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Giant magnetoresistance in magnetic granular alloys
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Numerical simulation on resistance and giant magnetoresistance in magnetic granular alloys is per-
formed for finite-size systems by making use of the real-space Green's-function method based on the
Kubo formalism. Spin-dependent scattering causes the giant magnetoresistance in the magnetic granu-
lar alloys as in the magnetic multilayers. It is shown by using the microscopic theory that the magne-
toresistance increases with decreasing the size of magnetic grains, in agreement with experiment. The
theoretical results indicate that scattering at the surfaces of magnetic grains governs the resistance and
magnetoresistance in granular alloys. DifFerence between the giant magnetoresistances in the granular
alloys and multilayers is discussed.

The giant magnetoresistance (GMR) in magnetic multi-
layers' has stimulated a great deal of investigation of the
magnetotransport properties in the multilayered struc-
tures. The electrical resistance decreases with the reori-
entation of magnetic moments in magnetic layers from an
antiferromagnetic to ferromagnetic alignment by an
external magnetic field. Spin-dependent scattering at the
interfaces between layers has been pointed out to be re-
sponsible for GMR in the multilayers. ' Recent obser-
vation of GMR in magnetic/nonmagnetic granular alloy
films of Co/Cu, ' Co/Ag, s Fe/Ag, and Fe/Cu (Ref. 7)
has further developed a new field of magnetotransport
phenomena in magnetic films. This phenomenon has
been observed even in melt spun ribbons. GMR is a new
phenomenon brought by an interplay of the charge and
spin degrees of freedom of electrons in heterogeneous sys-
tems. In the granular alloys, the geometry or size of the
scatterers is found to play an important role in GMR by
ana1yzing the experimental data as described below.
Fundamental study of GMR in the granular alloys is
significant not only to clarify the origin and mechanism
of GMR but to develop a new research field of spin-
dependent quantum transport in metallic materials with
nano-scale heterogeneity as well as to provide useful in-
formation for technical applications.

Magnetic atoms in the granular alloys form grains in
nonmagnetic matrices. Each grain has a magnetic mo-
ment and its direction is random in the absence of the
external magnetic field. When the magnetic field aligns
the magnetic moments of the grains ferromagnetically,
the resistance decreases as in the multilayers. Further-
more, GMR in the granular systems may be also due to
the spin-dependent scattering. GMR in the granular al-
loys depends on the annealing temperature T„.The
magnitude of GMR increases with decreasing T„.Below
T~-200 C, however, GMR shows a tendency to de-
crease with decreasing T~, which can be attributed to
magnetic coupling between the magnetic grains. Slow
saturation of the resistivity with increasing the magnetic
field supports this interpretation. The experiments of
transmission electron micrograph and small-angle x-ray
scattering have revealed that the average radius r& of

grains decreases with decreasing T„.From these experi-
mental results, we may deduce that GMR increases with
decreasing r&.

So far, only a phenomenological model has been used
for an explanation of GMR in the granular alloys. ' The
aim of the present study is, by using a microscopic model,
to clarify what governs the essential ingredient of GMR
in the granular alloys, that is, the increase of GMR with
decreasing rz. We put an emphasis on the effects of finite
size of scatters (magnetic grains) and spin-dependent po-
tential on the resistivity and GMR. We perform numeri-
cal calculations of the conductance of the granular alloys
at zero temperature based on the Kubo formalism by us-
ing the recursion method. "' In this method, the con-
ductance is obtained exactly without any approximation
although the system has finite size. We will show that the
resistivity and the GMR in the granular alloys are
governed by the scattering at surfaces of magnetic grains
and increase with increasing the surface-to-volume ratio
of magnetic grains.

Let us consider the tight-binding Hamiltonian on a
simple cubic lattice,

H= t g —c;+c +
(i,j),a i Ematrix, a

+
Eg Ci, aCi, a

i Ecluster, a,P

+ +(e w c; ~c; ~5att Atc; aortic; tt) . '

Here i and j label the sites, c, (c, ) is the creation (an-
nihilation) operator of an electron with spin a at site i, t
denotes the transfer integral, n's are the Pauli matrices,

and c.~ are the on-site potentials in the magnetic
atoms and the nonmagnetic atoms, respectively, and At is
the exchange potential in the magnetic atoms. The sum-
mation ( i,j ) runs over the nearest-neighbor sites.

We introduce a relation

e„+[At[=en .

Due to this relation, electrons in the minority spin band
are less scattered by the magnetic atoms which form
grains than those in the majority spin band when the
magnetic moments of the grains are aligned ferromagnet-
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ically. It has been pointed out that in Fe/Cr multilay-
ers, ' a relation equivalent to Eq. (2) holds. The charac-
teristic features of the parallel and perpendicular magne-
toresistance in the multilayers have been successfully ex-
plained' ' by using the relation. The spin-dependent
scattering may depend on the details of electron structure
of the systems. However, the essence of the asymmetry
of the spin-dependent scattering is included in Eq. (2).

In the calculation, we take a model system as shown in
Fig. 1. The lengths of a sample in the directions parallel
and normal to the current are chosen as L=60 and
M=12, respectively, in units of the lattice constant. Two
perfect lead wires with semi-infinite length are attached
to both sides of the sample. In the lead wires, the on-site
potential and the exchange potential are chosen to be
zero. In the present formalism, the conductance is calcu-
lated exactly by using real-space Green's functions which
are expressed M XM matrices for the present system and
obtained recursively. We prepare several types of mag-
netic clusters which model the grains as shown in Table I.
The conductance is first calculated in a sample where
magnetic clusters of one type are randomly distributed,
and then averaged over 20 different random distributions
of the clusters and the directions of the magnetization of
the clusters. We assume that each cluster has magnetiza-
tion.

Let us first examine the resistance (inverse of the con-
ductance) as a function of R sv for several concentrations
of magnetic atoms, where Rsv is a measure of the
surface-to-volume ratio of clusters and is defined as fol-
lows. Each cluster is connected with the matrix by
bonds. The number of such bonds Nz and the number of
the atoms for each cluster are given in Table I. We take
N& and the number of atoms of the cluster as the area of
the surface and the volume of the cluster, respectively,
and define Rsv as the ratio of Nz to the number of the
atoms in each cluster. Rsv smoothly links to the ratio
4~re/(4n. rc/3)=3/rc of large clusters with radius rc
Note that, in a large cluster with the simple cubic lattice,
the unit area of the surface corresponds to one bond con-
necting the cluster with the matrix. In the 27-site cluster,
3/rc is given to be 1.6 when we estimate its radius by the
equation 4nr& /3 =27.

TABLE I. Magnetic clusters used in the calculation. Volume
is the number of atoms of a cluster and Nz denotes the number
of bonds which connect each cluster with the matrix, R sv is the
ratio of N& to volume.

Cluster

Volume 1 site 7 site 8 site 19 site 27 site

Ns 30 54

Rsv 6.0 4.3 3.0 2.8 2.0

0.04

(c)

0.04
— 0.010

Calculated results of the resistance in the systems
where the direction of the magnetic moments of clusters
is distributed randomly (R configuration) and those in
the ferromagnetic (F) configuration are shown in units of
h/e in Figs. 2(a) and 2(b), respectively. The systems in
the R and F configurations correspond to the granular al-
loys in the absence of the magnetic field and in the satu-
ration field H&, respectively. The potentials of the cluster
and the matrix are chosen to satisfy the relation Eq. (2) as
E~ = —1.0, ss =0.0, and ~JK~ =1.0, and the Fermi energy
EF is taken to be zero, where the energy is measured in
units of the transfer integral t. Comparing with the band
width (i.e., 12.0), the difFerence in the potentials,

~
E„—es ~, is comparable to that of the actual materials.

The resistance in the R configuration increases with in-
creasing Rsv for fixed concentration. The resistance in

Fig. 2(a) is replotted in the inset of Fig. 2 as a function of
the total number of the bonds which connect the clusters
with the matrices in alloys (E„s=Ps Xnumber of clus-
ters in an alloy). It can be seen that the resistance is well
scaled by N~~, irrespective of a variety of the cluster size
and the concentration. ' The results in the inset indicate
that the surface-to-volume ratio of the cluster R sv
characterizes the resistance in the granular alloys. This is
because the Fermi wavelength (1/kF) is of the order of
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FIG. 1. Geometry of systems used in the calculation, i. and M
are the lengths of the sample in the directions parallel and nor-
mal to the current, respectively. Two infinitely long perfect lead
wires are attached to the both sides of the sample.

FIG. 2. Calculated results of the resistance versus the
surface-to-volume ratio of cluster Rsv in the random magnetic
(R) and ferromagnetic (F) configurations for several concentra-
tions of the magnetic atoms In the inset, the resistance in the R
configuration is replotted as a function of the total number of
the bond N» (see text).



49 GIANT MAGNETORESISTANCE IN MAGNETIC GRANULAR ALLOYS 12 833

0.7

6000 12000
~AB

0.6 - c
30.5-

J
I I

~ 0.4 —
0

CC

0.3-
C)
CC

0.2-
CC

0.1-

0.8
0.8

—0.6-
C)
lK

H 0.4-
CC

C)

0.2-
II

K

0.0-

0 1 site 20%
0 7 site10%

8 site 30%
27 site 15% r

Q
r

p

0
Et

0.0
0

Rsv

0.0 0.2 0.4 0.6 0.8 1.0

(cos e&

FIG. 3. Calculated results of the magnetoresistance vs the
surface-to-volume ratio of clusters Rsv for 5, 10, 15, and 20%
concentrations of the magnetic atoms. The inset shows N»
dependence of magnetoresistance.

the lattice constant and the resistance is determined by
the scattering within a range of 1/kF. The resistance is
well correlated with Nzz when E+ is around the band
center. When EF is close to the band edge and 1/kF is
larger than the lattice constant, the correlation tends to
be weak. Note that the contact between sample and lead
wires causes the resistance even if there is no cluster in a
sample. The contact resistance may weaken the magni-
tude of GMR discussed below. The dependence of GMR
on cluster size, however, can well be studied since the
contact resistance is constant for all samples and small
enough as compared with the resistance due to magnetic
clusters. The resistance in the F configuration also in-
creases with increasing Rsv and is much smaller than
that in the R configuration. This is due to the fact that
electrons in the minority spin band are not scattered by
the clusters in the F configuration. In both R and F
configurations, the resistance increases with decreasing
the grain size, in agreement with experiment.

We define the magnetoresistance by the equation
MR= I R (0)—R (Hs ) I/R(0), where R(0) and R (H~) are
the resistance in the R and F configurations, respectively.
The magneto resistance for several concentrations is
shown as a function of R sv in Fig. 3. It increases with in-
creasing Rsv for all concentrations. In the inset, MR in
Fig. 3 is replotted as a function of N„~. The MR is
scaled by N~~. This is because the resistance is scaled by
N„zas shown in the inset of Fig. 2. Thus, we find that
the magnetoresistance in the granular alloys increases
with the surface-to-volume ratio of magnetic clusters.
The results in Fig. 3 agree with experiment. '

The surface-to-volume ratio of grains governs GMR in
the granular alloys. In order to compare the GMR in the
granular alloys with the parallel GMR in the multilayers,
let us consider a rectangular lattice with dimensions
l X l Xd as a magnetic layer in the multilayers, where d is
the thickness of the layer. The surface-to-volume ratio of
the layer is roughly estimated to be 2l /dl =2/d ~ 2.0 in
the limit of I ))1. On the other hand, the ratio of clus-
ters in the granular alloys can be larger than 2.0 as seen

FIG. 4. Calculated results of the magnetoresistance as a
function of (cos8)~. Dashed lines are a guide for the eyes.

in Table I. Therefore, we find that the granular alloys
will exhibit larger magnetoresistance than the multilay-
ers. Note that the perpendicular GMR in the multilayers
cannot be compared with that in the granular alloys,
since the miniband structure due to the periodicity also
causes the perpendicular GMR. '

The relation between the magnetoresistance and the
magnetization of the system; MR ~ (magnetization )
~ (cos8), has been observed, where 8 is the relative
angle between the magnetization axis of the grains and
the external field, and ( ) denotes the average over
the magnetic grains. In order to reveal the relation, we
assume that 8 is randomly distributed in the range
0 ~ 8 & 80 and calculate the magnetoresistance and
(cos8) independently. 8c is chosen to be n and zero in
the R and F configurations, respectively. Figure 4 shows
the relation between the magnetoresistance and (cos8)
for several choices of the concentration of magnetic
atoms and the types of clusters. The magnetoresistance is
proportional to (cos8), consistent with the experimen-
tal results. The physical reason is as follows. When the
quantum axis of each cluster is taken along 8 direction,
the up- and down-spin states mix and the average transi-
tion probability changes like (cos (8/2) ) if the interfer-
ence between clusters is neglected. Using the two-current
model, we obtain that MR0- (cos8) . The result in Fig.
4 that MR is almost linearly proportional to (cos8)
may indicate that each magnetic cluster contributes to
MR almost independently.

As mentioned, the scattering of electrons is governed
by a range of 1/kz which is of the order of the lattice
constant in the present calculations. Because the diame-
ter of the large clusters used is larger than 1lkF, the qual-
itative tendency would be unchanged even for larger clus-
ters and the present results can well reproduce the essen-
tial tendency of GMR observed. Furthermore, we have
used symmetrical clusters since the grains in real materi-
als are more or less spherical in shape. The dependence
of the resistivity on the shape of the clusters, if controlled
experimentally, is another interesting issue, a study of
which is in progress.

In conclusion, it has been shown that the spin-
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dependent scattering causes the GMR in the granular al-
loys as well as in the multilayers and that the scattering
at surface of magnetic grains governs the resistivity and
GMR in the granular alloys. The results explain the ob-
served tendency that the resistivity and magnetoresis-
tance increase with decreasing the size of magnetic

grains. Further study of the transport phenomena in
heterogeneous materials is encouraged.
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