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Scattering properties of the triangnlar Ising antiferromagnet: Disorder and Lifshitz lines
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We study an anisotropic nearest-neighbor Ising antiferromagnet on the triangular lattice, using
Monte-Carlo simulations and random-phase (or related) approximations. Our main interest concerns
the high-temperature magnetic scattering. Exact results are available at the disorder line (Stephenson;
Welberry and Galbraith). Of greater experimental significance is the Lifshitz line where (i) splitting of
the scattering peaks occurs and (ii) dislocationlike defects appear in the (instantaneous) spin
configurations. A good analytical fit of the Lifshitz line is given by the Bethe-Peierls approximation.
These results could be relevant to other systems with disorder lines, e.g., the ANNNI model and mi-

croemulsions.

I. INTRODUCTION

Systems with competing interactions may exhibit vari-
ous types of fluctuations in their disordered phases. Of
particular interest are systems possessing a disorder
point! (or line in a more general phase diagram) where
the nature of the short-range order changes (e.g., from os-
cillatory to nonoscillatory). Experimental systems in this
class include microemulsions, ? liquid crystals,3 antiferro-
magnetic in a field,* etc. Scattering experiments on these
materials display non-Ornstein-Zernike (OZ) behavior at
high temperature: roughly speaking, one must add a
“g® term to the denominator of the traditional OZ
form® to fit the experimental data.

Recently,® we have performed x-ray diffuse
scattering experiments on the organic compounds
(TMP),X —CH,Cl,, where TMP is 3,4,9-10 tetramethyl-
perylene, X a PF¢ or AsF¢ anion and CH,Cl, a solvent
molecules. In this compound, long-range-ordered chains
of alternating anion-solvent ( 4 /S) molecules can occupy
two positions in the channels between the stacks of or-
ganic molecules. The transverse correlations between the
(A /S) chains positions have been first investigated by x-
ray diffuse scattering experiments at ambient tempera-
ture. If one represents® the positions of the chains by an
Ising spin variable, the transverse correlations between
the chains can be modeled by the anisotropic triangular
antiferromagnet,7 with nearest-neighbor (or next-
nearest-neighbor) interactions. This model has a disorder
point in the high-temperature phase. Moreover, the x-
ray scattering experiments® exhibit unexpected features.

In this paper, following Stephenson’s random-phase
approximation (RPA),® we explore the scattering proper-
ties of the anisotropic triangular antiferromagnet in the
disordered phase. To be beyond the RPA, we perform
Monte Carlo (MC) simulations with emphasis on both
disorder (Tp) and Lifshitz (T, ) points or lines. This
latter point may be roughly defined’® by the temperature
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at which the “g?” term in the denominator of the OZ
form vanishes or equivalently by the temperature at
which the oscillatory character of the fluctuations (ap-
pearing at T,) is large enough to induce a shift of the po-
sition of the intensity maxima. The setout of the paper is
as follows. The model is defined in Sec. II, where some
crystallographic notations are also established. Section
III is a rapid summary of RPA and exact results (see also
the Appendix). The results of the MC simulations, such
as the determination of T, are given in Sec. IV. We
show, in particular, that some features of the high-
temperature scattering is well accounted for by the
Bethe-Peierls approximation. We finally conclude by
some remarks on the appearance of new spin defects, as
one crosses T .

II. DEFINITIONS AND NOTATIONS
OF THE ANISOTROPIC ISING MODEL

We consider [Fig. 1(a)] a triangular lattice with unit
basis vector A and B. At each site r=u A+vB
[=(u,v)u,v integers] of the lattice we consider an Ising
variable S, ,==1, interacting with its six nearest neigh-
bors at sites (¥ £1,v), (u,v£1), and (u,v)*(1,1). The an-
tiferromagnetic interactions along A,B and A+B are,
respectively, J,,J,=J, and J;. In the following we will
also use the variables K;=pBJ;(i =1,3), and v; =th(K,),
where B is the inverse temperature (8=1/kzT). The
first Brillouin zone is shown in Fig. 1(b). If 4* and B*
denote the basis vectors of the reciprocal lattice (defined
by A.A*=27, B.B*=27, A.B*=B. A*=0), one has
'M=(A*—B*)/2, TK=(2A*—B*)/3, TE=(3A*
—B*)/4, etc., to mention a few points of interest. Let us
note that in the case J, =J,, the lattice can be described
by an (a,b) centered rectangular cell, also shown in Fig.
1(a).

12 791 ©1994 The American Physical Society



12 792

(2)

FIG. 1. (a) Definition of the parameters of the model. (b)
The first Brillouin zone. Note that the system has a mirror sym-
metry with respect to I'M.

III. SUMMARY OF RPA AND EXACT RESULTS

A. RPA results

In the high-temperature phase, the scattered intensity
at the wave vector q=h A*+kB* is proportional® to the
wave-vector-dependent static susceptibility x(q). The
RPA result is

_ 1
x(q) 1=pi) (1)
where
J(q)=2J, cos(2mwh )+2J, cos(2mwk)+2J cos[2m(h + k)] .

2)

For |J;/J,| =0, the intensity maximum is around the
M point (see the Appendix). It turns out that the RPA
phase diagram?® can be easily obtained by studying the vi-
cinity of point M [Fig. 1(b)]. Along the longitudinal (||)
A* +B* direction, we define

q=(A*—B*)/218(A*+B*)/2, (3a)

corresponding to points 7'F of Fig. 1(b) and along the
transverse (1) A* —B?* direction

q,=(A*—B*)/2+5,(A*—B*)/2 . (3b)

The profile of intensity along the (]|) direction is given
by
x(q)
_ 1
(1—2|K3|—K3}/IK3)+4|K;|(cosmd, —K | /2K’
4)
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and along the transverse (1) direction

1
14+2|K,|—4|K | cosmd, °

x(q)= (5)

From Eq. (4), we find that (i) the disorder temperature
TRPA is given® by

K1
1-2|K;|———=0, (6)

YKl
which can be compared with the exact result [Eq. (A2)].
Let us remark that for thin enough peaks, the intensity
has thus a squared Lorentzian shape in the (]|) direction.
(i) The Lifshitz line is given by K,/2K,=J,/2J;=1,
which is independent of the temperature. For thin
enough peaks the usual 1/(C s‘+8ﬁ) form is recovered in

the (||) direction.

As a result, for —1 <J3/|J,| <0 the high-temperature
scattering is maximum at the M point (§,=0, 6,=0)
above and below the disordered point and for
J3/|Jjl<—1 the maximum is at points T+

keT/lyl
~\
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FIG. 2. (a) RPA phase diagram. The circled letters indicate
the points of maximal scattered intensity obtained from
8,=1/ma cos(J,/2J;). Below T, are the possible (and unreli-
able) ordered phases. (b) “Exact” phase diagram. The Lifshitz
line comes from the MC simulations. The circled letters indi-
cate the points of maximal scattered intensity. Note that T, =0
for J;/|J;| < —1 and that the scattering is around point K for
J3/|J{|=—1 at all temperatures.
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[8,=(1/m)a cos(J;/2J3), ,=0]. As the position of the
T'* points does not depend on the temperature, the split-
ting of the scattering occurs by crossing the vertical
J,=2J; line. This splitting was called ‘“anomalous
scattering” in Ref. 8.

The full RPA phase diagram is shown in Fig. 2(a) with
possible, but unreliable, ordered phases. Finally, let us
note that the RPA approximation may also be applied to
non-Ising spins. '°

B. Exact results

Most of the exact results are summarized in the Ap-
pendix. The exact phase diagram is shown in Fig. 2(b).
As expected, the RPA approach is qualitatively correct
at high temperature. Furthermore, (i) the exact solution’
shows that the slope of d&;/dT (where &; is the correla-
tion length in the parallel direction) is discontinuous at
T, [as in RPA (Ref. 11)], that is d&5 /dTIT
#d&; /dT|r,. (i) The exact result'? on the scattered in-

tensity, at T, [see Eq. (A6)], yields for g=gq
1

= , 7)
x(a) (1—2|y| cosmd)? (

with ¥ =v, /(1+v?), which gives a perfect square RPA-
like form (4). As far as the transverse direction is con-
cerned, an intensity profile similar to (5) is also recovered,
namely,

1
1+4|y|>—4|y| cosmd,

x(q,)= (8)

Let us now consider the MC determination of the
Lifshitz line, which was already observed in some crystal
growth simulations. 3

IV. MONTE CARLO SIMULATIONS

A. Simulation procedure

We have simulated the model of Fig. 1(a) on a centered
rectangular lattice of 1024*1024(a,b) cells with cyclic
boundary conditions. The spins were updated in a
sequential way. Since we are not interested in critical
phenomena, we only performed 256 Monte Carlo
steps/spin (MCS), which was enough achieve thermal
equilibrium. We then calculate
iqr

9)

by a fast Fourier transform. The resulting intensity was
smoothed by averaging y(q) over 4*4 neighbor pixels to
obtain the scattering intensity in 131.072 points of the
first Brillouin zone. This procedure is equivalent to aver-
age the intensity over 16(256a*256b) subsystems. It is
expected to be correct for reduced correlation lengths
smaller than =256, which assures the independence of
the subsystems.
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FIG. 3. Fit of MC calculations by the exact forms (7) and (8)
at Tp for J3/|J,|=—0.5. (a) Scattered intensity profile along
the (]|) direction. (b) Scattered intensity profile along the (1)
direction.
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FIG. 4. Temperature dependence of § above the Lifshitz line
for different J;/|J,| values obtained by MC simulations. The
solid lines are the Bethe-Peierls 8,(T) curves for the same
J3/|J| values.
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B. Intensity fitsat T =T

We have first checked our Monte Carlo procedure by
fitting the intensity profiles obtained at the disorder point
with the exact expressions (7) and (8) with no adjustable
parameters. As displayed in Fig. 3 for J,/|J,|=—0.5
(Tp/|J,|=1.641), the agreement is excellent for both
longitudinal and transverse scans. We have then tried to
find the kink in the derivative d§/dT at T =T, (where §
is a typical correlation length). We adopted an empirical
approach by plotting the longitudinal inverse half width
at half maximum (HWHM) in function of 7. The result
is not very conclusive. Moreover, fitting the longitudinal
intensity profiles by a squared Lorentzian does not yield
accurate value of T either. We thus conclude from this
study that disorder points (of the first kind) are quite
difficult to characterize experimentally, at least in a static
way. 4

|

4v? 203 2v
h— -

Xep(q)=

l*vl

Equation (10) yields, for the Lifshitz line,

.| 2N . 3
sinh [— [=2sinh |— | , (11a)
L L
and the splitting §;
v, 1—v3
coSTd = ———— . (11b)
2U3 l—v%

The Lifshitz line is shown in Fig. 2(b), together with
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: 3 (cos2mh +cos2mk)—

C. Fits of the Lifshitz line

In our simulations, we do observe a Lifshitz line for
—1<J3/|J,| < —1, where the maximum of the scattered
intensity shifts from point M to points T'* at wave vec-
tors

q=(A*—B*)/2+8( A*+B*)/2 .

The distance T' " T'~ =38, was found to vary with tem-
perature, for J;/|J,| fixed (Fig. 4), in marked contrast to
the RPA results (Sec. III A). We tried various analytical
fits of 8,(T): the best turns out to be the Bethe-Peierls
(BP) approximation, !° even though it yields an inaccurate
value of the disorder temperature and incorrect shape of
the intensity profiles. The wave-vector-dependent suscep-
tibility reads, in the BP approximation,

—1

2v,4
cos2m(h +k)

(10)

.2
1—v3

f

the results of the numerical simulation. The variations of
8, with the temperature given by (11b) are shown in Fig.
4 for various values of J,/|J,| including values smaller
than —1. For J;/|J,| close to —0.5, the Lifshitz tem-
perature is large and the peaks at T'" and T’ are not
well separated which makes the estimation of §, difficult.

D. Remarks on the defects

For J;/|J,| < —0.5, the intensity maxima around the
points 7'* implies that the model can be described by an

FIG. 5. Snapshot of a (64a*64b) part of the
lattice after 256 MCS. Spin +1 (—1) are in
black (grey). Dislocationlike configurations

are clearly visible (circles). Note that

the transformation Ji——J and

WS s

L
)

S,,—(—1)*S, , has been used in order to
make more apparent the ordered domains.
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XY model (Ising spins with uniaxial incommensurate
modulation) in a way similar to the ANNNI model.'¢ In
particular, we expect to have vortices in our model. . In
Fig. 5, we show a snapshot corresponding to
J3/|J;1=—0.9 and T/|J,|=0.5 where we have disloca-
tionslike configurations, quite similarly to the ANNNI
case. It is striking that a disorder line of the first kind
may imply the appearance of new defects since, below
T, we only expect lines to be present.

V. CONCLUSION

We have studied the scattering properties of the aniso-
tropic triangular Ising antiferromagnet by numerical
simulations. The existence of a Lifshitz line
above the disorder temperature is established for
—1<J;/|J;|<—0.5. This line is well fitted by the
Bethe-Peierls approximation. The disorder line itself is
found to be hard to characterize in static scattering ex-
periments.® Also of interest is the existence of new spin
defects (vortices) above T, . These defects may have a dy-
namic signature, especially in deep quench experiments:
in the related ANNNI model, these defects could lead to
a glassy phase as observed in numerical simulations. !’
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APPENDIX: SOME EXACT RESULTS

The model of Fig. 1(a) was solved by Stephenson.’ The
critical temperature T, is defined by

(A1)
J

z3—2z,2,=1,

1
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—2K, .. .
where z;=e ' (note that the critical temperature is
zero for J;/|J,| < —1). Below T,, long-range order sets
in, the weak J; bond being frustrated. Above T, the cor-
responding fluctuations give a scattering peak at point M
[Fig. 1(b)]. Above T}, defined by

z%—22123=—1 (A2)

(or equivalently by v; +v{=0), the nature of the short-
range order changes. Taking as an example the correla-
tion function along the (1,1), direction of the lattice, we
have

T > TD: U)(m,m)E<S0’0Sm’m)

e~|m|/§;m

Vm

Xcos[mOs(T)+W,(T)], (A3)

T=Tp: wimm)=|v;|™, (A4)
~|ml/&5 (T)

T,<T<Tp: w(mm)=C_(T)< (A5)

Viml

where the large-m limit is assumed. The temperature
dependence of C,(T), EX(T), 65(T), and W,(T) are given
in Ref. 7. Similar results hold for the (1,0) and (0,1) direc-
tions, with subscript 3 replaced by 1.

Above T;, the maximum intensity peak starts to shift
from point M along the (||) direction of Fig. 1(b). This is
why we have found more convenient to work with the (||)
and the (1) directions than to use 0, (and 6,) variables.
Furthermore, we note that the scattered intensity (i.e., all
spin-spin correlation function) is known at T, as Welber-
ry et al. have shown!? in a crystal growth context. The
result is

x(q)=

with y =0, /(1+0v?).

1+2y2+2|y|(cos2mh +cos2mk) +2y2 cos2m(h +k)

(A6)
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FIG. 5. Snapshot of a (64a*64b) part of the
lattice after 256 MCS. Spin +1 (—1) are in
black (grey). Dislocationlike configurations
are clearly visible (circles). Note that
the transformation Jy=—J| and
S,,—(—1)*7*S, , has been used in order to
make more apparent the ordered domains.



