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Nonlinear excitations in a Hamiltonian spin-field model in 2 + 1 dimensions
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A spin-field model in two space and one time dimensions is proposed and investigated using a
bilinearization technique. This model, which can be considered as a modified version of the Ishimori
system, allows a Hamiltonian formulation, a symmetry algebra of the Kac-Moody type with a loop-
algebra structure, and the conformal invariance property. Many nonlinear excitations are found,
which turn out to be of the helical and roton type, meronlike configurations endowed with a fractional
topological charge, radially symmetric solutions, and domain walls. Our results are compared with
those of the study of the O(3) nonlinear o model and the Ishimori system. Finally, the physical role
of both our model and the Ishimori system is discussed in the light of certain reduced equations
which find applications in the theory of vortex filaments in liquid He and in dealing with the two
spin-correlation functions of the two-dimensional Ising model in the scaling limit.

I. INTRODUCTION

An important feature of certain nonlinear 6eld equa-
tions is the possibility of finding exact con6gurations
(instantons, vortex soliton, merous, domain walls, pe-
riodic excitations) which are of interest both in particle
and condensed matter physics. i'2 The topics described by
this kind of model run Rom, say, the problem of quark
con6nement to the theory of superconductivity. In this
context, a basic role is played by the O(3) nonlinear o
model in 2 + 1 dimensions, which presents many analo-
gies with a four-dimensional nonAbelian gauge theory. s'4

A nonrelativistic dynamical version of this model is the
Ishimori system, 5 which has been investigated in recent
years by several authors within different frameworks.
The Ishimori model is the 6rst example of the integrable
spin-one models on the plane. It affords exact solu-
tions classified by an integer topological charge (localized
solitons, 7 vortexlike, 5 closed stringlike, and doubly peri-
odic solutionss). However, to the best of our knowledge,
so far a Hamiltonian (or a Lagrangian) formulation has
not been found for this system.

In this paper we study a modi6ed version of the orig-
inal Ishimori model endowed with a Hamiltonian struc-
ture. The model contains two parameters, n and z
(see Sec. II), which correspond, respectively, to the Eu-
clidean (a2 = 1) and the pseudo-Euclidean (o.2 = —1)
metric, and to the compact (z = 1) and the noncom-
pact (ic = —1) symmetry.

Similarly to what happens for a few integrable nonlin-
ear field equations in 2 + 1 dimensions, our model
admits an infinite dimensional symmetry algebra of the
Kac-Moody type with a loop-algebra structure. Fur-
thermore, we show that it has the conformal invariance
property.

Exploiting a bilinearization technique developed by
Hirota, we get exact nonlinear configurations of physi-
cal significance, such as helicons, rotonlike excitations,
solutions provided by a fractional topological charge
(meronlike configurations), radially symmetric solutions

II. THE MODEL

First, let us consider the spin-field model

Si ——[1/(2i)][S,S + a S„„]+ P S„P —S P„
+(p +1)SQ „, (2.1a)

(2.1b)

where a2 = +1, P2 = jl, subscripts stand for partial
derivatives, S = S(z, y, t) is a 2 x 2 matrix defined by

~f S. ~S+~~
(KS+ —Ss )

(2.2)

S+ ——S~ + iS2, the asterisk xneans complex conjugation,
Q = z(Tr(i/2)S[S„, S„])is a conserved topological charge
density, and P = P(x, y, t) is a real scalar field. The quan-
tities S~ (x, y, t) (j = 1, 2, 3) are real-valued components
of a classical unit "spin" vector S(x,y, t) belonging to the
two-dimensional sphere S2 (e2 = 1), or to the pseudo-

expressed in terms of the Jacobi elliptic functions, and
domain walls. In the Euclidean case (a2 = 1), our proce-
dure allows us to determine the velocity of the excitations
obtained. The possibility that our model could describe
some phenomenological situation is explored. With this
regard, it is noteworthy that for o. 1) K 1) our
spin system can be related to a reduced equation of the
sinh-Gordon type, which describes negative-temperature
configurations and is applied in the theory of vortex fila-
ments in 4He.

Section II contains the description of the model and its
Hamiltonian formulation. In Sec. III we cast the equa-
tions of the model in the Hirota form and show that these,
together with the related Hamiltonian, enjoy the confor-
mal invariance property. In Sec. IV we derive classes of
exact nonlinear excitations, while in Sec. V some con-
cluding remarks are made.
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sphere S ' (tc = —1), i.e. , where

S,' + ~'(S,' + S,') = 1.

Equations (2.1) allow the Lax formulation

L1 ——aOy + SB,

(2.3)

(2.4a)

~* = 2n (qpw ~w)

4„=—2(qp. —r.),

q and p are a pair of canonical variables defined by

(2.9)

L2 ——Bq+2iSB +i(S +nSwS)B
+(n'P'SP. + Pw)B, (2.4b)

q = —arctan(S2/Sq), p = Ss, (2.10)

where [Lq, L2] = 0. At this point we observe that condi-
tion (2.3) implies

and I' = I'(x, y, t) is a differentiable function determined
by the compatibility condition P „=Pw, which yields

(P'+ 1)P.„=0, (2.5)
I'„+n'I'„„= B (qp ) + n'B„(qp„) (2.11)

~(* y t) = 4 (* t) + 42(y, t) (2.6)

We have that in case (i), Eqs. (2.1) become those de-

scribing the Ishimori model. s On the contrary, in case (ii)
Eqs. (2.1) take the form

from which (i) P2 = —1, where P „may be difFerent Rom
zero, or (ii) P = 1, which entails P „=0; in other words,
the auxiliary field can be written as

The quantities (2.9) satisfy Eq. (2.7b).
Then, Eqs. (2.7) can be written as

q, = —bH/bp,

p~
——b'H/bq.

We remark that for n2 = 1, Eq. (2.11) reads

(2.12)

S~ = [1/(»)][S S-+ n'Sww] + Sw &* —S-&w (2.7a)
V' v=0,

where

(2.13)

+ n Pww
——2n Q. (2.7b)

What can we say about the integrability of model (2.7)
under the assumption P w j 0'? At present we can-
not answer this question exhaustively. Notwithstand-
ing, by carrying out a group analysis of Eqs. (2.7),
it turns out that this system has the same symmetry
algebra (ignoring any possible annihilation of P „) of
that possessed by the Ishimori model. Such an alge-
bra, which is infinite dimensional, is of the Kac-Moody
type with a loop-algebra structure. The existence of
symmetry algebras with this characteristic is a property
shared with other integrable nonlinear field equations in
2 + 1 dimensions, such as, for instance, the Kadomtsev-
Petviashvili equation, the Davey-Stewartson equation,
and the three-wave resonant system. Hence, the sym-
metry property exhibited by model (2.7) (with P „=0
or P w g 0) offers two possible alternative interpreta-
tions: (a) the system (2.7) is integrable, and in this case
its Lax pair has in general (for P w g 0) still to be found,
or (b) model (2.7) (for P w g 0) represents a remarkable
example of a (2 + 1)-dimensional nonintegrable system
endowed with a Kac-Moody symmetry algebra with a
loop-algebra structure. At present, this question remains
unanswered.

In the following, we shall study model (2.7) for any
value of P „. This model is a constrained Hamiltonian
system described by the Hamiltonian density

v= Vr-~Vp. (2.14)

Consequently, our model (for n2 = 1) can be regarded
as an incompressible "spin Quid, " in which the velocity
is given by (2.14). This result is not surprising, because

q and p are really a pair of Clebsch variables usually
employed in hydrodynamical problems.

III. THE HIROTA REPRESENTATION

In what follows, it is convenient to adopt the stereo-
graphic projection representation, that is

S+ = 2(/(1+K'I(I') Ss = (1-&'I(I')/(1+K'I&I')

(3.1)

'(+(..+ '(„-2 '(('(.'+ '('0„')/(1+ 'I&I')

—i(( 4* —(*4 ) =o (3.2a)

+ n Pww
——4in ~ ((w(* —(„'( )/(1+ ~ I(I ) .

(3.2b)

- where ( = ((x, y, t) is an arbitrary differentiable complex
function. Inserting (3.1) into (2.7), we obtain

H = (1/2) ) (S2 +n S,„)
j=1

+(1/4)( '4'. + 4„'), (2.8)

In order to get exact field configurations for model

(2.7), we shall cast Eqs. (3.2) into the Hirota form. This
can be done by putting g = g/f, where f = f (x, y, t) and

g = g(x, y, t) are two complex functions. Then, by using

the operators defined by
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D'D"Dpu(z, y, t) . w(x, y, t) = (8 —8 )'(8„—8„)"(8&—8g ) u(*, y, t)~(~', y', t)l =,„=„,c=t;,

Eqs. (3.2) become

(If I' — 'Igl')( ~
— .' — ' s)(f'. g) —f*g( a

— .' — y)(f'. f — g'. g) = (3.4a)

+ o,2$„„=[(4in2~2)/b2][D„(g . f)D (g' . f') —D„(g'. f')D (g . f)],

with 3, =
I f I + ~ lgl . A special solution to Eq. (3.4b) is

(3.4b)

= —(2in /b, )Ds(f' f + tc g' g),

P„= (2i/b, )D (f' f+rc g' g). (3 5)

At this stage, let us assume that f = f(z, z', t) and g = g(z, z', t), where z = z+iy. Then, introducing the
operators 8, = (1/2)(8 —i8„), 8,. = (1/2)(8 + i8„), the compatibility condition P „=P„coming from (3.5)
implies the constraint

2(o. + 1)((ff;,. + ~ gg,',. —c c )6 .—.[(ff; + ~ gg,')(ff;. + ~ gg,'.) —c.c.])

—(a —1)([f(f;,+ f;...) + K g(g,', + g,'...) —c.c.]6+ [(f'f,.+ z g'g, .) + (f'f, + e g'g, ) —c.c.]) = 0. (3.6)

On the other hand, Eq. (3.4a) provides

(Ifl' —~'lgl')(i(f~'g —f'g~) —2(1+~')(gf:.. + f'g- —f:g.. —f:*g.) —(1 —~')

x [g(f:.+ f: ..) + f'(g-+ g"")—2f:g. —2f: g"]) —f*g(i[ff&' —f'f~ —~'(gg& —g'g~)]

-2(1+~') [ff:..+ f'f... f'.f" —f:.f. —~'(gg.'—. + g'g- g'.g"—- g.'.g.)]
—(1 —~')[f(f:.+ f:*.) —2f'.f. —2f: f" + f'(f.*+f"")
—~'(gg.'. + gg.'.. —2g.'g. —2g.'.g' + g'g- + g'g" )]) = o. (3 7)

Now, in order to establish the conformal invariance
property of the model (2.7), it is convenient to consider
Eq. (3.2b). This is satisfied by

= —4io. ~'[(t,'„'/(1+ ~'I(l') + A„],

P„=4i~'[((:/(1+ ~'I(l') + A.], (3.8)

where A = A(x, y, t) is a differentiable function which
is connected with I'(x, y, t) given by (2.11) through the
relations

( Apf'
A = (1/2) ~'»

I f ( 'ICI')
(s.10)

This can be easily seen by putting ( = [e (1 —p)/(1+
p)] ~ exp( —iq) into Eqs. (3.8) and taking account of
(2.9). An explicit expression for A can be obtained by
comparing the quantities (3.8) with (3.5). We get

K= —(/(+ )+ [
—( — ) -I l)

2
K

p/(1+ p) + [qp„- (1 —p)q„- r„])JJ

(3.9)
Ao being an arbitrary function of time.

In complex form, the Hamiltonian density (2.8) reads

II = (1 —~') (2~'(I+ ~'I(I') '(C.&: + 4"&:.) —4[(&&:)/(I+ ~'I(I') + A ]' —4[(&C:*)/(1+~'I&l') + A-.]'}
+(1+~')(2~'(1+ ~'I(I') '(C.(:.+ 6"6:)—8[(&&:)/(1+&'lt'I') + A.][(&4.)/(1+ &'l(l') + A.~ ]). (3»)

A direct calculation shows that (3.11) is invariant under
the conformal transformation

a('+ b
(3.12a)

an(i

A = A'+ ~ ln(a —~ b("), (3.12b)

where a, b are arbitrary complex constants such that
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0~~- p = exp(2p), (3.13)

~a~ + K ~b~
= 1. Equations (3.12) refiect the SU(2)

(r2 = 1) and the SU(1,1) (r2 = —1) syxnmetry, respec-
tively. Furthermore, we can see straightforwardly that
(3.10) is related to the Liouville equation

is obtained by putting fp ———gp
——Ap, F = i(z + z' +

cpt + 0p), G = i[(1 + Ap) (z + z*) + ppt + 8p] into (4.1),
where cp ——2Ao —8, pp ———2(Ap + 2)(3Ap + 2), and
Ao, 00, bo are real constants. The associated spin-Geld
configuration is

where p = 2(K2A + i0 + pp), with 0 = arg f and Ap
—exp( —2pp). This notable property reveals the confor-
mal invariant nature of the xnodel (2.7). r

Si = —cos[2Apx + (7p —cp)t + Pp],

S2 ———sin[2Aoz+ (po —co)t+Po] Ss = 0 (46)

IV. NONLINEAR EXCITATIONS

Explicit field configurations of model (2.7) can be ob-
tained exploiting Eqs. (3.6) and (3.7). To be definite,
here we limit ourselves to consider the case n = 1,
K2 = 1. We shall deal with only a few examples of special
nonlinear excitations of physical significance. An easy
way to scrutinize Eqs. (3.6) and (3.7) is to look for static
field configurations of the form

f = fpexpF(z, z*, t), g = gpexpG(z, z*, t), (4.1)

or

f = A(z) + B*(z'), g = C(z) + D*(z*), (4.2)

A. Helical-type contlgurations (helicons)

Keeping in mind (4.1), let us choose fp ——Ap, gp ——

—Ap, F = azN + (a' —iAp)z'N, G = F', where Ap,
N, and a are arbitrary constants (the first two are real,
while the latter is complex). Then Eqs. (3.6) and (3.8)
are identically satisfied. The spin components read [see
(3 1)]

Si ———cos[Ao(z + z' )], S, = —sin[Ap(z + z' )],

where fp and gp are constants. These simple Ansatze
lead to interesting exact solutions (e.g. , helicons, rotons,
meronlike configurations, and radially symmetric solu-
tions) which are pertinent to planar magnetic systems. is

where Pp is a constant.
The energy density is

K = HM+ Hy = 2Ap+4(Ap+2) (4.7)

B. Rotonlike con8gurations

Looking at (4.2), let us set A = D= bzN—,
—B =

C = az, where a, b are complex constants and N is a
real number. This choice is consistent with Eqs. (3.6)
and (3.7). The components of the spin field are

(a2 b2) 2N p (
2 be2) 2N

'[( 2 + b2) 2N
(

2 + b*2) *
]

where HM and Hy denote, respectively, the first and the
second terms in Eq. (2.8), while the topological charge
density turns out to be zero. This is due to the fact
that P = 0, P„= 4(Ap + 2). Furthermore, since for
Ao ———2 we have pp = co ——0, in this case the quantities
(4.6) reproduce the static solution (4.4), whose density
energy is consistent with that emerging froxn (4.7). In
other words, the presence of a nonconstant auxiliary field,
which depends linearly on the variable y (for Ap g —2),
corresponds to switching on a time dependence in the
helical structure (4.4).

S, = 0. (4.3)

We point out that for N = 1, (4.3) reproduces just the
static helical configuration arising in helimagnets, i.e. ,

—2[abz' + a"b*z'
] (4.8)

where b, = 2(~a~2 + ~b~ ). For a = 1, b = i, and us-

ing polar coordinates, (4.8) takes the simple form S =
(cosN0, 0, sinN0), which resembles the type of solutions
admitted by the plane rotator model. The topological
charge density associated with (4.8) vanishes, while the
Hamiltonian density is given by H = 2N2/r2. The aux-
iliary field P is such that P = P„=0.

Sq ———cos 2Aox, S2 ———sin 2Aox, S3 —0. (4.4)

2~2' 2 2N —2 (4.5)

with z = r exp(i0), while the topological charge density
vanishes because P, = P,. = 0. We notice also that
Eqs. (2.7) allow a dynamical helical configuration which

On the other hand, for N g 1 the quantities (4.3) furnish
static configurations of the model (2.7) which may be
regarded as a generalization of the helical structure (4.4).
As far as we know, these solutions are new and their
possible physical interpretation has to be explored.

The energy density related to (4.3) is given by C. Meronlike con6gurations

An interesting class of nonlinear excitations are ob-
tained by (4.2) with A = D= bz N~2, B —=—C =
az ~, where N is a positive integer and a, b are two
complex constants such that ab = a'b*. A subclass of
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these configurations possesses one half nnit of topologi-
cal charge. First let us discuss the solution arising for
N = 1. Putting for simplicity a = —b = 1, we get

topological charge, Qz = —1/2, is

T' = cr(r —1)S+ o'(1 —r) Sp. (4.i7)

y)x/. I I

—1

lzl+1'

which corresponds to the spin components

r —12

Sg —— cos 8,r2+1

r —12

S2 —— sin 8,r2+ 1

2r
3

(4.9)

(4.10)

Now some comments are in order. The above situation
bears some analogies with those ofFered by other Geld con-
figurations with Qx = +1/2 (merons and torons), discov-
ered in the two-dimensional O(3) nonlinear o model and
in the four-dimensional non-Abelian gauge theory. ' '

We recall that merons are localized field configurations
which possess one half unit of topological charge (at zero
and at infinity) and have logarit&mically divergent ac-
tion. They play a basic role in quark confinement. To be
precise, let us limit ourselves to consider the O(3) non-
linear u model. Then the singular meron solution takes
the form

(4.i8)

4
cos 8,1+r2

4
Qxt = sxn8)1+ r2 (4.11)

which yields

P = 4arctanr, (4.12)

apart &om a constant of integration. As r + oo, the
configuration (4.10) satisfies the boundary condition

Sq ——cos8, S2 ——sin8, S3 ——0) (4.13)

which represents a solution of the planar rotator model. 2

The contributions to the energy density H coming from
the magnetic part and the field P are HM = 2„, and

Hy = ~x+„,l, , respectively. On the other hand, the topo-
logical charge density is given by

1 —r2
Q= 2

r(]. + r2)2' (4.i4)

The total energy diverges logarithmically, while the to-
tal topological charge vanishes, i.e.,

qy = jl/(der)]f f ada d

"1-"
dr =0.

(1+r2)2 (4.i5)

in polar coordinates. The auxiliary field P can be derived
from (3.5). We have

which is singular at z = 0 and at z + oo. This cor-
responds to a zero-size meron at z = 0 and at infin-
ity. The topological charge density Q associated with
(4.18) vanishes identically. An arbitrary number of sin-
gular merons of the type (4.18) can be constructed as
well. Anyway, these can be smeared out to get meron
configurations which satisfy the equations of motion of
the O(3) nonlinear o model everywhere except on cir-
cles each of which contains one half unit of topological
charge. Furthermore, merons can be regarded as point
charges and the instantons in the O(3) nonlinear o' model
can be thought as dipoles made up from meron pairs.
Coming back to our xnodel, we rexnark that (4.18) is a
solution to Eqs. (3.2) also. But we have not been able to
find instanton configurations by means of Hirota's tech-
nique. In other words, the choice ( = z, which leads to
the simpler instanton configuration in the O(3) nonlinear
o model, now does not work, in the sense that Eqs. (3.2)
are not satisfied. This fact excludes the possibility of ap-
plying the procedure followed in Ref. 3 to smear out the
singular meron (4.18) or the singular configuration of the
meron type (3.9). Notwithstanding, resorting to (4.9), we
can build up solutions to the xnodel (2.7), such as (4.16)
and (4.17), provided by a fractional topological charge.
Unlike what happens for the O(3) nonlinear o' model, we
cannot interpret our fractional charge configurations as
poles from which the instanton dipole is formed. With
regard to this point, keeping in mind solutions (4.10) and
(4.12) we observe that the field P contributes to the total
energy by a finite term. In other words, P presents a kink
(instantonlike) behavior (it obeys the sine-Gordon equa-
tion P„„=sing), in opposition to the spin components
(4.10).

Multiple meronlike configurations can be constructed
starting &om

Starting &om (4.10), we can build up a static solution
T to the model (2.7) endowed with a fractional topolog-
ical charge Qz = +1/2, namely,

( / y)N/2 lzl

IzlN + 1' (4.19)

T = o(1 —r)S + o(r —1)Sp, (4.16)
where N is a positive integer. In polar coordinates, the
spin components read

where o denotes the step function, S is given by (4.10),
and Sp = (0, 0, 1). A configuration having an opposite

r2N
S1 =

2N cos N8)r2N+]
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r2N
S2 ——

2N sin NO,r2N+ 1

By virtue of (4.24) and (4.26), and choosing c = 1 for
simplicity, from (4.22) we get

2rN
S3 ——

1+ r2N' (4.20)
1/2

(Nu, k»
(1 + dn(Nu, k) )

(4.27)

while the auxiliary field P can be derived by

4NrN —1

cos 8,1+ r2N

4NrN —1
sin 8.1+ r2N (4.21)

The energy density and the topological charge den-
sity are given by H = N2/2r2+ (4N2r2+ 2)/(1+ r2N)2

and Q = 2N2(r2~ 2 —rs~ 2)/(1+ r2~)2, respectively.
Thus, the total energy diverges logarithmically and the
total topological charge is zero. N-&actional charge con-
figurations, with total topological charge Qg = +N/2,
can be easily written keeping in mind (4.16) and (4.17),
where now the spin components (4.10) are replaced by
(4.20).

where the identity dn () —1 = k sn () has been used.
Substitution from (4.27) into (3.1) yields

Si ——k sn(Nu, k)cosN8, Sq ——k sn(Nu, k)sinN8,

Ss ——dn(Nu, k). (4.28)

These quantities represent a radially symmetric solu-
tion to the model (2.7) written in terms of the Jacobi el-

liptic functions. 22 For k = 1, the solutions (4.28) reduce
to the meronlike configurations (4.20), while for k = 0
they take the values Sq ——0, S2 ——0, S3 ——1. The auxil-
iary field P corresponding to (4.27) (with N = 1) can be
derived from (3 5) by taking g = ([1 —dn(u, k)]/z")i~2
and f = ([1+dn(u, k)]/z) ~2. We find

= (2/r)dn(u, k)cos8, P„= (2/r)dn(u, k)sin8,

(4.29)

D. Radially symmetric solutions

A class of radially symmetric solutions to model (2.7)
can be found assuming that

4 = [a(z)/a'(z')]'"@(lzl) (4.22)

where a(z) and Q(lzl) are, respectively, a complex and
a real function to be determined in such a way that
Eqs. (3.2) [or, equivalently, (3.6) and (3.7)] are satisfied.
In doing so, it is convenient to put g = [a(z)] ~ Q(lzl)
and f = [a*(z')] ~2. Then, Eqs. (3.6) and (3.7) provide

&om which

P = 2arcsin[sn(u, k)] + 7r, (4.30)

k2 1 d
Q = ——sn(u, k)cn(u, k) = ——dn(u, k),r2 T

(4.31)

which entails a vanishing total topological charge QT =
0. Concerning the energy density, we obtain

where the constant of integration has been chosen equal
to n. just to reproduce (4.11). The topological charge
density induced by (4.29) is

(1+&')
I &- + -&.

I
+ (1 —&')

I ./ I'& = 2&&.',
H = HM + Hy = k /(2r ) + (1/r )dn (u, k). (4.32)

(4.23)

where a(z) = cz, r =
I
z I, c is an arbitrary complex

constant, and N is a real number. Performing the change
of variables

= tan —,4'

Therefore, the contribution of HM to the total energy
diverges logarithmically. This feature is the same which
occurs for k = 1.

At this stage, it should be instructive to compare the
configurations (4.28) with those found by Takeno and
Homma in the study of the three-dimensional continuous
Heisenberg model for the case of cylindrical symmetry.
These authors parametrize the spin-Geld components, 8~,
by two angles of rotation P and 8 as follows:

u=lnr, (4.24) Bi —Slilp COS8 S2 = Slilp Sli18 $3 —Cosp, (4.33)

p„„+N sing = 0. (4.25)

Eq. (4.23) transforms into the equation for the pendulum,
that is

and investigate stationary solutions to the equations of
motion arising &om the continuum limit of the discrete
model. The equations under consideration are

Equation (4.25) affords the solution
2 cosPV'P V'8 + sinPV' 8 = 0, (4.34a)

p = 2 arcsin[k sn(Nu, k)], (4.26) V' P —sinP cosP(V'8) = 0, (4.34b)

where sn() is a Jacobian elliptic function of modulus k

(0&k&1). (1+ I(I')&'& = 2&*(&&)' (4.34c)
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where the stereographic variable

( = tan(P/2)e' (4.35)

can be exploited to express the quantities 8~ in the same
way as (3.1) (with Kz = 1).

Looking for cylindrical symmetric solutions to
Eqs. (4.34), and requiring that 8 obeys the Laplace equa-
tion, one has that P satisfies the sine-Gordon equation

P„„—n sinPcosP = 0, (4.36)

rather than the pendulum equation (4.25), where n =
kl, +2, ..., and r = (xz + yz) i~z. This equation is solved
by cosP = ksn(nu, k); then, the corresponding spin-field
components 8~ of the continuous Heisenberg model take
the form (for n = 1)

si ——dn(u, k)cos8, sz = dn(u, k)sin8, as = k sn(u, k).

(4.37)

In the limit k -+ 0, the solution (4.37) reduces to that
of the planar rotator model, while for k ~ 1 it becomes
the one-vortex string configuration

8g ——sechu cos0, 8g ——sechu sin8, 83 ——'„anhu.

(4.38)

In the variable P, (4.38) corresponds to the solution of
the kink-type

P = 2arctane". (4.39)

As r ~ oo, (4.38) obeys the boundary condition ai ——0,
az ——0, as ——1, rather than (4.13). The energy density
for solution (4.37) reads

H = 4/(r'+1)'. (4.40)

Therefore, the total energy related to the one-vortex
string (4.38) is finite. This is essentially due to the form
of the kink-type of the solution (4.39). We notice also
that the configurations (4.28) [and, for k = 1, Eqs. (4.10)]
can be obtained formally from (4.37) [(4.38)] by inter-
changing ksn(u, k) with dn(u, k) (tanhu with sechu).
Furthermore, as we have already observed, the behav-
ior of the auxiliary field P (4.12) is that of a kink, just
like P [see (4.39)]. Hence, it is worthwhile, but expected,
that the energy density (4.40) coincides with the energy
density H~ arising from (4.11).

we recall that model (2.7) allows time-dependent domain
wall configurations as well. These are found for o, = —1
and r = +1. For example, the form of the domain wall
corresponding to z~ = 1 is

Si ——cos(2aix+ ap)sech', Sz ——sin(2aix+ ap)sech',
S3 ——tanhy, (5 1)

where y = 2a~y+ 8aqa~t + o.o, and ao, aq, a~, no are
(real) constants. The auxiliary field P is

P = 4aqz —2 ln cosh' + Pp(t), (5 2)

where Pp(t) is an arbitrary function of integration. We
observe that P is of the form (2.6). Furthermore, for
az ——0 the spin configuration (5.1) coincides with the
static domain wall solution to the continuous Heisenberg
model in two spatial dimensions. ~4 As we have seen via
a group analysis carried out following the same proce-
dure already applied in Ref. 12 for the Ishimori system,
model (2.7) has a symmetry algebra of the Kac-Moody
type with a loop-algebra struct;ure. However, this impor-
tant feature, which is partaken with other nonlinear field
equations in 2+1 dimensions, does not allow us to af-
firm that the model is generally (for P „P0) integrable.
The problem of the integrability of model (2.7) is open
and deserves further investigation. One could ask what
might be the physical meaning of model (2.7) and what is
that of the Ishimon system. This question can be in part
answered by making some reductions of the original equa-
tions. For the Ishimori model, a method based on the
use of the symmetry algebra associated with the system
leads to reduced equations of physical significance, such
as, for instance, the isotropic Heisenberg model and the
Landau-Lifshitz model with uniaxial anisotropy. The
role of the anisotropy parameter is played by the constant
a appearing in the Ishimori equations. Concerning our
model, interesting possibilities of physical applications
emerge &om certain reduced equations derived through
the Hirota technique. Precisely, limiting ourselves to the
cases o. = 1, r = +1, and using the Hirota formula-
tion for both the models, we have started &om the trial
function (4.22) and have obtained a(z) = cz for all the
cases, where c is a complex constant and N is a real num-
ber. In dealing with model (2.7), when nz = 1, zz = 1
(coinpact case) we have already seen that the function
g(~z~) is linked to the pendulum equation (4.25). Con-
versely, when n = 1, irz = —1 (noncompact case) the
equation corresponding to (4.25) is of sinh-Gordon type,
namely

V. CONCLUSIONS p„„+% sinhp = 0, (5.3)

We have shown that model (2.7), which can be consid-
ered as a modified version of the Ishimori system, pos-
sesses many interesting properties which suggest possible
connections with physical problems. Indeed, model (2.7)
is endowed with a Hamiltonian, has a conformal invari-
ant nature, and admits exact configurations which have
been explicitly obtained for o. = 1 and e = 1. These
turn out to be helicons, rotonlike and meronlike exci-
tations, and radially symmetric solutions. Furthermore,

where g = tanh(p/4) (u = lnr). Equation (5.3), which
can be solved analytically, is relevant &om a physical
point of view because it may be employed to formally
describe negative-temperature configurations. In fact, it
can be considered as the one-dimensional version of the
sinh-Poisson equation, which describes two-dimensional
steady-state distributions of elements with a logarithmic
interaction potential and finds application in the theory
of vortex filaments in liquid He. On the other hand,
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p„„+N e "sing=0, (5.4)

while for a = 1) e = —1 we get

p„„+N e "sinhp = 0. (5.5)

as far as the Ishimori model is concerned, for o. = 1,
tc = 1, form (4.22) leads to the equation

Both Eqs. (5.4) and (5.5) can be reduced to special
cases of the third Painleve' transcendent, which is con-
nected with the two-spin correlation functions of the two-
dimensional Ising model in the scaling limit. This situa-
tion bears some analogies with that considered in Ref. 23
in relation to the axisymmetric solutions to Eqs. (4.34).
To conclude, we point out that by means of Eq. (2.14)
we are able to evaluate (for n = 1) the velocity of all
the con6gurations determined by the Hirota technique.

F. Wilczek, Prectional Statistics and Anyon Superconduc-
tiuity (World Scientific, Singapore, 1990).
A. Balachandran, E. Ercolessi, G. Morandi, and A.M. Sri-
vastava, Hubbard Model and Anyon Superconductivity, Lec-
ture Notes in Physics Vol. 38 (World Scientific, Singapore,
1990).
D.J.Gross, Nucl. Phys. B 132, 439 (1978); C.G. Csllan, Jr. ,
R. Dashen, and D.J. Gross, Phys. Rev. D 17, 2717 (1978);
19, 1826 (1979).
A. Actor, Rev. Mod. Phys. 51, 461 (1979).
Y. Ishimori, Prog. Theor. Phys. 72, 33 (1984).
See, for example, the references quoted in Ref. 8.
V.G. Dubrovky and B.G. Konopelchenko, Physica D 48,
367 (1991).
R.A. Leo, L. Martina, and G. Soliani, Phys. Lett. B 247,
562 (1990); J. Math. Phys. 33, 1515 (1991).
D. David, N. Kamran, D. Levi, and P. Winternitz, J. Math.
Phys. 27, 1225 (1986); D. David, D. Levi, snd P. Winter-
nitz, Phys. Lett. A 118, 390 (1986).

' B. Champagne and P. Winternitz, J. Math. Phys. 29, 1

(1987).
"R.A. Leo, L. Martina, and G. Soliani, J. Math. Phys. 27,

2623 (1986); L. Martina snd P. Winternitz, Ann. Phys.
(N.Y.) 196, 231 (1989).
G. Profilo, G. Soliani, and L. Solombrino, Phys. Lett. B
271, 337 (1991);Physics A 192, 175 (1993).
R. Hirota, in Solitons„edited by R.K. Bullough and P.J.
Caudrey, Topics in Current Physics Vol. 17 (Springer-
Verlag, Berlin, 1980), p. 157.

D.L. Book, S. Fisher, and B.E. Mc Donald, Phys. Rev. Lett.
34, 4 (1975).
V. Ksc, Infinite Dimensional Lie Algebras (Cambridge Uni-
versity Press, Cambridge, 1985).
H. Lamb, Hydrodynamics (Cambridge University Press,
1975), p. 248.
See, for example, J.L. Gervais and A. Neveu, Nucl. Phys.
B 209, 125 (1982), and references therein.
A.M. Kosevich, B.A. Ivanov, and A.S. Kovalev, Phys. Rep.
194, 117 (1990).' E.Sh. Gutshabash and V.D. Lipovskii, Teor. Mat. Fiz. 90,
259 (1992); K. Sasski, Prog. Theor. Phys. 65, 1787 (1981).
J.M. Kosterlitz and D.J. Thouless, J. Phys. C B, 1181
(1973); J.M. Kosterlitz, ibid. 7, 1046 (1974).
A.R. Zhitnitsky, Mod. Phys. Lett. A 4, 451 (1989).
Handbook of Mathematical Functions, edited by M.
Abrsmowitz snd l. A. Stegun (Dover, New York, 1965),
p. 567.
S. Takeno and S. Homma, Prog. Theor. Phys. B5, 1844
(1981).
See, for example, A.V. Mikhailov, in Solitons, edited by S.E.
Trullinger, V.E. Zskharov, and V.L. Pokrovsky (North-
Holland, Amsterdam, 1986), p. 623.
H.T. Davis, Introduction to Nonlinear Differential and In
tegra/ Equations (Dover, New York, 1962).
T.T. Wu, B.M. McCoy, C.A. Tracy, and E. Barouch, Phys.
Rev. B 13, 316 (1976); B.M. McCoy, C.A. Tracy, and T.T.
Wu, J. Math. Phys. 18, 1058 (1977).


