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Interface resistance for perpendicular transport in layered magnetic structures
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The spin-dependent interface resistance due to electron reflections and refractions at an interface po-
tential step between ferromagnetic and nonmagnetic metals and due to impurities located at the interface
is calculated within the Landauer approach for a current perpendicular to the interface. We show that
experimental values of the interface resistance in Co/Ag and Co/Cu multilayers can be accounted for by
assuming reasonable values of the potential steps and impurity concentrations.

Recent experiments on transport properties of magnet-
ic multilayers with current perpendicular to the sublayers
have raised several fundamental questions. One of them
is the role of spin accumulation at the interface between
ferromagnetic and nonmagnetic materials and the role of
spin-flip electron scattering. Another important problem
is the resistance due to electron scattering by interface
roughness and potential steps. In the first theoretical
treatment of the perpendicular transport based on the
Kubo formalism' the spin-flip scattering was neglected so
that not only the total current but also the currents for
each spin direction were supposed to be constant, i.e., po-
sition independent. The role of the spin accumulation
layer and spin-flip electron scattering was discussed by
Johnson and Silsbee and van Son, van Kempen, and
Wyder for a single interface between ferromagnetic and
nonmagnetic metals and by Johnson and Valet and Fert
for multilayers.

In a recent paper Valet and Fert developed a model in
which the current density j is related to the spin-
dependent electrochemical potential p by simple macro-
scopic relations. Within this model the electron scatter-
ing at the interface, placed say at x=0, is included via the
boundary condition

p (x =0 ) —p (x =0 )=r j (x =0)/e,

withj (x =0 )=j (x =0 )=j (x=0). In Eq. (l), r is
the spin-dependent interface resistance of a unit square,
which includes contributions from the electron reflections
by the potential step and from the difFuse scattering by
the roughness or chemical disorder of the interface. The
model assumes incoherent scattering by successive inter-
faces. It has been used successfully to account for recent
experimental data obtained on Co/Cu and Co/Ag multi-
layers. The analysis of Pratt and co-workers shows a
relatively large spin asymmetry factor for the interface
resistances, r /r+ —-12 in Ag/Co for example, and a
definitely smaller corresponding factor for the bulk resis-
tivities of Co, p /p+ ——2.9. The objective of this paper is
to calculate the interface resistance and, by comparison

with the experimental data of Ref. 6, to draw some con-
clusions about the possible origin of the interface resis-
tance in Co/Ag or Co/Cu, i.e., if it is mainly due to the
potential steps or to the diffuse scattering. The calcula-
tions are performed within the multichannel Landauer
formalism. A similar formalism has also been used in
the theory of Bauer, but in a difFerent way. In our ap-
proach, related directly to the macroscopic theory of
Valet and Fert, we apply the Landauer formalism to de-
scribe the coherent transport across a single interface.
The important parameters of our calculations are the po-
tential steps. The objective of the calculation is to deter-
mine whether the experimental interface resistances can
be accounted for by introducing plausible values of the
potential steps or whether a significant contribution is
due to difFuse scattering by interface roughness.

According to the above we consider an interface be-
tween nonmagnetic (x(0) and magnetic (x&0) metals
and assume an electric current flowing perpendicularly to
the interface, say in the positive x direction. Consider
first the case of ideal interface, i.e., no interface rough-
ness. The potential step at the interface is caused by the
difference in the bottom energy of the conduction bands
in the two metals. Since one of the metals is ferromag-
netic, the potential step depends on the electron spin and
consequently its contribution to the interface resistance is
also spin dependent. Due to the potential steps the elec-
trons suffer partial or total reflection from the interface
with spin-dependent reflection and transmission
coef6cients. The wave-vector component parallel to the
interface, k~~, is however conserved. The potential step
may be difFerent for each spin channel. For clarity of no-
tation the spin index is suppressed here and wi11 be re-
stored when necessary. Assume the potential step to be
of the form

0 for x (0,
U for x &0,

where U (U&0) is a constant. In the framework of the
Landauer approach we considered two perfect leads—

0163-1829/94/49(18)/12835(4)/$06. 00 49 12 835 1994 The American Physical Society



12 836 J. BARNAS AND A. FERT 49

one of the nonmagnetic material and the other one of the
magnetic material —which are connected to two electron
reservoirs described by the chemical potentials p (on
the left) and p (on the right). The electron scattering at
the interface is represented by an elastic scatterer placed
between the leads. The resistance of the scatterer is
defined as the ratio of a difference of chemical potentials
in the leads and the electric current flowing through the
resistor. As we consider here two independent spin
currents (no spin-flip scattering at the interface), the local
chemical potentials in the leads are different for the two
currents (and also different from p and p, ). Following
Ref. 7, the resistance R due to scattering by a potential
step is given by the asymmetric multichannel Landauer
formula

1+( ()—ly(y() —1R ( &)—ly( &)—1T

R=
2e

nb 1 1 —2[J3+J2(1—x, )
'

]

2e Sk~ Ji
(8)

where kz is the Fermi wave vector in the material on the
left side (Ez=R kz/2m, with Ez being the Fermi ener-

gy), S is the lead cross section and J, , J2, and J3 are
defined as follows,

when the corresponding k; is imaginary. In the above
equations, k,. and k; are normal components of the
wave vectors in the ith channel for x&0 and x &0, re-
spectively.

For sufficiently thick leads one may change all sums in
Eqs. (3) and (4) into the corresponding integrals over kii.
It is also convenient to transform the integrals over kii to
integrals over the angle 8 between the electron wave vec-
tor and the normal to the interface. The interface resis-
tance R can then be written in the form

where

g =g(v; )

g'= g(v,')

(3)

(4a)

(4b)

x'(x' —x,')'"Ji= dx
[x+(x —x, )' ]

x
[x +(x —x, )' ]

x(x' —x')'"
C

[x+(x —x, )'i ]

(9a)

(9b)

(9c)

In Eq. (3) T (R;) is the total transmission (reflection}
probability into the jth channel on the right (ith channel
on the left)

TJ = g TJ„' R; = g R;;.

where T; (R;;.) is the transmission coefficient into the jth
channel on the right (reflection coefficient into the ith
channel on the left) for electrons incident in the ith (i'th)
channel of the left lead. Finally, v; and v are the elec-
tron velocities normal to the interface, whereas the sum-
mations over i and j in Eqs. (3)—(5) are the summations
over all channels in the left and right leads. All parame-
ters in Eq. (3) are calculated at the Fermi energy. For
periodic boundary conditions in the plane of the interface
the different channels correspond to different wave vec-
tors kii. For an ideal interface one can write

T, —:T(kii, kii)=T(kii}5; =TJ5; . Similar relations hold
also for the reflection coefficients. Apart from this, the
relation T, +R;=1 is fulfilled. In a quantum description
the transmission coefficients can be written in the form
used, for example, by Hood and Falicov,

2~a
e' kF' C2

'

where

4&=tan(y, )[ —,', —
—,'tan (qr, /2) —

—,', tan (y, /2)]

+sin(y, )[ —,", ——,'tan (p, /2)+ —,', tan (qr, /2)]

and

(12a)

3+cos(y, )
4z=cos (qr, ) ——,'cos (y, )sin (y, ) (12b)

[ 1+cos(y, ) ]

In the above equations the parameter y, is defined as

where x, is defined as

x, =cos(8, ) =( U/E~)'i

For 8 & 8, the kinetic energy of perpendicular motion is
lower than the potential step and the electrons are totally
reflected [Eq. (7b)].

On calculating the above integrals one can write the in-
terface resistance per unit area, r =SR, in the form

4k,)k,
(

T=
(k; +k )

when k,. is real. Consequently

(k; —k; )R;=
(k; +k. )

for k; real, whereas

(7a)

(7b)

sin(y, ) =x, , (13)

or, equivalently, y, =m/2 —8, . Equations (11) and (12)
determine the interface resistance in the case of perfect
potential steps. The formulas are valid for currents flow-

ing in both directions normal to the interface. After
slight changes they apply also to the case of U(0.

Consider now the interface resistance for some typical
situations shown schematically in Fig. 1, where the spin
subbands for minority ( —) and majority (+) electrons in
a magnetic metal are shifted respectively up and down
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A dd tional contribution to the interface resistancena i'
arises rom i uf d'ff se scattering by interface disorder.

rated atmodel situation we consider impurities concentrate a
the interface (x=0) with the areal concentration n . e
impurities in ro uce

'
t d ce some mixing between different quan-

tum channels, i.e., the in-plane wave vector is not con-
served at the transition through the interface. e in-
plane translational symmetry is, however, restored by
averaging over the impurity distribution. To find
effective coe cients; anm

' t T nd R weuseamethod similar to
that developed by Cahay, McLennan, and Datta. n
the simplest approximation, i.e., neg

'
gne lectin the vertex

corrections, one finds

FIG. 1. Potentials for minority U and maj y +ma'orit U+ elec-
trons at the inte ace eh

' rf b tween normal and ferromagnetic metals.

4k; k;

I 2

l

(14)

with respect to the electronic band in the nonmagnetic
t 1 De endence of the resistance r upon t e param-
r U /E is shown in Fig. 2 for a typical Fermi

—io —ivector in a nonmagnetic metal,
f e =Oat U =OtoThe resistance r increases from

about 5.0 fQm (f=femto=10 ) at U /Ez==—0.7. As
U approac es z eh E th resistance r increases rapidly to

E is similar.in ni y.
'

finit . The dependence of r+ on + Ez
'

r =Oat U =0 toThe resistance r+ increases from r+ = a +
fQ t U /E = —1.0 and increases further

the same.
Figure 2 also applies to the situation when botel spin
bb ds in the ferromagnetic metal are shifted up (or

nonma-down) with respect to the electronic band of the n g-
netic metal. In that case both interface resistances can be
found from Fig. 2(a) [or Fig. 2(b)].

In the general case the potential step for majority elec-
trons is i eren rod'ff t from the one for minority electrons.
Consequently, the resistances r+ and r are a so
different. Any value of the asymmetry factor r /r+ can
be obtained. Let us compare the predicted values wit
those found experimentally. The experimental data are
r =2.08 fQm and r+ =0.17 fQm for Co/Ag and
r =1.76 fQm and r+ =0.24 fQm for Co/Cu multilay-
ers. As can be seen from Fig. 2, the higher resistances,
r =2.08 fQm in Co/Ag and r =1.76 fQm in Co/Cu,

fcan be accounted for by assuming reasonable values o
U /E+ around 0.4 [in the free-electron model for s elec-
trons in Co, Cu, and Ag, U /E~=0. 4 means kF (Co)/ z
(Cu or Ag)=&0. 6, or alternatively 0.23 minority-spin s
electrons per atom in Co if one assumes 0.0.5 s electrons

The smallerper aatom and spin direction in Cu or Ag . e
values for r+ correspond to

~ U+ ~/E~ of the orde r of
only 0.03, i.e., to a not very different number of s elec-
trons in Co, Cu, and Ag for this spin direction. Qualita-
tivel, the high value of the ratio r /r+ can be supposetive y, e
to follow from the contrast between a goo od fit of thes
bands of Co, Cu, and Ag for one spin direction
[n+(Co)=n(Cu)/2=n(Ag)/2] and bad mismatch of t e
bands for the other spin direction [n (Co) is definite y
smaller than n(Cu)/2 or n(Ag)/2].

1 dfor k, real. Consequently, R;=1—T; for k, real and

R; =1 for k imaginary. In Eq. (14) P is defined as
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FIG. 2. Dependence of the interface resistances on the poten-
tial steps shown in Fig. 1 for k+ = 1.3 X
resistance or minori y e ecr

' t 1 ctrons and (b) interface resistance for
majority electrons.
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1 2

k; +k; 30—

'2
2m ~ 20

where Vis the impurity scattering potential.
The transmission coefficient (14) difFers from that used

in Ref. 8. In the limit of a clean interface (no impurities),
Eq. (14) becomes the formula used, for example, by Hood
and Falicov, whereas the Bauer form is not consistent
with those formulas.

It is easy to find the following explicit expression for
the parameter 9',

0. 0 0.4 0.6 0. 8 1.0

7/k~=f = [1—(1 x,—) ix—, ] .
1

37TX

The interface resistance is then given by Eq. (8) with the
integrals J|,Jz, and J3 given by Eqs. (9a}—(9c},in which
the denominators are multiplied by an additional factor
A (x)

I.ReIf ] + I'~f ~

+ (
2 2)1/2 4[x + (» 2 x 2)1/2]2

(18)

The integrals have been calculated numerically and some
results are shown in Fig. 3 for several values of I . For
small values of U /Ez, the interface resistances due to
the potential step and the interface roughness are approx-
imately additive. This is not true for larger values of
U /Ez. The basic task now is to estimate the relative

importance of the two contributions. We have seen
above that even the highest experimental values of the in-

terface resistance can be accounted for by reasonable
values of U/EF. On the other hand, the contribution due

to electron scattering by interface defects, for reasonable
values of I, is also comparable with the experimental
data. One can find that I =3 corresponds to plausible
values of the impurity concentration and the phase shift
associated with the scattering potential V.

There is also another argument supporting the con-
clusion that both contributions are comparable. Let us

FIG. 3. Dependence of the interface resistance on the poten-
tial step shown for several different values of the parameter I .
The other parameters are as in Fig. 2.

0
consider a disordered interfacial layer of thickness 4 A
with the typical high resistivity of an amorphous alloy of
4 pQ m in each spin channel (2 }MQ m is a typical value of
the resistivity for amorphous alloys containing transition
metals, which gives 4 pQ m for each spin channel). Writ-
ing r =p l with l =4X10 ' m and p =4 pQ m one ob-
tains r =1.6 fQm . We thus find that scattering by in-
terface roughness can also contribute significantly to the
interface resistance. A balanced contribution from po-
tential steps and disorder cannot be ruled out. Experi-
ments on samples prepared in different ways and having
the same intrinsic steps but different interface roughness
could be helpful in separating the two contributions.

In conclusion, we have calculated the spin-dependent
interface resistance caused by electron reflections from
the potential steps as well as by impurities located at the
interface between magnetic and nonmagnetic metals.
The results can be applied to magnetic multilayers in the
macroscopic limit, when the electron scattering by suc-
cessive interfaces is incoherent. We have found that both
contributions are comparable with the experimental data.
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