)

and result (45) follows directly from relation (A9).
The present diagrammatic technique could be used for the calculation of higher-order corrections in the parameter

Ro. To perform the corresponding averaging one must assume Gaussian statistics for the random external field.
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