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We compute high temperature expansions of the three-dimensional Ising model using a recur-
sive transfer-matrix algorithm and extend the expansion of the free energy to 24th order. Using
inhomogeneous-differential Pade and ratio methods, are extract the critical exponent of the specific
heat to be a = 0.104(4).

I. INTRODUCTION Starting from the action

High- and low-temperature expansions constitute ma-
jor tools for the calculation of critical properties in
statistical systems. The Ising and Potts model low-
temperature expansions were recently extended using
a technique based on the method of recursive counting. s

In a separate development, Vohwinkels implemented the
shadow-lattice technique of Domb~ in a very clever way
and added many new terms to the series. However, the
extraction of critical parameters &om low-temperature
series is hampered by the presence of unphysical singu-
larities. This is especially true of the three-dimensional
(SD) Ising model. For this reason, low-temperature an-
alytic methods are very often inferior to Monte Carlo
methods for computing critical exponents.

High-temperature (HT) expansions, on the other hand,
generally have better analytic behavior and yield more
accurate exponents. Very recently, two variants of the re-
cursive counting technique for HT expansions have been
pursued. While Guttmann and Enting4 keep track of
spin configurations on a set of rectangular finite lattices,
Ref. 3 counts HT graphs on finite, helical lattices. Such
computer based series expansions have very large mem-
ory requirements. This makes them ideal candidates for
large parallel computers if communication issues can be
handled efBciently. In this paper we will present the re-
sults of a HT expansion of the 3D Ising model to 24th or-
der, obtained on a 32 node 1 GByte Connection Machine
CM-5. The implementation is based on a bookkeeping
algorith~ of binary coded spin configurations in helical
geometry.

II. COMPUTATION OF THE SERIES

We start with a discussion of the HT algorithm to com-
pute the partition functions on finite 3D Ising lattices.

the partition function is

Z = ) exp ( PE) = ) — exp (Ps;sz)
(~) ~ ) ('", )

and is expanded in a HT series

(2)

1 2cosh P 1)
PV P P

For simplicity, consider a finite simple cubic lattice which,
in the recursion algorithm, is built up by adding one
site after the other, layer by layer. This procedure de-
fines the recursion step, which requires knowledge only
of those spin states that are contained in the exposed
two-dimensional surface layer. To minimize finite-size
eEects, it is best to use helical boundary conditions. '

One can visualize helical boundary conditions by imag-
ining all spins in the layer laid out along a straight line.
In this picture, the nearest neighbors to a given site in
the sequence in the ith direction can be chosen to be h;
sites away, with i = x, y, z. It is convenient to assume
h & h& ( h . It is easy to see that, as spins are added,
one needs only to keep track of the states of spins on the

Z = (cosh P) ) (1+s,sst)
~)(', )

= (2 cosh P) ) p(k)t",
k

with the HT expansion parameter t = tanhP. V is the
volume of the system. The free energy per spin is defined
as
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TABLE I. Structures and weights tu of the lattices used.

9
11
13
-3

1
12
14
3

9
14
16
-3

5
15
16
-3

7
15
16
3

10
13
17
-3

5
15
17
3

14
15
17
-3

11
16
17
3

14
16
17

3

9
17
19
-1

9
16
20
-2

5
17
20
-1

5
19
20

1

16
17
21
-2

10
19
21

5

16
20
21

2

1
18
22
-2

17
21
22

2

topmost h, sites. Let these spins be denoted sq, . . . , sh .
Then the partition function can be rewritten as

Z=2 (cosh P) +') ) ) p(k;Bl, . . . , sh )t"
80 Q Sj y

~ ySh

x (1 + spah t) (1 + spsh„t)(1 + spah, t) (6)

Z = (2 cosh P) ) ) p(k; sl, . . . , sh, )t" .
81)... Sh

(5)

The recursion step, which consists of adding another spin
so to the system, changes the partition function into

sh. , sh, „, and sg are the backward nearest neighbors of
the site so. The site so will displace its backward z neigh-
bor site sg, after the counting of the added spin is com-
pleted. Since s~ will not be referred to in the subsequent
steps of the algorithm, the summation over sg can be
carried out:

Z=2 (cosh P) + ) ) )
So Q 8$ l ~ ~ ~ ySh

x [+p(k; 81, . . . , Bh 1, sp)t" (1+ spah t)(1+ Bosh„t)(1+ t)

+p(k; 81, . . . , Sh „ap)t"(1+ spsh. t)(1+ Bosh t)(1 —t)] .

The contribution in the second (third) line of this equation contains the part with ah being parallel (antiparallel,
denoted by ap) to Bp. Comparing this expression with the HT series (5) for the new system yields the recursion
relation induced for the coeKcients p,

2p'(k; sp) al, . . . , sh 1) =p(k —0; 81,

+p(k —1;sl,
yp(k —1;sl,
+p(k —2; sl,
+p(k —2; sl,
+p(k —3; sl,

i Bh, —1~ Bo) + p(k 0i 81~ ~ Bh, —1~ Bo)

. . . , Sh 1, 80) (Bosh + Bpsh„+ 1)

. . . , Sh, —1~ 80) (Spah, + Soah —1)

Bh, —1, SO)(ah Sh„ + Soah, + Bosh„)
. . . , Bh 1, Sp)(Sh Sh —Spah Bosh&)

& Bh, —1~ Bp)(ah, ah„) + p(k 3i 81~ ~ ah, —1~ 80)( Bh, ah„).

It is crucial to remove 6nite-size errors by combining the
results of difFerent lattice structures as described in Refs.
2 and 3. We use the set of lattices listed in Table I and
obtain the &ee energy coefficients up to 24th order as
given in Table II. In order to eliminate the contribuiton
from (unphysical) loops with an odd nulnber of links in
any direction, we use the cancellation technique of Ref.
3. This amounts to inserting additional signature factors
into Eq. (6) for each of the three link factors

(1+ apah, t) -+ o;(1+spsh, t), i = x, y, z (9)

with (cr, o„,cr ) = (+,+,+). By performing eight sep-
arate runs corresponding to all possible values of cr and
adding the results, one achieves a complete elimination
of the unwanted loops. Possible contributions of higher-
order finite-size loops are at least of order 25 for this set
of lattices. Since we use open boundary conditions, the
coefFicients p are invariant under the global transforma-
tion s, m —8;. This Z(2) symmetry enables us to reduce
memory requirements by a factor of 2. Unlike Refs. 2,3,4
we use multiple-word arithmetic to account for the size of

TABLE II. Free energy up to 24th order.

Order k
0
2
4
6
8
10
12
14
16
18
20
22
24

Free energy f
0
0
3
22
375/2
1980
24044
319170
18059031j4
201010408j3
5162283633j5
16397040750
266958797382

the coefficient's. This implementation needs about 100%
more memory but leads to a doubling in performance.
Since the number of words can be adjusted separately
for every order, the computational effort can be reduced



49 SPECIFIC-HEAT EXPONENT FOR THE THREE-DIMENSIONAL. . . 12 911

accordingly. On the 32 node CM-5 the total time for all
computations was about 50 h.

Compared to the finite-lattice approach of Guttmann
and Enting, 4 our method appears to require more CPU
time since we need to cancel unphysical loops. It should
be noted, however, that helical lattices are very natu-
rally implemented in data parallel software environments
and thus lead to better performance. In the usual finite-
lattice method, the HT expansion can only be extended
in fairly coarse steps, using lattices with (4 x 5) cross
section for 22nd order and (5 x 5) cross section for 26th
order, respectively. For this reason, a 24th-order compu-
tation would not have been feasible using that method
with our computer resources.

o, = 0.102 6 0.008 (12)

f2s —443762(4) x 10

where the errors quoted are two standard deviations.

B. Ratio test

at the value t, = 0.218092 as obtained in Monte Carlo
simulations. A direct, biased-IDP analysis was also per-
formed. We obtained o. = 0.109+0.016.

IDP's can also be used to predict the most significant
digits of the next term in the specific-heat series. The es-
timate of the 24th-order term as obtained in Ref. agrees
perfectly with our exact result. Using the same method
we can estimate the 26th-order term in the expansion to
be

III. CRITICAL EXPONENT

The specific heat is defined as

cli, 0 ——P lnZ=) cit"
QP2

A;

and is expected to behave near T~ as

cli =0 = &(&)IT' —Tc I
1+B(&)I& —&c I'+ "

(10)

The main problem in the determination of critical ex-
ponents in the low-temperature case is the presence of un-
physical singularities nearer to the origin than the physi-
cal one. Since the expansion coefFicients c„are dominated
by these unphysical singularities, ratio methods cannot
be applied.

In the HT expansion, the physical singularity domi-
nates the asymptotic behavior, so that the ratio r„=
c /c i of successive coefBcients of the series is expected
to behave as9

with A and B being analytic near T~. ' We analyze
the series using unbiased and biased inhomogeneous-
difFerential Pade approximants (IDP's) ~~ as well as ratio
tests.

A. Pade analysis

1 o. —1 c d ( 1
1 + + ,+, + ,+» + o

l i+3s
c E" )

(i4)
Assuming that the correction-to-scaling exponent 8 is
close to 0.5,~2'is the following sequence s„ is expected
to converge toward a like

In Fig. 1 we plot o. against t2 for each IDP approximant
[J/L;Mj. Fitting the linear dependence of n on t2, we
find

s„:=(t,r —1) n+ 1 = o;+ + —+ 0
I

c d ( 1

(15)
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FIG. 1. Critical exponent o.
as a function of t, .
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FIG. 2. Plot of the se-
quence 8„against n. The er-
ror of 8i3, obtained from the ID
Pade extrapolation, is too small
to be visible.

0.1

0.05—
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A plot of this sequence against n is shown in Fig. 2. Obvi-
ously the first four values are dominated by higher-order
corrections. To obtain estimates for o. we therefore use
only the values (ss, . . . , sos). A three-parameter least-
square-fit using the ansatz of Eq. (15) yields the values
shown as diamonds in Fig. 3. The value of n = 0.113
obtained by the fit to the points {ss,. . . , sr') is in per-
fect agreement with the result of Ref. 4. Their estimate
of o. = 0.110 using the extrapolated term Bi2 appears to
be slightly above our value of a = 0.108 using the exact
term. Including our value for 8is of the ID Pade ex-
trapolation Eq. (13) we obtain rr = 0.105(2). The error

represents the uncertainty of the extrapolation. However,
from Fig. 3 it it quite suggestive that the a values might
converge to a value below 0.105.

To get an estimate of the uncertainties of our results,
we investigate the stability of the fits. For this purpose,
we repeat the analysis after eliminating the point 86 &om
the data. As a result we obtain sizable changes for a. The
new data are shown as crosses in Fig. 3.

In Fig. 4 we present the results for the first correction-
to-scaling coefBcient c &om our three-parameter fits. In
contrast to Ref. 4, our values suggest that c changes sign
with increasing n „. Because of the sensitivity of the
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0.105

FIG. 3. Estimates of a us-

ing a three-parameter fit. Each
point represents the results of
a fit to the set of values

(s,.„,. . . , s ). The error
bars of the rightmost values
represent the uncertainty of the
extrapolated 13th term.
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FIG. 4. Estimates of c us-

ing a three-parameter Gt. Each
point represents the results of
a fit to the set of values

{s„,.„,. . . ,s„„}.The error
bars of the rightmost values

represent the uncertainty of the
extrapolated 13th term.
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6ts to the number of terms we keep, it is difBcult to de-
termine the value of c very precisely. Our best estimate
is c = 0.01(4). Since c vanishes within error, it seems
reasonable to also try a two-parameter ansatz with c = 0
to fit the data. The results of these fits are shown in
Fig. 5. We now find that the 6ts are much more stable
and the o. estimates show much more of a convergence to
their asymptotic values. The best value (Rom the largest
n „) is o. = 0.1045(3). This value supports the impres-
sion of the three-parameter 6ts, which suggested that
a was slightly below 0.105. Finally we investigate the
inHuence of the uncertainty in the correction-to-scaling
exponent 8 on our results. Repeating the analysis with

8 = 0.53, we find a change on n of less than 0.0005.
Taking into account the fact that neglecting c causes
an additional systematic error, our 6nal estimate for the
critical exponent is,

a = 0.104(4) .

IV. DISCUSSION AND OUTLOOK

The crucial element in the estimate of the error in n
[Eq. (1S)] is our neglect of the correction-to-scaling coef-

0.1054- nmin=6 o
nmin =7
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FIG. 5. Estimates of o. us-

ing a two-parameter fit with c =
0. Each point represents the re-
sults of a fit to the set of val-
ues {s„,, ,s„}.The er-
ror bars of the rightmost values
represent the uncertainty of the
extrapolated 13th term.
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ficient c. The resulting systematic error is rather large.
From Fig. 4 one might speculate that the estimates for c
begin to exhibit asymptotic behavior at the 26th order.
Therefore an exact calculation of the 26th term of the ex-
pansion might reduce the uncertainty of c significantly.
If the magnitude of c turns out to be really negligible,
one could adopt the errors of the linear fits, and a would
be obtained accurate to the fourth significant digit.

ACKNOWLEDGMENTS
This work was partly funded under Contracts No.

DE-AC02-76CH00016 and DE-FG02-90ER40542 of the
U.S. Department of Energy. The work of G.B. was also
partly supported by a grant Rom the Ambrose Monell
Foundation. U.G. and K.S. are grateful to Deutsche
Forschungsgemeinschaft for its support to the Wuppertal
CM-Project.

M. Creutz, Phys. Rev. B 43, 10659 (1991).
G. Bhanot, M. Creutz, and J. Lacki, Phys. Rev. Lett. B9,
1841 (1992);G. Bhanot, M. Creutz, I. Horvath, U. Glassner,
J. Lacki, K. Schilling, and J. Weckel, Phys. Rev. B 48, 6183
(1993).
G. Bhanot, M. Creutz, I. Horvath, J. Lacki, and J. Weckel,
Phys. Rev. E 49, 2445 (1994).

4A.J. Guttmann and I.G. Enting, J. Phys. A 2B, 807 (1993).
K. Binder, Physica B2, 508 (1972); G. Bhanot, J. Stat.
Phys. BO, 55 (1990); G. Bhanot and S. Sastry, ibid. 90, 333
(1990).
C. Vohwinkel, Phys. Lett. B 301, 208 (1993).
C. Domb, in Phase Vhxnsitions and Critical Phenomena,
edited by C. Domb and M. S. Green (Academic Press, New

York, 1973), Vol. 3.
G. Parisi, Statistical Eield Theory, Frontiers in Physics Se-
ries Vol. 66 (Addison-Wesley, Reading, MA, 1991).
A.J. Guttmann, in Phase ~nsitions and Critical Phenom-
ena, edited by C. Domb and J. Lebowitz (Academic Press,
New York, 1989), Vol. 13.
M.F. Sykes, D.S. Gaunt, P.D. Roberts and J.A. Wyles, J.
Phys. A 5, 624 (1972).
M.E. Fisher and H. Au-Yang, J. Phys. A 10, 1677 (1979);
D.L. Hunter and G.A. Baker, Phys. Rev. B 19, 3808 (1979).
C.F. Baillie, R. Gupta, K.A. Hawick, and G.S. Pawley,
Phys. Rev. B 45, 10438 (1992).
A.J. Liu and M.E. Fisher, J. Stat. Phys. 58, 431 (1990).


