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Theory of optical bistability in a weakly nonlinear composite medium
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A variational approach is used to discuss bistable behavior in composite media where one com-

ponent is a nonlinear dielectric while the other has a Beld independent complex dielectric constant
with a negative real part. Under certain conditions, the physical parameters may be adjusted so
that bistability appears even though the nonlinear behavior is everywhere weak, thus allowing it to
be treated as a small perturbation to the leading linear behavior.

I. INTRODUCTION

There is a growing interest in optical materials with
bistable behavior. This is due, in part, to their potential
uses as materials for optical devices. It has been recog-
nized that one way to obtain such behavior is to com-
bine in a composite medium a dielectric component to-
gether with a metallic or semiconducting component the
dielectric constant of which has a negative real part and
a small imaginary part. 2 4 Since the nonlinear behavior
usually requires high field intensities in order to be non-

negligible, bistable behavior is usually believed to appear
only above a certain intensity threshold which can be
very high. Proposals have been put forward for decreas-
ing this threshold by exploiting the Geld enhancement
produced by the surface plasmon resonance of the metal-
lic component. This component was assumed to appear
in the form of small particles (i.e., small compared to the
wavelength) embedded in the dielectric host, s'4 or as a
thin metallic coating which covers similarly small dielec-
tric inclusions. It is difEcult to study such materials the-
oretically because the nonlinear behavior of at least one
of the components makes the usual methods developed
for linear materials inapplicable. The only good quanti-
tative analysis is for a very dilute composite of spherical
or spheroidal inclusions in which the nonlinear behavior
is restricted to the innermost core of the (possibly mul-

tilayered) inclusion. 2 4 s The surface plasmon resonance
is an extreme manifestation of the so-called local Geld

effect, whereby the local electric Geld can be increased
above its ambient or average value in the vicinity of a
conducting inclusion which is embedded in a dielectric
host medium. Such local field effects have been invoked
in the past in connection with optical bistability also in
other systems.

In this paper we demonstrate the following results in
the theory of metal-dielectric composites: (a) By ap-
propriately tuning the material parameters and the fre-

quency in the vicinity of a sharp resonance, bistable op-
tical behavior can be achieved at field intensities so low

that the local nonlinear behavior is everytohere toeak. (b)
In. this weakly nonlinear regime, an accurate quantitative
calculation of the optical properties can be performed
by treating the nonlinear effects as a small perturbation
to the leading linear behavior. (c) These conclusions
are reached following a theoretical study of bistability
in composite mixtures of a linear metal and a weakly
nonlinear dielectric with three different microstructures:
parallel slabs, a dilute suspension of metallic spheres in
a nonlinear dielectric host, and a coated spheres assem-
blage with all spheres having the same core-to-shell vol-

ume ratio. (d) A type of variational principle is proposed
and employed. This principle should be capable of gen-
erating useful approximations for the local electric field
in many types of nonlinear dielectric composites besides
those considered here.

II. EXAMPLES OF BISTABLE BEHAVIOR IN
COMPOSITE MICROSTRUCTURES

In our analysis we always assume that the metal com-
ponent has a frequency dependent but field independent
complex dielectric constant

+is" where e' ( 0, e" ) 0 and e"

The dielectric component is assumed to have a purely
real, frequency independent but field dependent dielectric
constant of the form

eg(E) = ep + bp~E~ where ep bp ) 0 and ~E~—:E' E.

We also assume that the macroscopic properties of the
medium can be obtained from the properties of the com-
ponents in the quasistatic limit. This means that the
grain sizes are all small compared to both the wavelength
and the skin depth of the electromagnetic Gelds, and that
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scattering can be ignored.
Some of these assumptions are made purely for conve-

nience. In particular, we could allow the dielectric con-
stant of the metal to be weakly Geld dependent too, we
could allow other values for the nonlinearity exponent,
we could allow a small imaginary part in ~d, and both Ed
and e could depend on the frequency, all that without
significantly changing our conclusions.

A. Parallel slabs microstructure

In this case, both fields E and D are uniform in each
component and perpendicular to the slabs. (The case
where these Gelds are parallel to the slabs is less inter-
esting because the local electric Geld is then uniform, so
that no enhancement is possible. ) We denote the average
or externally imposed values of the fields by Ep, Do, the
local fields in the two components by Ed) Dd = t dEd
and E, D = e E, and the volume fractions by pd,
p = 1 —pd. The local field values are determined by
the continuity conditions on the normal component of D

Do = 6~Em, —cdEd

In order to solve this nonlinear equation for the complex
field Ed, we first derive from it an equation for fE&f,
namely,

2 &o + bolE&I
Eo = ad+a

&m

which is rewritten in terms of a renormalized Geld inten-
sity t as follows:

bofE~f' )0,
~0+

(6)

from which we get

., + b. lE, f' i
Eo = pdEd+p E =

f
pd+p (4)

where a~ = f (t~) and t (t+) is the position of the local
minimum (maximum) of f(t), given by

tp = —,'[2p, + (4p' —3)'~'] ) O. (i2)

Both of these values ty are positive and 0(1), and also
n = 0(l). Therefore all three solutions of (9) are 0(l),
and the three corresponding fields Ed all satisfy

Pd
&0 + &m ~~ &0)

Pm
(i4)

then the dielectric component is in the weakly nonlin-
ear regime. This property is not very important in the
present case, where the local Geld can be calculated ir-
respective of whether the nonlinearity is weak or strong.
However, in other microstructures, this property is cru-
cial, since it enables us to perform an accurate evaluation
of the local fields by treating the nonlinear behavior as a
small perturbation. This is demonstrated below.

Since the three solutions of (9) and of (4) all provide
possible values of the local Geld when the external or
average Geld has the same value Eo, some other crite-
rion must be used to decide which state the system will
actually choose to be in. It is not easy to Gnd such a cri-
terion, since there is no simple stability principle in this
nonequilibrium problem. By analogy with the somewhat
similar problem of a first order phase transition in a ther-
modynamic system at equilibrium, we would guess that
the two extreme solutions are the more stable ones, and
that the system makes transitions between them, with
hysteresis, as Eo is varied. This problem clearly requires
further study.

bofEdf = 0
f

eo +
t' pd

pm )
The quantity leo+ pge~ jp~ f

can be called the "detuning
parameter, " since it measures how far the system is from
a perfect resonance condition, where it vanishes. If this
detuning parameter is small, namely,

Re so+ ~~
p ——

~0+

b E2 Ie' I/p'

&o+
, )0,

f(t) =t —2pt +t=n. (9)

o.+ & o. & o.

Any real solution of this equation for t, and hence for
fEg f, is then substituted into (4), which thus becomes a
linear equation for E~ Equation (9) a. lways has at least
one real, positive solution. In order for it to have (two)
more such solutions, p and n must satisfy the following
additional inequalities:

B. Low density of spherical inclusions

In this case we can neglect the interactions between
diferent spheres and consider the problem of an isolated
sphere of volume V embedded in a host of much larger
volume V )) V . When the host is a material with linear
electrical properties and the externally applied field is
uniform, this is a solvable problem even if the inclusion
is nonlinear. This fact has been exploited to discuss the
case of nonlinear metallic inclusions in a linear dielectric
host. 2 4

A more interesting case is the one where the embedded
sphere is metallic or semiconducting with linear electri-
cal properties but a negative value for Re(e), as in (1),
while the host is a nonlinear dielectric, as in (2). This
case cannot be solved exactly. We will now use an exact
variational principle along with a trial potential function
to generate a sensible approximation for this case.

The basic variational principle of electrostatic fields in
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dielectrics is that the energy functional

(15)

general. We can nevertheless enunciate a variational
principle by noting that the equation

D hE'dV=0 (is)
achieves its absolute minimum value, among all continu-
ous real scalar functions P(r) that obey given real bound-

ary conditions, when P is the solution of the usual difFer-

ential equation of electrostatics

V [e(r)VQ] = 0. (16)

e = e'+i,e" + b~E~', (17)

then an energylike functional U[P] cannot be defined in

]

This applies when e(r) is field independent and real. A
generalization of this principle exists for the case where

e(r) is real but field dependent, as long as the scalar
product E D = e(E2)E2 is everywhere an increasing
function of E . A generalization is also easily found for
the case where e(r) is complex but field independent. But
when e(r) is both complex and field dependent, having
the form

holds for arbitrary variations bP(r) away from the solu-
tion of the equation

V . [e(r, VP) VP] = 0, (19)

as long as bg = 0 at the boundary.
We use this principle for the present problem by choos-

ing as trial function a form that is suggested by the exact
solution to the analogous linear problem, namely,

Eo(1 —B)rcos8, r ( a
(6 r Epf'cos 0 —EpBa, , r & a, (20)

where Eo is the (real) amplitude of the externally applied
uniform field which is taken to point in the z direction
and B is a complex variational parameter yet to be de-
termined. Substituting this trial function into (18), we
obtain the following equation for B:

0 = (e ——eo) + (e + 2eo)B+ boEo(1+ 2B+ sReB+ s]B ]+ &BReB+ s]B (B). (2i)

0 = —(e —eo) + (e + 2eo)B + s boEo iB iB. (22)

This equation is very similar to (4), and can be analyzed
in a similar way: We first get an equation for ~B

~

—eo/ = ]e +2eo+ sboEo/B /] /B /, (23)

then use the definitions

t—:/B'] ' ' & 0,le-+ 2"I

Re(e + 2eo)

+ 2.o]
'

hoEo /e —eo /-

+ 2eo]'

(24)

(25)

(26)

to get

f (t) = t —2pt + t = a. (27)

Finally, we substitute any solution for t, and hence for
]B[,into (22), which then provides a unique solution for

If we neglect the nonlinear e8'ects, which appear in this
equation as the terms multiplied by bpEp, we obtain the
correct value of B for the linear problem. In the vicinity
of the surface plasmon resonance, when e + 2ep ——0,
this value becomes very large so that even if bpEp is very
small, the nonlinear effects may be important. In that
case it is a good approximation to ignore all but the high-
est power of B among the terms that multiply bpEp. We
thus get the following equation for B, valid near the sur-
face plasmon resonance:

I

B. Equation (27) has exactly the same form as (9), so
the same analysis is applicable. In the dielectric host, the
strongest field E „is found at the poles of the spherical
inclusion, and its value there is determined mostly by the
induced dipole moment EpBa, so that

I' = boEo41B'I = o(le + 2eol). (2s)

Again, if a and p are tuned to lie in the appropriate
ranges and if the detuning parameter ~e + 2eo~ is small,
namely, ~e + 2eo] (( eo, then we get bistable behavior
under conditions where the local nonlinear behavior is
weak everywhere.

We note that although the solution we obtained is ap-
proximate, its accuracy can be improved by including
more spherical harmonics and more variational parame-
ters in the trial function. We also note that the accuracy
of our approximation is expected to be excellent in the
case under consideration, when the nonlinearity is weak
everywhere.

In order to detect bistable or multistable behavior in
the bulk optical properties we must of course have a finite
density of metallic inclusions. The multistable behavior
will then manifest itself in that the volume average dis-
placement field (D) will be able to attain difFerent values
for the same value of the applied or volume average elec-
tric field (E) = Eo. In order for the discussion presented
in this subsection to be valid, the density of inclusions
must be small and their shapes as well as orientations
must be similar, e.g. , spheres.
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C. Coated spheres assemblage

' EpAir cos8,
EoA2r cos 8 —EoBa ' ',

r(a
a(r &b

b&r,
(29)

Ag ——A2 —B,

In this microstructure the material consists entirely of
composite spheres with a spherical core made of one com-
ponent and a concentric spherical shell made of the other
component. The spheres must come in many difFerent
sizes but all have the same core-to-shell volume ratio. In
the linear case the local fields can be found exactly. In
the nonlinear case we apply the variational principle of
(18) to the following trial function for the potential in
and around a coated sphere situated at the origin:

a
1 —B3 ——A2 —B—.

b3

The latter two equalities are necessary to ensure that
P(r) is continuous at the two interfaces r = a, r = b,
and they reduce to 2 the number of independent com-
plex variational parameters. In the region r ) b, all the
other coated spheres in the assemblage are replaced by
a fictitious uniform medium with a (field dependent) di-
electric constant e, (Eo). The value of e, is determined
so as to make the total dipole moment of the sphere un-
der consideration vanish, i.e. , B3 ——0. But we can set
B3 ——0 only after implementing the variational prin-
ciple, when B and B3 are treated as the independent
variational parameters. We have taken the core to be
metallic and the coating to be dielectric, with dielectric
constants eg, e as in (1), (2), and with volume fractions
p:—a /b, pg = 1 —p . The resultant equations, after
setting B3 ——0, are, respectively,

0 = —(t~ —eo) + [e~ + 2eo —p~(e~ —eo)]B
+boEo([1+ (2+ p-)B]11+p-BI'+ (ReB+ p-IB'I)[-', (1+2p-B) + —;(1+p-)B]

+~B ~[2p (1+p B) + -(1+p )(1+2p B) + -(1+p + p )B]),
0 = e~(Eo) —eo —p~(e~ —eo) + p~pd (e~ —eo)B

+boEo( p~(1+ p—-B)11+p-BI' —p-p~lB'I[2(1+ p-B) + sB(1+p-)] —~p-p~B(«B+ p-IB'I)) .

(32)

The Grst of these must be solved for the unknown param-
eter B, and the second one then determines the other un-

known e, . Both B and e, will depend on Ep. As before,
when the nonlinear terms that appear multiplied by bpEp
are neglected, one regains the correct solution for the lin-

ear case. The value thus found for B becomes very large
in the vicinity of the resonance for this microstructure,
i.e. , when the detuning parameter e +2eo —p {e —eo)
satisGes

Again we Gnd, as before, that in the vicinity of the reso-
nance we can get bistable behavior while the nonlinearity
is weak everywhere, namely,

bo~E~ & O(~e + 2eo —p (e —eo) ~) && 1. (39)

III QUANTITATIVE CONSIDERATIONS

+ 2eo p (e eo) I
« le~ —col. (34)

0 = —(e~ —eo) + [e~ + 2eo —p~ (e~ —eo)]B

+s(5p + 52p + 16p + 8)boEo~B ~B, (35)

which is similar to (22) and (4), and can be reduced to
(9) by making the following definitions:

In that case we cannot neglect the nonlinear terms, but
we can get good results by including only the highest
power of B We thus get., instead of (32),

The examples discussed in Sec. II show that an inter-
esting type of bistable optical medium is a composite in
which one component is a nonlinear dielectric while the
other has a Geld independent dielectric constant with a
negative real part and a very small imaginary part. A
possible candidate to Gll this prescription would be a di-
lute suspension of small silver spheres, each with a radius
small compared to the wavelength, embedded in a matrix
of optical glass. The glass should not be pure silica but
a glass appropriately doped so as to enhance its cubic
nonlinearity coeKcient bp.

We assume the following values for the optical param-
eters:

sboEo(5p + 52p + 16p + 8) B
~e + 2eo —p (e —eo)

~

Re[e + 2eo —p (e —eo)]
[E + 2eo —p (e —eo)

~

—eo [ s boEo (5p + 52p + 16p~ + 8)
+ 2eo —p (e~ —eo)

~

(38)

= —8.4, e" = 0.2, ep ——4, bp ——10 esu,

where the value of e" is close to the lowest value achiev-
able in silver at visible frequencies, while the values of
E and cp are actually nominal: e' must be tuned by
adjusting the &equency so as to make e' + 26p have a
value which is neither too large nor too small. On the one
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hand, it should be as small as possible so as to minimize
the right-hand side (rhs) of (28), but on the other hand,
it should be large enough so as to ensure that p of (25)
satisfies the inequality (10), which is necessary for bista-
bility to occur. A good value to aim for is thus found
to be t' + 2ep ———0.4. The value of bp is taken from
a representative commercial doped glass. Using these
values for the case of the isolated sphere of Sec. IIB we
Gnd

bpEp 6 x 10

for all of these solutions. The incident energy Bux re-
quired to produce bistable behavior is therefore given by

I= Ep =—1.4x10 W/cm .
47r

(40)

The rather high value of Hux that is required results &om
the fact that ie + 2epi cannot be made small enough in
this system, because e" is never less than 0.186. The
obvious way to get a lower threshold for bistable behav-
ior is to use, instead of silver inclusions, a nonmetallic
material that has lower losses and is operated at a fre-
quency slightly below a plasma edge (where e' = 0), so
that e" (& 1 and e' & 0.

IV. DISCUSSION AND CONCLUSIONS

As pointed out in the Introduction, the appearance
of optical bistability in metal-dielectric composites has
been predicted and discussed in a number of earlier ref-
erences. Our contribution has been to introduce a vari-
ational principle that can be applied to some interest-
ing microstructures that could not be discussed quanti-
tatively in the previous approaches. In our examples,
we found that by tuning of the material parameters and
the &equency so as to be near the electric resonance of
the system, we could achieve bistability even though the
nonlinear properties were everywhere only a small per-
turbation to the leading linear behavior. Technically this
happened because, even though the Geld dependent term
bpiEi made only a small contribution to the local dielec-
tric constant, the problem also had another small param-

e + 2ep = —0.4, ie + 2epi = 0.447, it —tpi = 12.40,

p = 0.8944, t+ ——0.7454, t = 0.4472,

a+ = f(t+) = 0.1656, n:—f(t ) = 0.1789.

Choosing cr = 0.17, which satisfies the inequality (11),
we then Gnd that there are three solutions for t, all of
order 1. From (26) and (24) we then get

eter, namely, the amount of detuning away &om the per-
fect resonance condition. Because of this fact, the non-
linear terms involving bpiEi could not be treated pertur-
batively, as in Ref. 13, but had to be allowed to compete
against the detuning parameter. Since the nonlinearity is
everywhere weak, however, the Geld is everywhere close
to what it would be in the linear approximation. Hence
the choice of that form for the trial function should yield
a good approximation to the exact field.

As shown by the example considered in Sec. III, it is
difficult for strictly metallic inclusions to be sufficiently
close to resonance, because e" is not small enough. This
problem may be overcome by using a different material
which has a much smaller value of e" along with a neg-
ative value of e' .

We now speculate on how the results of this study
might be generalized. In a nondilute composite there
are an inGnite number of resonances, each of which ex-
tends over the entire system. When the microstructure
is disordered, these resonances form a dense quasicontin-
uum, and the Geld enhancement near any one of them is
insignificant. An exception to this statement may occur
in the case of an exponentially localized state. However,
such states do not contribute to the bulk effective di-
electric constant in the quasistatic limit, and therefore
any bistability associated with them will be difficult to
detect macroscopically. A considerable enhancement, as
found in the examples discussed in Sec. II, always oc-
curs in the vicinity of a sharp, isolated resonance. Such
sharp resonances which are extended over the entire sys-
tem generally occur in two types of microstructure: (a) a
dilute system of similarly shaped and identically oriented
inclusions; (b) a nondilute composite mixture with a pe-
riodic microstructure. The example of Sec. IIB clearly
belongs to case (a). Examples belonging to case (b) re-
main to be studied. In doing so, it will presumably be
helpful to use our solutions for the linear case as starting
points for constructing good trial functions to use with
the variational principle of (18).
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