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Analysis of spectroscopic data in Kondo systems
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The dynamics of the impurity spin in the Kondo problem has been studied in detail in the context of
specific spectroscopic tools. The bosonized form of the Kondo Hamiltonian has been used to derive

complete line-shape expressions relevant for interpreting NMR, Mossbauer, and ESR experiments. The
calculation is equivalent to the so-called dilute-bounce-gas approximation in the treatment of the recent-

ly introduced spin-boson Hamiltonian. Analytical results are derived for longitudinal and transverse re-

laxation rates, NMR Knight shift, and the ESR g shift. From these, several known perturbative results,
including the Abrikosov law, are recovered as special cases. The more general results derived here have

been used to analyze a wide variety of spectroscopic data and the fits are found to be very satisfactory.

I. INTRODUCTION

Recently there has been a resurgence of interest in the
classic problem of a localized magnetic moment in a me-
tallic environment, in view of the applicability of its vari-
ants to electron assisted tunneling in glasses, ' behavior of
certain uranium-based heavy fermion materials, and
resistivity in heavily doped conducting polymers, among
others. Models such as the multichannel-spin- —,

' Kondo
system and the two-impurity Kondo system are topics of
current research. Their behavior is very different from
the single-impurity one-channel, conventional Kondo
system. Understanding of the conventional Kondo sys-
tern itself has increased tremendously after the exact di-
agonalization of the Hamiltonian. However, the dynam-
ics of the impurity spin cannot be calculated exactly and
various perturbation techniques have been employed with
varying degrees of success. The dynamic aspects of the
impurity spin, in the context of specific experimental
probes, is the issue we wish to address in the present in-
vestigation.

While studying dynamic properties, one is mainly in-
terested in the relaxational behavior of the impurity spin.
The latter can be investigated through a variety of experi-
mental probes such as the impurity NMR, host near-
neighbor N MR, the Mossbauer, the electron-spin-
resonance (ESR), and the magnetic neutron-scattering
spectroscopies. The system studied is a dilute magnetic
impurity in a nonmagnetic metallic host. We briefly de-
scribe different theoretical approaches employed to inter-
pret various spectroscopic data. All approaches use the
conventional Kondo Hamiltonian

Ax =JS s(0)+g E(k)cz cz„,
k, cr

where operators c& create electrons of wave vector k,
energy e(k), and spin index o =+1. The spin S
represents the impurity spin localized at r=O, which is
assumed to be one half and s(0) is the effective spin of all
the conduction electrons at r=O. The parameter J is the
strength of the exchange interaction between the local-
ized spin and the conduction electrons and is positive for

antiferromagnetic interaction, as is the usual situation in
real metals. The quantity pJ is a dimensionless variable
of the problem where p represents the density of states at
the Fermi energy. One other parameter which enters all
calculations is a high-energy cutoff D for the excitations.

In very early attempts Hz was treated perturbatively

up to second order in pJ to yield for the relaxation rate

mk~y= (pJ) T, (2)

Ttt = (D/k~ )exp( —1/pJ) . (4)

Using a diagrammatic method Abrikosov had shown that
summing the most divergent terms to all orders in pJ
leads to an expression for the relaxation rate which de-

pends only on one parameter Tx (Ref. 8)

eke
y = T[ln(T/Tx )]

This expression is very satisfactory for T && Tz but again
diverges at temperatures close to T&. In an attempt to
remove the so-called Kondo divergences, Gotze and
Schlottmann considered the exchange coupling to be an-
isotropic with two components J~~ and J~. Using the
ideas of Anderson and Yuval' they treated J~ perturba-
tively and obtained consistent results by numerically solv-

ing certain nonlinear equations. These results were used
to interpret the experimentally obtained Cu:Fe relaxation
rates and the hyperfine field at the probe nucleus.

On the experimental scene, different groups had em-

ployed different theoretical pictures to explain the mea-

which has the "Korringa form. " The first "Kondo
correction" appears in the third-order perturbation term

uk~
y = (pJ ) T[ 1 —2pJ ln( kz T /D ) ] .

fi

The next correction has a term such as (pJ) ln (k&T)
and so on. One can easily see that for the series to be
convergent it is not pJ but the product pJ 1n(k&T/D)
that has to be a small parameter but this is not the case
near the so-called Kondo temperature
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sured relaxation rates depending on the technique being
used and the system under study. For Mossbauer spec-
troscopy experiments third-order relaxation theory was

employed which yielded the relaxation rate (3}." In rela-
tively recent studies at very low temperatures the Abriko-
sov law given by (5) showed a better agreement. '

Mossbauer spectroscopy has also been used to measure
the hyperfine field acting on the impurity nucleus' and
the analysis was done using a Curie-Weiss form of the lo-
cal polarizing field that has a temperature dependence
1/(T+ T»). ESR experiments were also analyzed using
the Abriksov law' and later with an improved calcula-
tion taking into account the effect of the applied magnet-
ic field. ' This theoretical analysis was not very satisfac-
tory because the value of Tz came out to be surprisingly
low and the values of Tz obtained from the relaxation
rate and the g shift differed by four orders of magnitude.
Satellite NMR experiments have been used to extract the
impurity spin-relaxation rate and the hyperfine field act-
ing on the probe nucleus. ' ' While the relaxation rates
for Cu:Fe were explained using the calculations of Gotze
and Schlottmann, the Knight shift was analyzed using
the Curie-Weiss law, and also using Wilson's numerical
renormalization-group calculation for the spin suscepti-
bility. '

In the light of the preceding discussion, we feel that
there is a need for a comprehensive and unified theoreti-
cal framework for deriving analytical results which take
care of the Kondo divergence and can be applied to any
experiment at all temperatures of practical interest. The
effect of the external magnetic field on the relaxation
rates which is of importance at low temperatures' should
also be built in. Thus the purpose of this paper is to ob-
tain complete line-shape expressions relevant for the
NMR, ESR, and Mossbauer experiments starting from a
fully quantum-mechanical and microscopic model. The
idea is to treat the exchange constant J to all orders and
still be able to calculate a general expression for the line
shape. From the latter should emerge quantities such as
the relaxation rate y, whose temperature dependence is
valid at all temperatures of practical interest as opposed
to results such as (5), which may be good otherwise but
are invalid at temperatures close to Tz.

ff= AI,S,+fuuNI, +flu, S,—JS.s(0)

+g e(k)cog c„
k, o

(6)

+ S, g e '&k/mL (a&+a&)
2 k&0

+ (S+e~+S e ~),

where ak, ak are the Bose operators for spin-density exci-
tations, k, is a cutoff related to D, UF is the Fermi veloci-
ty, and

where A is the hyperfine coupling parameter and co& and

co, are the Larmor frequencies of the nuclear and the
electronic spin, respectively, in the external field. The
spin I may either be the nuclear spin of the impurity
atom in conventional NMR (Ref. 19) and Mossbauer
studies, ' ' or the nuclear spin of the impurity-near-
neighbor host atoms relevant for the satellite NMR mea-
surements. ' ' We are interested in inquiring what
would be the inhuence of the dissipative dynamics of S on
the spin dynamics of I. It is clear that the Hamiltonian
in (6) minus the term proportional to J can be solved ex-
actly as the conduction electrons do not couple to the im-

purity spin. If we treat the term proportional to Jpertur-
batively the resulting analysis would yield the relaxation
rates of the form (2) and (3). Here we take an alternate
route and consider the Kondo Hamiltonian with an an-
isotropic exchange interaction with two components J~~

and Jq.

» =g s(k}cq~cq~ J~(S, g (cq tcqt —cq gcqg )

k, cr k, k'

—J~ g (S+cz &czar
—S cz tet~ ) .

k, k'

This Hamiltonian can be represented in terms of spin-
density and charge-density excitations which are bosonic
in nature (see, e.g., Refs. 20 and 21}. The charge-density
excitations completely drop out of the problem leading
finally to the following form of the Kondo Hamiltonian:

&» =flvF g kayak
k&0

II. THEORETICAL MODEL

A. Hyperfine interaction in a Kondo impurity

g= g e '&4m/kL (a& —a&) . .—k /2k

k&0

We now make a unitary transformation R VER with

(9)

R =exp(S, g), (10)

The object of the present investigation is to study the
effect of the conduction electrons on the nuclear spin I of
the impurity through the hyperfine interaction. For sim-
plicity we restrict the present discussion to a case where
the hyperfine interaction is uniaxial. We assume that the
external magnetic field in magnetic-resonance experi-
ments acts along the z axis. Thus the Hamiltonian that
describes the uniaxial hyperfine interaction of the nuclear
spin I with the electronic spin S of the Kondo impurity,
in contact with a conduction electron bath, can be writ-
ten as

which results in

%'=R VfR

J~k,= AI,S,+fico~I, +A'co, S,+ S„2'

+ —2 fivFS, g e ' m.k/L (a&+a&}
2 UF k&0

+AVF g kazaz .
k&0
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For convenience we use the following compact nota-
tions:

coj j2co
Gi, = fi—+Kiru~coi, /L e (12)

where we have introduced frequency variables cok=UFk,
67 =vpk„and

(13a)

II
JE= 1—

'2

(13b)

1E= 1 ——pJ
2

'2 (14)

The Hamiltonian in (11)can now be written as,

Further denoting p=(2Mvt;) ' as the density of states at
the Fermi surface, Eqs. (13) can be cast in a dimensionless
form

6/co, = —pJ,

where IT is the canonical equilibrium density operator and
the time dependence of I is governed by the full Hamil-
tonian % in Eq. (6). As both the operators R and T corn
mute with I, the Laplace transform of C(t) in (20) may be
written in terms offf as

(p) =Trs {psI [0(p )],„I„]. (21)

B. Resolvent expansion

In writing (21) we have used the Liouville operator for-
malism for introducing the bath-averaged time develop-
ment operator [0(p)],„,where U(p)=1/(p iL —), L be-

ing the Liouvillian associated with &. In addition we
have factorized the canonical density matrix p, assuming
the system-bath interaction to be smaller than thermal
energy, as p =p& p~, where ps is the density operator for
the spin system, associated with the first three terms in
(18), and ps is the density inatrix for a bath of nonin-
teracting bosons, the Hamiltonian of which is given by
the last term in (18). The bath-averaged time develop-
ment operator contains all the information regarding the
influence of the electronic environment on the impurity
atom. For notational convenience we introduce a fre-
quency variable for the hyperfine constant: a = A /A'.

&'= AI, S, +RcotcI, +iit'co, S,+fihS„

+2S, g Gz(ai, +a&)+g Acomia&a& .
k k

(15)
The strategy now is to treat the term proportional to

pJ~ perturbatively. We separate the Hamiltonian in (18)
into &s, &t, and &s, where

jt=Tyf'T ',
where T is a unitary operator defined by

(16)

T =exp —2S, g (Gi, /fuji, )(ai, —
a& )

k

(17)

The Hamiltonian in (15), sans the first two terms, is
identical to the spin-boson Hamiltonian recently studied
at great length by Leggett et al. ' Earlier, we treated a
similar but simpler Hamiltonian in the context of the dy-
narnics of an impurity spin coupled to a spin-boson dissi-
pative system. The present calculation thus proceeds
along similar lines. It has been shown by us, amongst
others, that a convenient perturbative treatment of the
spin-bath coupling is possible upon making a unitary
transformation on the Hamiltonian:

&s = AI,S, + ,'%co+I, +—irico,S, ,

&t = —A'b, (B+S +B S+ ),
&s =g flcoi ai ag

k

(22)

At this stage we wish to reemphasize the fact that the
steps leading from (8) to (22) are exact except for neglect-
ing an additive constant term. The quantity crucial for
calculating the correlation function (20) is the bath-
averaged time development operator which in its exact
form can be written as [U(p)],„=Try[ps 1/(p iL)]. —
The approximation comes in when we treat HI as a per-
turbation so that, to second order in HI, the Laplace
transformed bath-averaged time development operator
reads

Thus we obtain

%=AI,S, +AcoNI, +A'co, S,
[ ~(p)],„=

p iLs+ [Lt(p—iLs iLs )
—'Lt ]—,„

(23)

fih(B+S +B S+ )+Q—Acomia gag,
k

where S+ =S„+iSand

B~ =exp +2 g (Gi, /ficoj, )(aI, —ai, )
k

(18)
where I.z, I.l, and I.z are Liouville operators associated
with &s, %t, and &s, respectively. Denoting the states
of I by the latin indices m and m' and those of S by the
Greek indices p and v, (21) may be written as

C'(p)=y /&m /I„fm)/'

Xg&mv~ps~mv)

C(t ) =Tr[pI„(0)I„(t)], (20)

In arriving at (18) from (8) we have omitted certain con-
stant terms as they do not contribute to the dynamics.

The central quantity of interest is the correlation func-
tion

X(mv, m'v~[0(p)], „~mv',m'v') . (24)

The "states" of the Liouville operators are denoted by
~vp). For simplicity we consider the case I= ,' so that—
only the terms with m = —m' survive in (24), which
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means that a relevant matrix element of the operator
(p i—Ls }has the form

(mp, —mvl(p —iLs}lmp, —mv}

=p 2—imrorr im—a(p+v)/2 ic—o, (p v—)/2 . (25)

Equation (25) indicates that the expressions to be ob-

tained later may be written in a compact form by intro-
ducing the notation

s =p 2lltlco~ . (26)

With this in mind the matrix of the self-energy given in
(23) can be evaluated explicitly and a typical element is
given by

(mp, —mvl Lr . . Lr Imp' —mv'}
p —IL~ —tL~

& pn I~r lan' & & rin'I~r Ip'n &

=(I/A' ) (n ps n 5„„,
s —i(E„E„—. ) /fi iso—,(7) v)—iam—(ri+ v )

(v'n I&, Ign' & & gn'I&, Ivn )
+5

s i(E„—E„)/f—i i co, (p— n) —iam —(p+ ri)

(pn I&,Ip'n')(v'n'I&, Ivn )
s i (E„.—E„)/R —i co, (p' —v) —iam—(p'+ v )

(pn IJYzlp'n')(v'n'~itzlvn )
s —i(E„E„)/R—i co, (ij, —v') ia—m(is—+v') (27)

where E„denotes the eigenvalue of the bath Hamiltonian %fir We .note that the matrix for

Ip iLs+ [—Lr(p iLs iL—rr )
'—Lz],„],for a fixed m and within the subspace of S, is block diagonal with 2X2 blocks.

However, we need focus only on the upper left block as is evident from (24}, and thus we find (displaying only the upper
left block) for the matrix of [0(p)],„:

1

Det(m)

s+iam

+4+ (s }+4'+ (s+ )

+(s+ }+4' +(s )

s —iam

4+ (s }+4' +(s+ ) +4 +(s+ )+4 +(s }

(28)

where s+ =s piro, and Det(m) is given by

Det(rn) =s +s[Cr+ (s )+4 +(s+ )]

+ [4'+ (s+ }+4' +(s }]+—,'a

+iarn [[4 +(s+)+4' +(s )]
—[4+ (s )+4'+ (s+ )]] .

In (28) and (29)

f2
(&y(0)&y(r) )s,4

(29)

(30)

4+ (i)=4 +(t)

4(t) =— exp[imKsgn(t)]
1

4'

X
irrpco,

2K

[sinh( m
I
t

I /~ }]2»

The I.aplace transform of (31) finally takes the form

(31)

and primed quantities have t replaced by —t. The hat
denotes the Laplace transform.

The bath correlation functions 4++(t) can be explicitly
evaluated because the required density matrix involves
the Hamiltonian of the bath alone. Within the Ohmic
dissipation model, and for AP, I

t
I
» I /co, the bath corre-

lation functions in (30) yield

4(p) =
—,'F(p)exp(imK),

4'(p }=—,'F(p)exp( i n K ), —

where

(32)
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F(p)=(b, Ico, )(2n.k~T/fico, )

XB(1 2K—,K+phP/2m ), (33)

1
C(p) = g — exp[fiP(mav+coNm —co, v)]... 4Zs

X( —mv, mv~[0(p)]„~—mv', mv') . (34)
B in (33) denoting Euler's complex P function.

C. Result for the NMR line-shape function

With the time development operator available one can
calculate the correlation function using (24), which takes
the form

Knowledge of C(p) is adequate for evaluating the NMR
line shape within the linear response theory. It is worth
mentioning that with the bath-averaged time develop-
ment operator [0(p)],„known, it is straightforward to
also calculate the Mossbauer line shape but we restrict
the present discussion to NMR experiments. The corre-
lation function in its final form reads

exp(ficoNPm ) s+ [F(s+ )+F(s ) j cos(nK ) l2 im —(a /2)tanh[fiP(ma co—, ) /2) ]
(p)=g 8cosh(2~~p) s[s+ [F(s+ )+F(s )jc so(nK)/2] ma—IF(s+ ) F(s —)]sin(nK)/2+a l4

(35)

Equation (35}describes the complete NMR line shape of a nucleus in the vicinity of a Kondo impurity spin. As one
is normally interested in the line shape near the resonance frequency the electronic spin-relaxation rate can be directly
read from (35}as

y=Re[F(icoo+)+F(icoo ) jcos(nK)/2, (36)

where coo is the resonance frequency minus coN (coN is expected to be the resonance frequency in the absence of the
hyperfine field). The electronic spin-relaxation rate being large in Kondo systems, one should divide the numerator and
the denominator of (35) by s+ IF(s+ )+F(s ) ]cos(mK)l2 in order to extract the nuclear-spin-relaxation rate. The re-
sulting expression has the form

a l4 ma [F—(icoo+) F(ic—oo ) ]sin(nK)/2
s+ (37)

i coo+ I F(i coo+ )+F(i coo ) ]cos(mK )/2

For a nuclear spin relaxing with a rate I and under the inhuence of a static field the corresponding expression looks like

p —i AH+ I . With this in mind it is straightforward to identify the effective hyperfine field as

a Im[F(icoo+ ) F(ico—o ) ]sin(nK )l2 ReI F(i coo+ )+F(icoo ) ]cos(mK ) l2

coo+[Re[F(icos+)+F(icoo )jcos(mK)/2]~
(38)

In the following analysis E will be written as
(1—

pJ~~ /2)—:1 —e, so that the parameter
s=pJ~~ —

—,'(pJ~~ ), and the cutoff A'co, may be denoted by
D in order to follow notational conventions. Equation
(36) describes the relaxation rate of impurity electronic
spin and is applicable to NMR, Mossbauer, and even
ESR experiments. Equation (38) represents the effective
field acting on the nucleus and can be used to interpret
the NMR Knight shift and Mossbauer hyperfine field
measurements. We should emphasize that the separation
of the exchange constant J into two components was
made only as a formal mathematical procedure which by
no means implies that J~ is smaller than J~~ (see also Ref.
10). Consequently on physical grounds, we shall treat
pJ~ =pJ~]

——pJ in the subsequent discussion.

ESR experiment wherein the probe participates directly
in the relaxation process we have to calculate the imagi-
nary part of the transverse dynamical susceptibility. A
theoretical calculation for the T2 relaxation rate and the

g shift was done by von Spalden et al. to explain their
ESR data. ' The analysis was quite unsatisfactory in
view of the widely divergent values of Tz obtained from
the relaxation rate and the g shift. Here we present a
treatment which we think is superior in the sense that the
Kondo divergence is removed and J~~ is treated exactly.

For the ESR case we neglect the hyperfine interaction
which is in any case not relevant for the specific experi-
mental system at hand in which the nuclear spin is zero.
In an ESR experiment one normally assumes the external
field to point along the z axis so that the Hamiltonian for
a Kondo impurity looks like

III. ESR LINE SHAPE: TRANSVERSE SUSCEPTIBILITY
OF THE IMPURITY SPIN

&ssR=fico, S,—JS.s(0)+g e(k)cz~c„~,
k, o.

(39)

The analysis till now yielded the longitudinal relaxa-
tion rate of the impurity spin. In order to interpret an

which is, in fact, just the Kondo Hamiltonian in an exter-
nal field. One may then go about our earlier route of
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IEsR(c0}=ReI e ~'(S„(0)S(t))dt,
0

(40)

where the microwave field is applied along the x axis. In
order to directly adapt our earlier derived results to the
present case we assume now the external magnetic field to
point along x axis and the microwave along the z axis,
which is perfectly justified as the exchange coupling is
isotropic in our final analysis. The Hamiltonian then has
the form

splitting the exchange constant into J~~ and Jj and calcu-
late the ESR line shape within the linear-response theory,
using the relation

ffEsR=flu, (B+e~S +B e ~S+ )

2—AE—(B+S +B S~ )+g Beg~a )~ad, (43)
k

where all the quantities have already been introduced.
The first two terms can now be treated perturbatively
within the resolvent expansion formalism. The calcula-
tion proceeds exactly on the lines of Ref. 23 except for
the evaluation of the bath correlation functions, which is
a bit more complicated in this case. We skip the details,
which would have been almost a repetition of Sec. II in
any case, and just display the result for the ESR line
shape:

gfEs„=fico,S„—JS s(0)+g e(k)cz cz (41)
k, o

Accordingly the ESR line shape is given by

IEsR(co)=Re f e ~'(S,(0)S,(t})dt . (42)
0

We now repeat the procedure which led to Eq. (18}
from Eq. (6), for our Hamiltonian in (41). The resulting
transformed Hamiltonian reads

1
IEsa{m)=Re (44)

In order to extract the relaxation rate and the effective
field we replace p in the relaxation function G(p) by the
approximate resonant absorption frequency co, . It can
then be represented in terms of Euler's complex y func-
tions as follows:

( J ) (T/A) ' (2 ) ( + 8/T) (i8+ T) op x I (1+e+i8/T)

+
~ a 82 T & „cosa' I'(1 —2ri)I'(1+ri+i8/T)

i 8+ AT I'(1 rt+i8/T—)

~ a pJ8 T ~, cosm5 I'(1+25)I (1 5+i8l—T)
(2n } i8/T 5P—1+5+i 8/T )

(45)

ri=(pJii }'/4 5=(pJ})/2 —
(pJli }'/4

A=fico, /2nks, and we have introduced a new "Larmor
temperature" 8=eau, /2n. ktt. The real part of G in (45)
is the transverse relaxation rate of the impurity spin and
the imaginary part is the effective field acting on it:

yz-=ReG

h,I=ImG '

The results (46) can be used to interpret the relaxation
and g-shift data in an ESR experiment. Again, in the fol-
lowing analysis we consider pJ~ =pJ~~ =pJ.

IV. ANALYSIS OF RESULTS AND FIT
TO EXPERIMENTAL DATA

A. The case of zero coupling with conduction electrons

In order to make a consistency check on results (35)
and (45), we first investigate the specific case wherein the
exchange interaction with the conduction electrons is
zero. This can be achieved by taking the limit pJ~O in
which case F(p) vanishes. The resulting expression reads

(fuutc pm )

4 ~ 2 cosh( —,'tric0NP)

s i trt (a /2—)tanh(A'( ma —co, )P/2 )
X s+a /4

(47)

The validity of this result can be easily checked if the
correlation function were calculated using the Hamiltoni-
an %s = AI, S, +fico&I, +Pm, S,.

A similar procedure on (44) leads to

1
IEsR(co) =Re

P LCOe
(4g)

B. The spin-relaxation rate

The longitudinal ( T, ) relaxation rate described by (36)
has quantities such as coo+co, in the argument of the

which again can be obtained directly from the Hamiltoni-
an of a free spin in a magnetic field. The effective field on
the spin, from which one can extricate the value of the g
shift, reduces to the external field as the exchange in-
teraction has gone to zero.
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function F(p}. In the NMR case, coo can be neglected in

comparison to m, (the nuclear magneton being much
smaller than the Bohr magneton} such that F(+iso, } is
the relevant quantity in the expression for the relaxation
rate. For simplifying subsequent analysis we use the no-
tations introduced in (45), and represent the relaxation
rate in terms of a function F+ =a—F(+i8), which may be
written as

)2 z, I'(2e —1 }I'(1 —e+l8/T)
I (1+a+i 8 /T )

(49)

where a =A '(2m.kz /A'). This expression is substituted in
(36) for obtaining the T, relaxation rate. A further ex-
pansion in a Taylor series in pJ yields

3.0

2.5

2.0
N

P4

C)
1.5

1-0

0.5

0.0 '

1 10 1P3102

Temperature ( K 'j

I
I s I I I I I I l I I ~ I I I I I I

mk~
y= (pJ) [1—2pJ ln(T/A)+ . ], (50)

—lnl (i8/T+e)],
=exp[(1 —2e)f(i8/T) ], (51)

where g represents Euler's digamma function. In the
limit T~O, f(i 8/T) is well approximated by in(i8/T),
which leads to a dramatic vanishing of the temperature
dependence of the line shape:

hark~
lim F(i8)= (pJ) (T/A) 'I'(2E —1)(8/T)'
T~O

X(i8+eT)exp[in(1 —E)]

which exactly matches the result quoted in (3).
At very low temperatures ( A /e » ks T) in the context

of a Mossbauer experiment, Gonzalez-Jimenez, Imbert,
and Hartrnann-Boutron, " showed that the electronic re-
laxation rate saturates and the Kondo correction be-
comes pJ ln(A/D). We analyze now the line-shape ex-
pression (35) in the limit T~O. Because e is much small-
er than 8/T one can make the following approximation:

I (1+i8/T e)—
=exp[lnI (1+i8/T E)—

I i8/T+E

FIG. 1. The longitudinal relaxation rate y fitted to the im-

purity spin-relaxation rates derived by Alloul (Ref. 16}from sa-
tellite NMR data on Cu:Fe. The error bars are not indicated in
the figure. The field 8=0.9834 and the best-fit line yields
pJ=0.28 and a=3.4. The Kondo temperature for Cu:Fe is be-
lieved to be 27.6 K (Refs. 16, 17, and 26) and is indicated in the
figures by a dotted line.

case. For this purpose we have used the experimental
value of the magnetic moment p,&=2.74p~ for Cu:Fe
(see Ref. 13 for details). We have fitted the equation to
the impurity spin-relaxation rates measured in the satel-
lite NMR experiments of Alloul' and Kanert, Mali, and
Mehring' (see Figs. 1 and 2}. The fit is very good and
the value of pJ comes out to be a bit larger than 0.2
which is normally assumed for the Cu:Fe system. In the
Mossbauer case there is no external field which means
that I'+ =F, hence aro cannot be neglected from the ar-
gument of F(p) and is replaced by 2m A Iks. The result-
ing equation is fitted to the most recent Mossbauer data
obtained by Bonville et al. ' (see Fig. 3). The fit is as

0.8

X I (2e —1)i8 exp( i m e ) . — (52)

To third order in pJ the relaxation rate y then takes the
form

0.6—
N
X

CV

C)

0.4—

y =(mk~ /A)(pJ) T[1—2pJ ln(8/A)] . (53)

This is referred to as the "saturation" of the Kondo
correction observed experimenta11y at very low tempera-
tures. "

For fitting the theory to the experimentally measured
relaxation rates in NMR and Mossbauer experiments we
use the following equation:

0.2—

0.0
1

iiiI
10

I

I II I I I I I II
102

Temperature ( K )

y =a Re(F+ +F )cos(n E)/2 . (54)

%e have two fit parameters a and pJ and the quantity 0
is calculated from the applied magnetic field in the NMR

FIG. 2. The longitudinal relaxation rate y fitted to the im-

purity spin-relaxation rates derived by Kanert, Mali, and Mehr-
ing (Ref. 17) from satellite NMR data on Cu:Fe. The field
0=0.9834 and the best fit yields pJ=0.28 and a =3.187.
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FIG. 3. The longitudinal relaxation rate y fitted to the im-

purity spin-relaxation rates derived by Bonville et al. (Ref. 12)
from Mossbauer experiments on Au:Yb. The external field 8 is
zero, the hyperfine separation is 0.11 K, and the best fit yields

pJ=0.069 and a=7.821. There is no general agreement over

the value of T& for Au:Yb but it is believed to be of the order of
a few mK.

7emperature ( K )

FIG. 4. The transverse relaxation rate y z fitted to the impur-

ity spin-relaxation rates obtained by von Spalden et al. (Ref. 15)
from ESR measurements on Au Yb at two difFerent values of
the external field. Both fit lines are drawn using pJ=0.026 and
A '=2.961 with only the external field taking difFerent values

corresponding to 9.0 and 3.4 GHz.

good as the one given by Abrikosov law used by the au-
thors.

Shifting our attention to the transverse spin-relaxation
rate (yr) given by (46), we find that it has a somewhat
diferent structure from that of the longitudinal relaxa-
tion rate (y). But the two results become identical for
co, =0, which is expected, as in the absence of an external
magnetic field one cannot distinguish between transverse
and longitudinal relaxation (provided, of course, one
neglects the nuclear Zeeman and the hyperfine interac-
tion terms from y, being irrelevant in the ESR case). For
Zeeman energies small compared to the temperature, the
result for the transverse and longitudinal relaxation rates
is the same up to third order in pJ. Thus at high temper-
atures the T& and Tz rates are equal for small pJ. At low
temperatures (pJ.T «8) a similar expansion in pJ
shows that y=2yT, i.e., the longitudinal relaxation is
two times Inore effective than transverse relaxation.

In the fitting procedure we use y r =Re(G ), where G is
given by (45), with two fit parameters pJ and A. Experi-
inental data obtained by von Spalden et al. ' have been
used for the purpose (see Fig. 4). Again, 8 has been cal-
culated from the applied external field and is not a fit pa-

(55a)

By defining an effective exchange constant J(T) the
above expression can be cast in a form similar to the
second-order relaxation rate (2}:

okapi

yo= (pJ(T)) T, (55b)

where

rameter. The fit is satisfactory in the sense that the value
of pJ obtained from the relaxation-rate data is in good
agreement with that obtained from the g-shift data (see
Sec. IVD). The effect of the external magnetic field on
the relaxation rate is clearly brought out in the low-
temperature regime.

For the sake of comparison with the existing results
widely used for data analysis we consider the zero-field re-
laxation rate

2@kB i i, I (2s —1)I (1—s)
yo= (pJ) (T/A) ' eT cos(ms) .

pJ(T)=pJ(T/A) 'v'[2I'(2E 1)1 (1——s)/I (1+a)]icos(mE) . (55c)

One can see that the efFective exchange constant increases
as the temperature decreases and should become infinite
as T~O. This feature constitutes the essence of the Kon-
do problem. Note that J(T) does not diverge at T= Tz
as in conventional perturbation theories. For sma11 pJ,
J(T }can be approximated by

pJ(T}= J PJ
(T/A)pJ 1+pJ ln(T/A)+

1

ln(T/Tz )+O(pJ)

which when substituted in (55b) leads to

(56}
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mk~ l
Qo T

[ln( T /Tx ) +O(pJ ) ]
(57)

C. The NMR Knight shift

The Knight-shift data had been analyzed till now by
relating it to static susceptibility for which the Curie-
Weiss form 1/(T+ Tx) was assumed. With this method
one cannot explain the saturation of the hyperfine field at
low temperatures. ' ' ' Moreover, the Curie-Weiss law

where Tx =—A exp( —I/pJ). If we neglect terms of order
pJ from the denominator of (57) we are left with the
well-known Abrikosov law introduced earlier in (5).
Thus, the Abrikosov law derived originally from a di-
agrammatic technique turns out to be a special case of
the relaxation rate calculated by us.

can only be used in a limited temperature range as sug-
gested by the experimental data' and also by the numeri-
cal calculation of Wilson. ' On the other hand our ex-
pression for the hyperfine field given by (38) is valid even
at very low temperatures and would saturate in the limit
T +0,—in view of (52). At temperatures such that y »coo,
the expression simplifies to yield

a Im[F(iaido+) F(—icoo )]
cohf= . tan(mE)/2 .

Re I F(i coo+ )+F(i a)0 ) ]
(58)

One can easily verify that for high temperatures
(T»8/s) the expression (58) follows a Curie-Weiss law
of the form coh&-1/T.

For fitting the theory to experimental data we use the
following fit equation with three fit parameters A „0,
and pJ:

ImIF+ F]sin—(nIC)/2 ReIF++F ]cos(mE)/2

0 + [Re [F++F ]cos(mK/2]
(59)

where A
&

and 0 arise from the freedom to choose the
cutoff A and coo. For the high-temperature data one
would need only two fit parameters. The parameter 8 as
usual has been calculated from the applied external field
which is typically 40-50 Koauss. We analyze the satel-
lite NMR Knight-shift data of Alloul' and Boyce and
Slichter, and the Mossbauer hyperfine data of Steiner,
Hiifner, and Zdrojewski' (see Figs. 5, 6, and 7). Note
that the value of pJ for Cu:Fe obtained from the
hyperfine field analysis is in fair agreement with that ob-

tained from the NMR relaxation data. Moreover, same
parameter values are used to explain the low as well as
high-temperature data. Although the number of adjust-
able parameters seems unsatisfactory at the first glance it
is almost impossible to fit the data in the entire range of
temperature with a fewer set of parameters (see, e.g., Ref.
13).

D. The g shift

The g shift in an ESR experiment is related to the
effective field acting on the impurity spin in the following

16.0 20.0

&2.0— 15.0—

8.0—
I

~ 10.0—
I

4.0— 5.0

I

I 1 IL I I IIII I I l I I llll0,0 I I I I I IIIII
1C) ~ ip-2 )0 -1

1
&0

&/T(K )

FIG. 5. The hyperfine field expression fitted to the relative
NMR Knight shift which is conventionally denoted by hE/E,
measured by Alloul (Ref. 16) from satellite NMR experiments
on Cu:Fe. The field 0=3.21 and the best-fit line corresponds to
pJ=0.29, 31=39.314, and 0=1.67.

0.0
10

i til
10-2

i iiill
ip —1

1 IT (K )

FIG. 6. The hyperfine field expression fitted to the relative
NMR Knight shift measured by Boyce and Slichter (Ref. 26)
from satellite NMR experiments. The data presented is for
difFerent field but for the fit 0 is taken to be 3.18. The best fit
yields pJ=0.25, 3, =43.92, and A=1.8654.
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FIG. 7. The hyperfine field expression fitted to the hyperfine

field measured in a Mossbauer experiment on Cu:Fe by Steiner,

Hufner, and Zdrojewski (Ref. 13}. The fields are indicated in

the figure and all curves are calculated using pJ=0.28 and

0=1.03. However, A& varies with the field and takes values

46.69, 43.90, 39.35, 34.21, and 30.36 corresponding to the field

of 60, 50, 40, 30, and 20 kG, respectively.
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FIG. 8. The expression for go(h, &/cg, +1) fitted to hg mea-
sured by von Spalden et al. (Ref. 15) from an ESR study on
Au Yb. The ionic g value go is assumed to be 3.423. The field
corresponds to 9.0 GHz and the best fit line is drawn for
pJ=0.0268 and A~'=1. 804.

case for small pJ.
We also analyze the g-shift data using the following fit

equation with two adjustable parameters A and pJ:

h tr
=h 0 ( 1 +6g /go ) (60}

hg/go=Im(G)/8+1 . (64)

The fit turns out to be quite good and the value of pJ is in
agreement with those obtained from the ESR relaxation
data (see Fig. 8}.

where go is the ionic g value and ho is the external field,
Now, in expression (46) for h,& given by the imaginary
part of G, there are three different terms. The last term
has a factor T/A which makes it much smaller than the
other two terms, in view of the assumption (A))T)
made while writing down Eq. (31). For the time being
therefore, we consider the imaginary part of only the first
two terms of G, expanded for small pJ. We discover that
the leading term is equal to co, which corresponds to the
applied field and thus the first term ho in (60). Up to
second order in pJwe may then extract

V. DISCUSSION AND CONCLUSIONS

We have derived expressions for the longitudinal im-
purity spin-relaxation rate and the hyperfine field from a
common line-shape analysis, relevant for NMR and
Mossbauer experiments. We have also obtained expres-
sions for the transverse relaxation rate and the g shift, in
the context of an ESR experiment, from a separate calcu-
lation. The entire analysis is based on a unified theoreti-
cal framework of a Hamiltonian that may be viewed as an
extended version of the so-called spin-boson Hamiltoni-
an, studied extensively in the context of dissipation in
quantum two-state systems. In all our calculations the
exchange constant J~~ has been treated exactly in order to
remove the Kondo divergence, while J~ has been kept to
second order. Treating the exchange terxn in the Kondo
Hamiltonian (1) perturbatively means using the direct
product of the impurity spin state and the electronic Fer-
mi sphere state as the unperturbed wave function. This
amounts to adiabatically decoupling the motion of the
spin and that of the electrons. In such a situation, if the
perturbation is dynamic and local, which is the case here,
this approximation always leads to divergent results as is
also exemplified by a heavy particle tunneling in a metal-
lic environment. One has to employ a nonadiabatic
scheme in order to circumvent the problem. By treating

J~~ exactly we choose an unperturbed wave function
where the state of the electrons depends on the state of

h 0.b g /go =8pJ[1+2pJ I
—Ref( 1+i8/T )

+ln(T/A)+g(1)] ], (61)

where g represents Euler's digamma function. This ex-
pression can be manipulated to yield

(62)

If one now sets A.exp( —1/2pJ) = Tx, the above result
takes the form

0/2
ho Ag /go

ln( Tx /T )+Re/(1 i 0/T ) g( 1)— —(63)

which exactly matches the result for the g shift derived
by von Spalden et al. [Eq. (3) of Ref. 15]. Thus, one may
conclude that the present treatment is of more general
nature, the result of von Spalden et al. being one special

8/2
"0 hg/go 1/2pJ+ Ref(1 —i8/T) —ln( T/A) P(1)—
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the impurity spin, thereby taking the nonadiabaticity of
the problem into account. Thus our treatment of the
nonadiabaticity arising from the electron drag is able to
remove the Kondo divergence which occurs in the adia-
batic limit. Using the anisotropic form of the Kondo
Hamiltonian has allowed us to recognize the fact that the
term proportional to J~~ does not cause impurity spin
fhps. The impurity spin Qips are in fact caused by the
term proportional to Jj. Since Jz and J~~ play different
roles we feel some justification in treating them
differently.

In the language of the spin-boson problem the second-
order treatment of J~ is equivalent to the so-called
dilute-bounce-gas approximation (DBGA),~' which has
been found to be very good for describing dissipative tun-
neling in two-level systems. However, we should mention
here that there have been some doubts regarding the va-
lidity of the DBGA in the Kondo regime. ' This point
needs a bit of discussion in order to assess the applicabili-
ty of the preceding theoretical calculations to the Kondo
problem, as done in the following paragraph.

The main strength of our analysis is the fact that the
Kondo divergence, which plagues most calculations, has
been eliminated and still we have been able to obtain
analytical results. Furthermore recent quantum Monte
Carlo (QMC) simulation of the spin-boson Hamiltonian
by Egger and %eiss provides some guidance regarding
the validity of the DBGA in the Kondo regime. The
QMC results quantitatively show that in the parameter
regime where the spin-boson Hamiltonian can be related
to the Kondo Hamiltonian, the DBGA is very good for
all temperatures except below a temperature
T'= Ab, /ks(h/co—, )

" '. In our notations this means
T'/A: 2n(pJ)'~'. —Below T' the QMC result deviates
from the DBGA result at long times. This implies that
our results become questionable at very low temperatures
and low frequencies But b. ecause of the fact that the
external magnetic field is ubiquitous in NMR and ESR
experiments the relaxation rate is not required at very
low frequencies. Even in the Mossbauer relaxation mea-
surements the relaxation rate is required at the hyperfine
separation frequency which, in the case of Au:Yb, is
about 0.11 K. Thus the results presented here can be

confidently used to analyze spectroscopic data in Kondo
systems. One consequence of the arguments presented
above is that it would be grossly erroneous to calculate
the zero field, static susceptibility of a Kondo spin from
the DBGA result for the spin-boson Hamiltonian.

In conclusion, using a self-consistent perturbation
theory we have derived complete line-shape expressions
relevant for NMR, Mossbauer, and ESR experiments in
dilute magnetic alloys. The bosonized form of the con-
ventional Kondo Hamiltonian has been used. Explicit
analytical results are obtained for the longitudinal and
transverse impurity spin-relaxation rates, the NMR
Knight shift, and the ESR g shift. Although the ex-
change coupling is formally viewed to be anisotropic and
the transverse component is treated perturbatively, our
results contain J up to arbitrary orders. The approxima-
tion used is equivalent to the DBGA in the context of the
spin-boson Hamiltonian. The Kondo divergences have
been removed and the results are valid even at the so-
called Kondo temperature. Several perturbative results
extant in the earlier literature are recovered as special
cases of the more general calculation presented here. The
derived theoretical expressions have been used to analyze
and interpret the experimental data reported by diverse
experimental groups involved with NMR and Mossbauer
relaxation measurements, NMR Knight-shift and
Mossbauer hyperfine field measurements, ESR relaxation
and g-shift measurements. The fits are so satisfactory
that we feel we have been able to make theoretical ad-
vance in a well studied and important field of condensed-
matter physics, at least as far as the resonance spectros-
copy data are concerned. Our treatment has also brought
the Kondo problem into the realm of a basic model of
quantum dissipative system that has been applied to a
variety of phenomena such as tunneling of defects in met-
als, macroscopic quantum coherence in superconducting
quantum interference devices, electron transfer process in
chemical reactions, etc. '
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