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Bipolaron confinement in two-dimensional layers
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Widely reported broadening of a bipolaron formation region in two dimensions should be revised
in view of a concrete mechanism of electron confinement to a two-dimensional layer.

Recently, there has been renewed interest in the bipo-
laron problem triggered by a possibility of a bipolaronic
mechanism of the high-T, superconductivity considered
in literature. In the context of large bipolarons such
a mechanism was studied by Vinetskii and Pashitskii.
Later analogous ideas were signi6cantly developed by
Emin and Hillery. ' The existence and stability of bipo-
larons being a prerequisite of such theories depends on
values of coupling constants and of phonon frequencies.

Besides, the modern art of creating new materials such
as thin films and quantum wires makes it possible to
confine moving electrons to two or even one dimensions.
The conclusion that a bipolaron formation makes easier
in spaces of lower dimensions was made in many recent
papers. The goal of the present paper is to show that
this statement has to be taken curn gruno 8alis because
it depends on a concrete physical mechanism of the elec-
tron con6nement. We give here ezample8 of how the two-
dimensional (2D) structures can be treated for adequate
calculations of coupling constants and phonon frequen-
cies.

The Frohlich Hamiltonian for two electrons interacting
with a phonon field is written as follows:
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where r; (p;) are the position (momentum) operators of
the ith electron, m is the electron band mass, ak (ai, ) are
the creation (annihilation) operators of phonons with the
wave vector k and frequency &ui, . The potential U(~ ri-
r2 ~) stands for the direct (Coulomb) interaction between
electrons, the quantities Vk are the Fourier transforms of
the electron-phonon interaction. A conventional model
people use for optical phonons is based on the so-called
Einstein dispersion law uk ——cuD. Here D denotes the
number of space dimensions to which electron movement
is con6ned.

In any case the real physical space remains three di-
mensional. The direct interaction of electrons is sup-
posed to be of the Coulomb type in an arbitrary number
of space dimensions:

where V is the volume of a D-dimensional "crystal" and
o.~ is a coupling constant of the electron-phonon inter-
action.

At D = 3 Eqs. (1)—(3) lead to the standard Frohlich-
type bipolaron Hamiltonian with ~3D ——~po and con-
ventional coupling constants
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Here e is the electron charge, o., = e2/hc is the electro-
magnetic fine structure constant and e (eo) are the high
frequency (static) dielectric constants. The ratio U/a is

evidently not less than ~2 which defines the physical
region of the bipolaron parameters.

Coupling constants o; and U are well-de6ned param-
eters which can be measured experimentally. Dealing
with arti6cial structures of lower dimensions one has to
be careful with a de6nition of analogous parameters. Of-
ten people suppose that o.D ——o. and UD = U and make
some conclusions based on this assumption, which is not
necessarily true. Here we clarify the point that electron-
phonon and Coulomb coupling constants depend on a
concrete mechanism of a realization of physically two-
dimensional space.

In order to give an insight in the origin and the phys-
ical meaning of the 2D-bipolaron problem we shall con-
sider how can it be deduced rigorously from that in real

where we introduce a dimensionless Coulomb coupling
constant UD.

Following Ref. 4 one can represent the electron-phonon
interaction in the D-dimensional space as follows:
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multilayer structures, starting with a consistent deriva-
tion of the Hamiltonians describing both inter-electron '

and electron-phonon interaction7 for such structures. We
restrict ourselves to a three-layer structure (1[2[3) con-
sisting of semiconducting or dielectric media with the
geometry and material parameters shown in Fig. 1. It is

I

a simplified representation of high-T, systems.
For the sake of definiteness, let the electrons be in a

central layer at the positions r„= (p„,z„), n = 1,2.
The potential energy of the direct electron-electron in-
teraction depending on the 2D vector p = p2 —p1 of
relative position is

g2 1 1
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where J0(z) is the Bessel function. Besides the aforesaid modification of the interaction between electrons, in a
multilayer structure there appears another phenomenon, self action-, namely, each of electrons interacts with the rapid
polarization induced by itself. The potential energy of the self-action for the ith electron can be written in the form

Us~(z„) = Q
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The phonon Hamiltonians as well as those describing the
electron-phonon interaction in multilayer structures with
an arbitrary number of layers were obtained in Ref. 7.
They reQect a drastic reconstruction of the phonon spec-
trum in such structures in comparison to that of uniform
media, including appearance of interface phonons related
to the waves propagating perpendicularly to the growth
axis with amplitudes decreasing when moving sufEciently
far away from a boundary plane [cf. (28) below]. Gener-
ally speaking, both interface and confined LO modes are
available for the carriers to couple with. The confined
LO modes were described in a number of papers. As
it was shown in Ref. 19, various approaches differ from
each other by the choice of the additional boundary con-
ditions imposed on the polarization, resulting in different
spatial patterns of the confined phonon modes.

The Hamiltonian of interface phonons is
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where k is a 2D wave vector and an integer j labels the
interface vibration branches possessing eigen&equencies
Ok j. In particular, for various versions of the struc-
ture shown in Fig. 1 these Hamiltonians were obtained in
Refs. 7, 20 and 21 and in the most general case when all
three layers are polar in a recent paper. For the sake
of simplicity, we shall con6ne ourselves to a symmetrical
structure containing polar outer media and a nonpolar
central layer, where there are two branches of the inter-
face phonons with eigen&equencies:
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determine the dispersion laws. The contribution of bulk-
like (confined) vibrations will disappear in the assumed
case of a nonpolar middle layer. Thus, an electron inter-
acts only with interface phonons. We choose this model
on purpose to demonstrate the physical principle that
digemrlt mechanisms of confinement lead to various cou
@ling constants. The Hamiltonian of the interaction of
electrons with the interface phonons is

(j)
Okj =~1TO

el 0(k)
lr. ,j I,TD j =1,2.

FIG. 1. A scheme of a multilayer structure. OZ is a growth
axis and L, L„are the sizes of a sample in a transverse plane,
while l = z2 —zz is a thickness of a middle layer.
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where the functions llm 0,'k 1 = 0)
kl —+0

gi, 2(z) =

sinh(k[z —(zi + z2)/2])

cosh(k[z —(zi + z2)/2])
cosh(kl/2)

(i2)
1,oo 1,0

e2

llm Ak 2 = 0!3D—
kl mO

1 1

2m~1, LO

allow one to classify the first and second branches as
describing asymmetrical and symmetrical potentials, re-
spectively. The amplitudes in Eq. (11) may be repre-
sented in the form of Eq. (3) at D = 2:

This means that the first phonon branch is inactive in
the electron-phonon interaction. Thus, the Hamiltonian
(ll) takes on the form

n
k g k

2m g~ )
where (L L„) is the cross-sectional area of a structure
and ai, ~ is the efFective dimensionless coupling function
of the interaction with the jth branch of interface vibra-
tions
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with the amplitudes
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wherein both the phonon eigenkequency and the effective
coupling constant coincide with those in a 3D crystal of
the first material:

2
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p('i, + es, )/2

screened by the mean dielectric permittivity of the two
outer layers. If they are made of the same material,

, it follows from Eq. (15) that
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In the case under consideration of a thin middle layer we
successively 6nd the interface phonon eigenfrequencies

»m ~k, 1 —~1,TO
kl mO
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kl m0

the functions (12) describing the z dependence of the
interaction amplitudes
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and the electron-phonon coupling amplitudes (14)

We stress that concrete forms of the above interactions
depend substantially on physical mechanisms of the elec-
tron con6nement. Two of them, which are of the most
practical importance, will be considered below as exam-
ples.

Quantum-mell confinement. In a quantum-well struc-
ture electrons are con6ned to a central layer due to a
big gap between the bottoms of conduction bands in the
neighboring materials. Under the condition of a thin
layer kl &( 1 (which corresponds to the situation when
the radii B of the polaronic or bipolaronic states are
much greater than the thickness l) we straightforwardly
get from Eq. (6) a 2D Coulomb interaction

~2D —~1,LO ) ~2D —O'3D ~ (22)

Just these relations were, implied by the authors of Ref. 4.
Thus, we find them to be adequate for the electronic con-
6nement to a superthin quantum well. Introducing a no-
tation UD for the 2D Coulomb potential in a conventional
way [compare with Eq. (2)]

U2D h
U(p) = hur2D

P mu2D

for U2D we obtain the same expression Eq. (5) as for the
3D case with e and n being related to the 6rst material.

We discuss one of the limiting 2D cases when electrons
move in a superthin layer between two polar media. In
the intermediate region of thicknesses

+ E

e2,oo(el, oo + es, oo)

the general formula (6) leads to a logarithmic law (see
Ref. 20). In a real case of finite thickness of a layer
which contains electrons there exists a continuous link
with another limiting case. The latter, which we discuss
now) corresponds to electrons moving near an interface
between two thick slabs.

Image-potential confinement In the oppos. ite limiting
case of a thick middle layer kl )) 1 (which really means
that the radii B of the polaronic or bipolaronic states
are small in comparison with I) the interaction (6) for
electrons in the vicinity of a boundary, say, z„z1,
turns to the 2D Coulomb potential energy

2

U(p) =
p(ei + ez )/2' (25)

wherein the screening is described by the mean dielec-
tric permittivity of the media adjacent to the boundary.
If thickness of the second layer increases, then Eq. (7)
leads to the image-potential energy for the electron in
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the second substance not far &om the interface (1]2):
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Supposing electrons to be near the boundary (1~2), we are
to pass to the limit z2 ~ oo, which makes the functions
(12) identical:

lim gi, ~(z) = gl, (z) = exp[—k(z —zq)], j = 1, 2. (28)

Therefore under a canonical transformation

Taking account of the polaronic effect was shown to
Inake the boundary value of the self-action potential at
z„= zl finite. The most important for our present dis-
cussion feature of this potential is its attractive nature
if the inequality s2 ~ ( eq is satisfied (this condition
holds true, e. g. , for a particular case when a dielectric
layer borders on vacuum23). Thus, in the vicinity of
a boundary between two substances possessing substan-
tially different values of dielectric permittivity in a mul-
tilayer structure, electrons suffer a strong attraction to
the interface. This attraction confines them to a certain
region near the interface, the extent of which along the
growth axis may be controlled by the geometric and ma-
terial parameters of the structure and hence Inay be
made small. In such a case the electronic motion again
appears to be effectively two dimensional. In the case
of a thick middle layer the eigen&equencies occur to be
degenerate:

In case a polar substance contacts with vacuum, e2

1, Eqs. (21) and (30) reproduce the known amplitude
of the interaction of electrons with interface phonons
obtained in Ref. 23; other papers on the subject are
cited in Ref. 20. When neglecting the Inotion of elec-
trons along the growth axis (z„= zq), we finally obtain
&om Eq. (29) the 2D electron-phonon interaction Hamil-
tonian (20), wherein the limiting interface phonon eigen-
&equency (27) as well as the effective coupling constant
(30) depend both on dielectric permittivities of the po-
lar medium and on a dielectric constant of the electron-
containing substance. In these circumstances under the
inequality el &) e2 &om the above-displayed results
it follows obviously that

l,oo
~2D ~ ~1,LO~ cr2D ~ 2cr3D) 92D ~ rl — (32)

1,0

Thus, the only difference with the quantum-well confine-
ment is an effective increase of the electron-phonon cou-
pling constant.

In a 3D space bipolarons can be formed if the electron-
phonon interaction is strong enough to overcome the
Coulomb repulsion. To formulate this statement numer-
ically, it is convenient to consider a phase plane of physi-
cal parameters —Coulomb and electron-phonon coupling
constants (U, n).23 Surely, bipolarons cannot be formed
at any given value of a if a Coulomb repulsion coupling
constant is large enough: U ) U, (n). Thus, a bipolaron
formation region is restricted on a phase diagram by a
curve U, (a) and a line U = v 2o; which is the border of
a physical region [see Eq. (5)]. The situation is shown in
Flg. 2.

Two parameters a, and g„whose meaning is obvi-
ous &om Fig. 2, are of importance. The best results for
the 3D case are as follows: a, lies in a range 5.4—7.3

b
+k, l + +k, 2

~2

the Hamiltonian (11) acquires the form independent of
the "primed" creation and annihilation operators

io

) ) bg Vj, e'"~" + b~~V1', e '"~" gg(z„),
n=1,2

(29)

with the amplitudes (21) and the effective coupling con-
stant
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resulting from Eq. (14). Then the expression for the
Coulomb coupling constant of Eq. (23) follows &om
Eqs. (25) and (30):

0
0 2 a, 4 6

Coupling constant, a

FIG. 2. Phase diagram of a bipolaron formation region.
Critical value U, (cr) of the Coulomb coupling constant is pre-
sented as a solid curve. A dashed line represents its asymp-
totes U = ~2n/(1 —rl ). The sector above the solid line
U = ~2o. corresponds to the physical values of parameters.
A space between the solid lines is a bipolaron formation re-
gion. In this plot we use results for 2D bipolarons: o. = 2.9
(Ref. 25) and g, = 0.158 (Ref. 30).
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(Refs. 24—27) xl, is about 0.12—0.14 (Refs. 24 and 28—30).
Analogous results (including phase diagram) were ob-
tained in the 2D case with a2xx, = 2.9 in Ref. 25 (2
in Ref. 26) and xLzxx, = 0.158 (Ref. 30). Herefrom people
concluded that a bipolaron formation region is enlarged
in 2D.

There exists some misunderstanding of the physical
meaning of the results obtained for the 2D case. The
immediate conclusion that the bipolaron formation re-
gion is larger in two dimensions as compared to the 3D
case is based on the assumption that material character-
istics are the same as for 3D samples. We demonstrated
that this is true, say, for the quantum-well con6nement
when the results mentioned above take the form

~2D ~LO1 A2D = Clc = 2.9& e~/ep —0.158 (33)

with parameters related to the outer layer.
Our second example is the image potential confinement

when electrons move on the border of polar and nonpolar
media. If the dielectric constant of a polar layer is much
larger than that of a nonpolar layer, we have the same
relations for the phonon &equency and the ratio of the
dielectric constants, but +2' -+ 2o.3~. This leads to the
critical value

cl, = 2.9/2 1.4. (34)

Here a is related to the polar layer and a bipolaron for-
mation is easier than it was supposed before. But we can
give an alternative example. Say, we deal with a polar
material for which eq ——5, eq 0 ——50. Then g, = 0.1
and a bipolaron formation seems to be possible (if one
forgets that the criterion was derived for xL2xx). Suppose,
however, that for nonpolar medium we have e2 ——5.
Then, as it follows from Eq. (31), xL2n = 2/ll = 0.18.
This number exceeds the reported critical value g2g, .

Thus, in general the relations between parameters are
more complicated and could lead both to a narrowing. and
to a broadening of a bipolaron formation region. The re-
lation between dielectric constants cannot be represented
via the sixnple ratio xL = e /ep. At last, a phonon fre-
quency could be changed in a physically two-dimensional
system. So people should be careful comparing theoreti-
cal results with experimental data. Above we presented
the formula needed in such cases.

To conclude we note that we do not pretend to give a
quantitative description of any concrete multilayer struc-
ture. We presented here a model to display a possi-
ble role of the interface phonons in the formation of
bipolarons which may be relevant to high-T supercon-
ductivity. Studying some concrete multilayer structure
such as GaAs-GaAlAs both types of the phonons, bulk-
like and interface ones, certainly should be and are in
fact considered simultaneously (see, for example, the
monograph P and paperssx's ). The spatial pattern of
the bulk-type phonon 6eld is sensitive to the additional

boundary conditions imposed on the polarization and is
therefore "sample speci6c, " while the interface phonon
field is shownxs to be universal (in the sense that it does
not depend on the mentioned additional boundary con-
ditions).

Besides, according to our experience, the role of the in-
teraction with the bulklike phonons in comparison with
that of the interaction with the interface phonons in
polaronic energies and optical coefficients depends
strongly on the thickness of the electron-containing lay-
ers and is dominant for suKciently thin layers. When
(which is the case of our consideration) electrons are in
nonpolar (or weakly polarizable) media, then the domi-
nant role of the interface phonons is in general indepen-
dent (or almost independent) of the thickness of these
electron-containing layers. The diminishing of this thick-
ness makes the electrons near the interfaces and thus cre-
ates conditions favorable for the interaction of electrons
with the interface phonons. At the same tixne, the ab-
solute characteristics of the effects due to the interface
phonons evidently decrease with diminishing the thick-
ness of the poLar (or, correspondingly, strongly polariz-
able) layers. Certainly, the notion "sufficiently thin" is
relative to a given structure and any attempt to formulate
it precisely would require a calculation of the bipolaronic
spectra with the both types of phonons being taken into
consideration (see, for example, paperssx where a nuxnber
of concrete structures are discussed).

Keeping in mind results on 2D bipolarons obtained in
cited papers, we tried to consider them &om a more gen-
eral point of view. This is why we chose the interface
phonon 6eld for the present qualitative consideration, cal-
culating the contribution of the interface phonons and
demonstrating where&om they appear.

Note also that electrons can be confined to 1D space
as well. An example of a mechanism is given by a
(bi)polaron in a strong magnetic field. ss s4 This xnech-

anism leads to specific links of coupling constants in 3D
and 1D. As is clear &om our discussion of the 2D case,
other confinement mechanisms are also possible. But in
contrast with 2D where we concentrated on Bat layers,
one now needs the theory of (bi)polarons in axial sym-
metrical layers. This will allow one to take the lixnit of
an infinitely small radius, that is, to study the physical
1D space. Such a theory is now in progress.
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