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Effect of geometry on the critical currents of thin films
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We consider experimentally and theoretically the effect of the thickness on the critical current density

J, of superconducting films. In order to eliminate possible contributions from intrinsic pinning, our
measurements of J,(y) as a function of the amplitude and orientation of the magnetic field H with

respect to the film plane were performed on isotropic Nb-Ti films having thicknesses d ranging from I, /4
to 4A, , where A, is the London penetration depth, and HLJ. The angular dependent J,(y) has a sharp

peak for H parallel to the film surface, similar to that observed for high-T, films. The amplitude of the

peak increases as d decreases and reaches 20—30% of the depairing current density ( Jd ) for the A, /2 film.

The ratio of J, values for parallel (J, ii) and perpendicular (J,i) film orientation increases as d decreases,
so that J,

~i
«J„for the 4k film and J,

ii
)&J„for the 1,/4 film, the crossover occurring at d =2k. A pro-

posed interpretation of these results is based on our calculations of the vortex behavior in thin (d «A, )

films, which give analytical formulas for the field distribution around a fluxon, the lower critical field,

H, &, the surface barrier, and the vortex-vortex interaction potential. The film geometry gives rise to a

significantly enhanced surface barrier and H, l, a marked decrease of the range of the intervortex repul-

sion (to d instead of A, ), and noncentral, position-dependent forces between vortices. These results are

employed to evaluate the bulk and surface contributions to J,, ii(d), both being shown to increase as d de-

creases. The bulk component of J,
~i

exhibits a 1/d dependence at d )d, due to the decrease of the tilt

elastic modulus c44(d) of the vortex structure, a crossover from the collective to a single-vortex regime of
pinning occurring below a critical thickness at d & d, . The surface magnetic pinning gives the main con-

tribution to J, for our A, /2 and X/4 films, leading to J,ii, which increases as 1/d and becomes of order Jd
at H=H, i. These calculations show that the ratio J,i~{d)/J„(d) increases as d decreases, with the

J,ii(d)/J, i(d) value being much less than unity at d ))A. and much larger than unity at d «k. The re-

sults obtained indicate that the effect of the film geometry can be very important when interpreting the

angular dependences of critical currents of thin films.

I. INTRODUCTION

The critical current density J, in superconductors is
usually described in terms of two qualitatively different
approaches based on either single-vortex or collective
pinning models. The first model assumes that J, is most-
ly determined by the direct summation of the elementary
pinning forces over all vortices, the intervortex repulsion
weakly affecting J, .' By contrast, in the collective pin-
ning approach, the interaction between vortices is as-
sumed to be much stronger than their interaction with

pinning centers, and the vortex structure behaves as a
continuous elastic medium which is weakly distorted by a
random pinning potential U (r). A nonzero J, then re-
sults from a mean-squared fluctuation of U (r) over a
macroscopic correlation volume V, =R,I, whose size is

determined by the competition between elastic and pin-
ning forces. In their two respective limits, the single
vortex model is expected to correspond to a material hav-

ing a dense structure of strong pinning centers, while a
weak pinning material should be treated by the collective
pinning model.
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The most satisfactory approach to checking the validi-

ty of any flux pinning model is to make materials with
well-defined and controlled densities of defects and then
to investigate the change in J, when the density and/or
strength of the pinning is varied. Such experiments are
not easy to perform, since they require control of the mi-
crostructure on the scale of the coherence length (f)
which is below 10 nm for most high-J, type II supercon-
ductors. Such nanometer scale microstructures (nano-
structures) are often thermodynamically unstable, require
very large efforts to be quantitatively described and are
seldom subject to much control. As a result, it was possi-
ble to quickly understand and describe the flux pinning in
low-J, materials, for example, in the Pb-Bi system ((=15

nm), ' but took some 10—15 years longer before the flux

pinning in the very important Nb-Ti system ((=5 nm}
could be quantified. The high-temperature superconduc-
tors (HTS) exhibit these problems in an extreme way.
The coherence lengths lie in the range of 0.3-1.5 nm, di-
mensions which are comparable to atomic sizes. Thus
any crystalline disorder can in principle produce pinning;
such atomic disorder is very hard to measure and control;
therefore at least up until the present, modeling seems the
only practical way to estimate the effect of such defects.
The intrinsic anisotropy of the layered HTS itself conveys
the possibility of "intrinsic pinning" by nonsupercon-
ducting layers of the microstructure and very small
growth defects such as twins, stacking faults or surface
steps produced by screw dislocations may pin the vortices
in thin films placed in a magnetic field perpendicular to
their broad face (Hj ).

The present work addresses the rather general issue of
what controls the critical current in thin films, as the
orientation of the film plane to the magnetic field is
changed and as the film thickness is varied about the
penetration depth (A, ). One of the motivations for the
work was to address the apparent puzzle of why thin-film

YBa2Cu307 & (YBCO) generally has a J, about 1 —2 or-
ders of magnitude larger than bulk YBCO. A flux pin-
ning analysis based on the direct summation arguments
leads to the conclusion that to account for the high-J,
values in thin films, the defects must be approximately
coherence length in size and spaced by only 5.3 nm.

The present paper addresses the geometrical aspects of
thin films, since the decrease of the sample sizes can
strongly enhance J, . For instance, numerous experi-
ments, performed on both HTS (Refs. 6—10) and low-
temperature superconductors (LTS) (see, e.g., Refs. 11
and 12) films, have shown that the J, of thin films can
considerably exceed the J, of bulk superconductors and
can be even comparable to the maximum possible value
of J, determined by the depairing current density, J& ..

J~= ego
(&)

12&3m.2A, 2$'

where c is the speed of light and Po is the magnetic flux
quantum. In addition, there is an extensive literature on
the orientational dependence of J,(y) of epitaxial HTS
films as a function of the angle y between H and the nor-
mal to the film surface. These experiments have revealed

pronounced peaks in J,(y) for H parallel to the surface
which are usually ascribed to an additional intrinsic pin-
ning of vortices by the ab planes. ' ' Similar dependen-
cies of J, (tp) have been observed in multilayer supercon-
ducting superlattices. ' '

There are several mechanisms which could be responsi-
ble for high-J, values in thin films, some of which such as
the surface pinning caused by the step structure of screw
dislocations, ' or a very high density of as yet
unidentified pins have already been mentioned. Another
more fundamental reason is due to qualitative changes in
the vortex behavior as the film thickness d becomes
smaller than A, , or one of the pinning correlation lengths
L, or R, . For instance, in films placed in a perpendicular
magnetic field H, there is a crossover from the three-
dimensional (3D) to 2D regimes of the collective pinning,
if the longitudinal pinning correlation length along the
vortex line L, (H } becomes smaller than the film thick-
ness d. In HTS films this effect can also give rise to
the significant enhancement of thermal fluctuations in the
vortex structure, which can result in its melting over a
significant portion of the T-H diagram. In general,
such a 3D~2D pinning transition is accompanied by an
increase of J, due to the drop of the correlation volume
y 23 —25

C'

At the level of individual vortices, a qualitative change
of the orientational field dependence of J,(H) occurs as
the thickness d becomes smaller than A, . For instance, for
a film in perpendicular field, the intervortex repulsion be-
comes more long-range, varying over the length -A, /d
rather than k, as d is decreased below A, , and the lower
critical field H„becomes much smaller than its bulk
value, due to the large demagnetization factor. By con-
trast, decreasing d below A, for a film in a parallel field
raises H, I and the thermodynamic critical field K, due to
the decrease of the magnetic flux in the vortex. ' The
mechanisms of current transport in bulk superconductors
and in thin films in parallel and perpendicular field are
also qualitatively different. For instance, in bulk samples
the macroscopic current density J results from the gra-
dient of the vortex density, ' whereas for films in perpen-
dicular field, the value of J is mostly determined by the
curvature of flux lines. By contrast, in thin films
(d «A, ) in parallel field, the current flow is not directly
due to vortices, since films with d «A, are almost mag-
netically transparent and their transport current is deter-
mined by the Meissner screening currents which flow
parallel to the film surface.

The qualitative difference in physical mechanisms
which control J, for parallel and perpendicular field
orientations can result in a significant angular depen-
dence of J,(y) in thin films, even without invoking the in-
trinsic pinning mechanism for HTS. In this paper we
demonstrate this fact by presenting experimental and
theoretical evidences for the strong dependence of J,(y)
on the orientation of H in LTS thin films having high
crystalline isotropy, which enables one to reveal the effect
of sample geometry. In our experiments we used films
made of a body centered cubic Nb-47 wt% Ti solid solu-
tion. An important advantage of Nb-Ti is that the flux
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pinning in Nb-Ti alloys is well understood and controll-
able, which is not the case for most other superconduct-
ing materials. In addition, this material can easily be de-
posited as uniform films of controlled thickness and does
not need to be grown epitaxially to be superconducting.
The paper is organized as follows.

The experimental data are presented in Sec. II. The
full angular dependence of J,(p) at HLJ and its parallel
(J,~~)

and perpendicular (J,i) values have been measured
for films with d=A, /4, A, /2, A, , 2l, and 4A, , and for B
ranging from 0 to 10 T. These measurements of J,(y) as
a function of the angle y between H and the normal to
the film plane show that many features of J,(y) essential-

ly depend on film thickness and that there is a marked
change in behavior at about d=(1 —2)A, . For very thin
films (d=A. /2) the function J,(y) exhibits sharp peaks
J,(y) 0-1/~y —90'~ in the case of nearly parallel field

orientation, similar to those observed for HTS films. '

Extremely high values of J, approaching 20—30%%uo of Jd
are then observed.

In Sec. III we present a theoretical analysis of the vor-
tex structure and critical currents in thin films (d «X).
An analytical solution of the London equation for the
field distribution B(x,y) around a single fluxon is ob-
tained. The surface barrier H„the lower critical field

H, i, and the magnetic flux P in the vortex are calculated.
Reducing the film thickness significantly modifies the
vortex-vortex interaction, giving rise to noncentral,
position-dependent forces between vortices which decay
over distances of order d, rather than A, . By means of
these results, both the bulk and the surface components
of J,l(d) are evaluated. As d decreases, the bulk com-
ponent of J,~~(d) is shown to increase as 1/d due to a
"softening" of the vortex structure caused by the de-
crease of the range of the intervortex repulsion. Thereby,
vortices become more strongly pinned owing to a better
matching to the pinning potential, which results in a
crossover between the collective and single-vortex pin-
ning regimes below a critical thickness, d, . At the same
time, the surface magnetic pinning gives rise to a 1/d
dependence of J,~~(d) which is in agreement with our ex-
perimental data. This mechanism gives the main contri-
bution to J, for our Nb-Ti films and results in a
significant increase in J,

~~

at d & k, with J, being of order
Jd at low fields.

Section IV is devoted to the wider implications of this
analysis for the interpretation of experimental results on
thin HTS films.

II. ORIENTATIONAL DEPENDENCE
OF J (p) IN Nb-47% Ti FILMS

A. Experimental details

The films were fabricated by dc magnetron sputtering
onto glass substrates held at room temperature using a
Nb 47 wt% Ti target in an Ar plasma. The film
thicknesses d were controlled by adjusting the power of
the magnetron and the duration of the deposition. The
films were patterned by photolithography and etched
with HF/HNO3 using a 50 pm wide by 3 mrn long bridge

pattern. It is important to note that the films did not
have a-Ti precipitates and, therefore, they exhibit only
relatively weak flux pinning, as compared to optimized
Nb-Ti (see, e.g., Ref. 3). The films are believed to have
grown with a largely columnar grain structure, the axes
of the grains being approximately normal to the film sur-
face. No post-deposition processing was done to enhance
the flux pinning, since we wanted to keep the micros-
tructural defect density low in order to emphasize effects
arising purely from changes in the film geometry. Two
sets of Nb-Ti films were fabricated in two separate sys-
tems. Both systems had a residual base pressure —10
Torr and evidently contributed some 0 (or N) to the
growing films, depressing T, below the value of 9 K ex-
pected for bulk material. Two films were fabricated in
system A. These set A films had thicknesses of A, /2 (120
nm) and 1 pm (4A, ). Their resistive T, values were 8.19
K and 8.45 K, respectively, and their transitions were
very sharp (b, T, /T, &0.005). Since the T, values were
similar, we used the set A films to study the orientational
and field dependence of J, .

Five films were fabricated in system B. They had
thicknesses of 60 nm (k/4), 120 nm (1,/2), 250 nm (A, ),
500 nm (2A, ), and 1 pm (4A, ). The T, values of these films

were 5.39 K (A, /4), 6.54 K (A, /2), 7.34 K (A, ), 8.55 K
(2A, ), and 8.74 K (4A, ), respectively. The set B films were
primarily used for studying the field and thickness depen-
dence of J,~ and J,~~.

The critical currents of the two film sets were measured
by means of two different techniques, both of which per-
mitted rotation of the film plane with respect to the mag-
netic field H which was always perpendicular to the
transport current density J. In the system used for the
set A films, the angular precision was 0.036' and the max-
imum field was 8 T. For the set B, the angular precision
was 0.015' and the maximum field was 10 T. For current
and voltage contacts we used indium pressure contacts
with resistance less than 0.5 Q. The critical currents I,
were determined by a standard four-probe method using
a 1 pV/cm voltage criterion, and the J, values were cal-

culated as I, / A, where A is the cross-sectional area of
the bridge. In all cases, the dimensions of the bridge
were determined by using an Alpha-Step 200
profilometer.

B. Results

Figure 1 compares the orientational dependence of J,
(y, 1T, 4.2 K) for the set A films over the range
—10'(y & 100', where y=0' represents H perpendicular
to the film plane (J,i) and tp= 90' represents H parallel to
the film plane (J,~~). In general, both films exhibit a sharp
peak in parallel field and J, falls to a minimum before ris-
ing to a much smaller peak which is nominally in the vi-
cinity of q&=0' (Hi). However, there are important
differences between the curves. First, the J,(y) values of
the A. /2 film were 3—20 times greater than the J, (q&)

values of the 4A. films. Second, the peak in J,(y) in paral-
lel field was much sharper in the case of the k/2 film and
was cusp-shaped, as shown in Fig. 2. Additionally, the
angular dependence of J,(g) for the A, /2 film in the vicin-
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FIG. 2. The angular structure of the peak in J,(y) in nearly
parallel field for the A, /2 set A film. Inset shows the fit of the
data to the 1/~y —90'~ dependence (dashed line).

ity of the cusp can be well described by the power law
J,(y) ~ I/~p —90'~, as shown in the inset to Fig. 2.
In the case of the 4A, film, J,(p) has a more shallow
rounded peak at g=90' which did not obey any power
law for its orientational dependence. Third, the nominal-
ly perpendicular peak was larger for the 4A, film than for
the A, /2 film. Also, this peak was located at y=5' for the
4A, films but at i'd=21' for the A, /2 film.

Figure 3 plots J,~ and J,
~~

values obtained over the
range 0—8 T at 4.2 K for both films. The highest values
of J, are obtained for the A, /2 film with H~~ and the
lowest for the 4A. film with H~~. By contrast, J,~ is greater

FIGa 3. Field dependencies of J, for the A, /2 and 4A, set A
films for parallel and perpendicular orientations.

for the 4iL than for the A. /2 film. Thus the anisotropy of
J,(y) f'or the A, /2 film is not only much higher but the ra-
tio J,~~/J, z is of order 20 for the A, /2 film but of order

3

for the 4A, film. The magnitudes of J, also display impor-
tant features. In the zero-field limit J, reaches —1X10
A/cm and —1.8X10 A/cm for A, /2 and 4A, films, re-
spectively. The value of J, for the A, /2 film is about 30%
of the depairing current density Jd for the bulk Nb-47
wt % Ti which can be calculated from Eq. (1) as follows,

Jd =0.544H, /A, =3X 10 A/cm

(we took poH, =0.20 T and A, =250 nm).
At 5 T, a common reference point for Nb-Ti, the X/2

film had J, values at 1.8 X 10 A/cm for H and
2.5X10 A/cm for Hz, while the 4A, film had J, values

5 2 II

of 1X10 A/cm for Hi and 5X10 A/cm for Hi. For
comparison we plot the data of Cooley et al. , for the
most optimized bulk sample yet made (J, -5.3X10
A/cm at 4.2 K, 5 T) and the data for a precipitate-free
bulk sample of Nb-47 wt% Ti for which J, -4X10
A/cm at 5 T, 4.2 K (see, e.g. , Ref. 3). Thus at one ex-
treme a thin film (A, /2) exhibits a J,i values which are
about 3 times higher than the most optimized two-phase
Nb-Ti sample ever made, even though it contains no
Aux-pinning a-Ti precipitates. At the other extreme, for
both X/2 and 4A, films, J,~ is much lower, and the J,

~~

for
the 4A, film is comparable to the precipitate-free bulk ma-
terial.

The field dependence of J,
~~

and J,~ for the set 8 films is
shown in Fig. 4. A systematic transition in the relative
magnitudes of J,~~(H ) to J,i(H ) is seen in the films. The
ratio (J,i/J, i) is of order 30 for the A, /4 film, decreases as
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FIG. 4. Field dependencies of J,
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for the set B films of
different thicknesses.

d increases and is of order —,
' for the 4A, film. In this re-

gard, the set B films exhibit similar field dependences to
the set A films.

In Fig. 5, we plot the J,
~~

values at 1, 2, 3, and 4 T for
each set B films as a function of d, where the solid lines
are linear regression fits to the J,

~~

data. We find that, the
thickness dependence of J,

~~

is approximately inversely
proportional to d, as seen by comparing our results to a
1/d line. At the same time, one should keep in mind that
the data shown in Fig. 5 give only a qualitative tendency
of the J,i(d) dependence, since the set B films of different
thicknesses had different T, values. For this reason the
data for the A, /4 film at 3 and 4 T were excluded from the
regression, since these fields were close to H, z.

III. VORTICES IN THIN FILMS

A. Field distribution in a single vortex

In this section we consider a single vortex in a thin
film, assuming that both the external magnetic field 8
and the vortex are parallel to the film surface. The film
thickness d is assumed to be much larger than the coher-
ence length g', which enables one to describe the field dis-
tribution 8(x,y) within the framework of the London
equation

A, V 8 8= —po5—(r —ro),

where ro is the coordinate of the vortex core, and the axes
x and y are perpendicular and parallel to the film surface,
respectively. The boundary conditions to Eq. (2) are that
the normal component of the current density
J=(c/4m. )curlB vanishes at the film surface (x =+I /2).

FIG. 5. Thickness dependencies of J,
~~

at different 8 extract-
ed from the data of Fig. 4. The dashed line corresponds to the
1/d dependence.

A standard way to satisfy this boundary condition is to
consider a periodic chain of vortex-antivortex images"
in an infinite sample (see, e.g. , Refs. 31—35). This reduces
the case of the film geometry to the well-known descrip-
tion of vortices in an infinite superconductor, where the
Auxon characteristics can be expressed in terms of an
infinite series of modified Bessel functions Ko(nd/2A, ),
n =1,2, 3, . . . .

In this paper we employ another approach, ' which en-
ables one to obtain an analytic single-vortex solution of
Eq. (2) at d ((A, . Since the film is assumed to be infinite
along the y axis, it is convenient to make a Fourier trans-
formation of B(x,y ) in y, which turns Eq. (2) into the fol-
lowing ordinary differential equation for the mixed
Fourier component Bk(x),

A, Bk' —(1+k k )Bk= —Joe '5(x —xo) . (3)

Here the prime denotes the derivative over x, and

Bk(x)= f exp( iky)8(x, y—)dy . (4)

In this representation the boundary condition
J„(+d/2)=0 reduces to Bk(+d/2)=0, and the delta
function in Eq. (3) gives rise to a discontinuity of Bk(x )

at x =xo. Indeed, by integrating Eq. (3) from x =xo —0
to xo+0, and using the continuity of Bk(x) at x =xo, we

obtain

A. [Bk(xo+0)—Bk(xo —0)]=—Poexp( ikyo) . —

The solution of Eq. (3) which satisfies these boundary
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conditions has the form

i—ky p

Bk(x)=
z

[coshp(d —ix —
xone)

2A, p sinhpd
—coshp(x +xo )], (6)

for which B(r) decays over the penetration depth A, . In
this paper we focus on the opposite limiting case of thin
films (d «)i, ) for which 8(r) in the vortex decays over a
length -d which is much shorter than A,. In this case the
main contribution to 8(r) comes from the Fourier com-
ponents Bk(x) with wave vectors k much larger than
I/A, , for which one can set p = ~k ~. As a result, the in-
verse Fourier transformation of Eq. (6) can be performed
exactly (details are given in Appendix), leading to the fol-
lowing field distribution B(x,y ) in the fluxon

B(x,y ) = ln
4o

4nk,

cosh —(y —
yo ) +cos—(x +xo )

cosh —(y —
yo )

—cos—(x —x o )

(8)

for which both 8(x,y) and the normal component of
J(x,y ) vanish at the film surface [8(+d /2, y ) =0 and
J„(+d/2, y ) =0]. The function given by Eq. (8) is a solu-
tion of the Laplace equation A, V 8 = —(()p5(r —ro) which
reduces to the London equation Eq. (2) if one neglects the
second term in the left-hand side of Eq. (2) responsible for
the London screening. This is a specific feature of thin
films with d (&A,, for which the London screening is
negligible and gives only a small correction to Eq. (8) of
order d /A, «1 (see Appendix), since the film with
d ((A, is almost magnetically transparent.

The field distribution given by Eq. (8) is shown in Fig.
6. As follows from Eq. (8), unlike the fluxon in the

where p =(k +1/A, )'~ . For thick (d ))A, ) films, one
can put dp ~~ everywhere, except for a narrow layer of
thickness -A, at the surface (see below). Then the inverse
Fourier transformation of Eq. (6) (see, e.g., Ref. 36) yields
8(r) in the Abrikosov fluxon

Wo ~r
—

ro~8 (x,y ) = z
I(.p

277A.
2

B. Flux quantum, surface barrier, and H, &

The analytical solution (8) enables one to calculate
relevant characteristics of the fluxon in a thin film
without analyzing a cumbersome series of Bessel func-
tions. For instance, the above features of 8(x,y) give
rise to a smaller magnetic flux P in the vortex parallel to
the film surface as compared to the flux quantum Pp.
The magnitude of P can be written in the form

d/2
P(xo)= f Bp(x,xp)dx, (9)—d/2

where Bo(x) is given by Eq. (6) with k =0 and p = I/A, .
Then a simple integration of Eq. (9) yields

coshxo /1,
4(xo)=(('o 1—

coshd 2A,
(10)

Therefore, for thick films (d »A, ) the flux P(xp) equals

Pp everywhere, except for a surface layer, where P(l )

changes over the distance 1=d/2 —xo from the surface
as follows

infinite sample, 8(x,y ) in the film is anisotropic and van-
ishes at the film surface (x =+d/2). Another distinctive
feature of the case d « l(, is that 8(x,y ) in the fluxon de-
cays exponentially along the film (y axis) over the length
d /~ much smaller than A, , but in the vicinity of the vor-
tex core B(x,y ) turns out to be analogous to that for the
infinite sample. For instance, at small distances

r=[(x —xo) +(y —yp) ]' «d
from the vortex core, Eq. (8) yields the same current den-
sity distribution J(r) =ego/8nA, r .as that for the fluxon
in the infinite superconductor.

Thus, the effect of the film geometry manifests itself at
distances r comparable to the thickness d. As a result,
the magnetic field of the fluxon is mostly localized in a
domain of size -d inside the film, the characteristic am-
plitude of 8(x,y ) about the vortex core remaining of the
same order of magnitude as that for the infinite sample.
This situation qualitatively differs from that for the thin
film in perpendicular field, where 8(x,y) in the fluxon
decays along the surface over the length I, /d which is
much larger than k, ' since the magnetic lines are
mostly localized outside the film.

P(l)=go[1 —exp( —l/A, )] .

In the opposite case of very thin films (d «A, ), formula
(10) reduces to

4
B(x,y)

2
~ 5 Pod 4xo

8X d
(b(xo) = 1— (12)

0.5 o-

FIG. 6. Field distributions B(,x,y ) in a fluxon calculated by
means of Eq. (8) [8(x,y ) is measured in the units of $0/4m. A.'].

The flux (()(xo) is then a maximum in the center,
$(0)=Pod /8)(, and vanishes at the film surface
(xp=+d/2). Here $(0) is much less than Po, since the
magnetic field in the vortex is mostly localized in a
domain of area —d, unlike the fluxon in the infinite sam-
ple for which this area is of order A, .

To calculate the lower critical field H
&

and the surface
barrier for flux penetration, we consider the part of the
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thermodynamic potential G associated w&th vor-
.34, 37, 38tices:

G= g J5(r—r„)[BI(r)+ ,'Bv—(r) H—(r)]dx dy,4~

(13)

where r„is the coordinate of the nth fluxon, Bv(r) is the
total field produced by the vortices, and BL(x) is the
M 'ssner screening field which satisfies the London equa-eissner
tion with the boundary conditions BL ( d /2)
=H+ 2~I/c, where H is the external magnetic field, and
I is the total transport current along the y axis. The solu-
tion of the London equation is

—1

CD

X
CD

C3

coshx /k
o hd/2A,

2m.I sinhx /A,

c sinhd /2A,
(14)

We first consider the potential G for a single vortex as a
function of its position xp in the film. Then Eq. (13 takes
the form

Go ~o~2BL, (xo ) 2H+B v(xo ) ]/8n,
—pz —0.2 0.0

xc/d

where Bv and Bz are given by Eqs. (8) and (14), respec-
tively. Since the field Bv(r) diverges logarithmically as
x ~xo and y ~yo, we take the standard limit ~r

—
rp~ ~g

when calculating Bv(xp) in the vicinity of the vortex
core. As a result, the potential Go(xp ) at d « A, becomes

Gp(xp) = 0o

4m'

'2
2d ~xo

ln cos +P
d

Hood

3277k2

4x02

d2
0o o

(15)

4o irx o 4m.A,
tan =Hxo —J

4d d c
(16)

Making use of Eqs. (15) and (16), we consider the
Bean-Livingston surface barrier which has been calcu-
lated for thin films in Refs. 32, 34, 41, and 42 (see also
Ref. 49). Shown in Fig. 7, the energy barrier Gp(xp)
displays different dependencies on xo in four characteris-
tic field regions: H &H, H &H &H, &, H„H K„H &H&K,
and H )H, . For instance, at H )H there first appears
the stable solution xp=0 of Eq. (16) which corresponds
to a stable vortex position in the center of the film, the
field H being

H =~go/4d (17)

The first term on the right-hand side of Eq. (15) describes
the self-energy of the vortex, where the coefficient
p=0. 38 accounts for the core energy which is the same
as for the vortex in the infinite sample, since the film
thickness is assumed to be much larger than the core ra-
dius g. The second term in Eq. (15) is the energy of the
vortex in the magnetic field, —P(xo)H/4~, with the fiux

P(xo ) given by Eq. (12), and the last term is the work of
the Lorentz force, where J=I/d is the mean linear trans-
port current density. The equilibrium vortex position in
the film is determined by the condition BGO/Bxo=0,
whence

FIG. 7. Single-vortex thermodynamic potentiali 1 15 for
different H at J=0: H & H (1), H & H & H, & (2), H =H,

&
(3),

H, l &H &H, (4), and H &H, (5).

24o
K, )

= ln —+y
md

(18)

where y=ln(2/m)+p= —0.07. For Nb-Ti films with
d =A, /2= 120 nm, Eq. (18) gives H„=0.3 T. A formula
for H for thin films was first obtained by Abrikosov '

with a logarithmic accuracy (see also Refs. 32— . o-—35,. No-
tice that Eq. (18) gives the same dependence of H„upon
d as the results of Refs. 31, 34, and 35, except for the nu-

merical value of y.
At H )H„,vortices still have to overcome the entry

barrier in Go(xp) as long as H &H, . As H increases, the
maximum in Go(xo) in Fig. 7 moves toward the film sur-

face. At a certain H„the distance between the maximum
in G(xo) and the point x =1/2 becomes of order g, and
the surface barrier disappears. The field H, at J=O can
be calculated from Eq. (16) with x p

=x =d/2—
whence: .32, 34

H, =go/2m dg . (19)

As follows from Eqs. (18) and (19), the fields H, i and H,
can be much larger in thin films than in bulk supercon-
ductors, for which

H, i =($p/4vrk, )in[(A, /g)+0. 497]

At H &H &H„there appears an exit barrier for the
vortex which therefore can be trapped by the magnetic
potential well shown in Fig. 7. This corresponds to a
metastable state, since the potential Go(xp) remains posi-
tive for all xo. At H) H„the value G(0) becomes nega-
tive. The lower critical field H, &

is then determined by
the condition G(0)=0, which yields
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(Ref. 39) and H, =H, =$0/2v'2n. )I,g, where H, is the
thermodynamic critical field. Qualitatively, the
values H„and H, at d «A, can be obtained from the
bulk H„and H, by the replacement of the London
penetration depth k by the length din over which the
magnetic field varies along the film.

At J)0 the function Go(xo ) is asymmetric, due to the
self-field effects. Above the critical value J„Eq.(16) has
no stable solutions, since the self-field becomes compara-
ble to H, and the magnetic potential well shown in Fig. 7
disappears. The value of J, above which the minimum in

Go(xo) disappears is determined by the set of equations
BGO(xo, J, )/Bxo=0 and I) Go(xo, J, )/Bxo=0, where Go
is given by Eq. (15). The first equation reduces to Eq.
(16), and the second one yields
xo=(d/m)cos '(H /H)' . Substituting this value of
xo into Eq. (16), one obtains

c dH 1
Hm

Jc 2 2
' COS

4m A,

1/2

H H

H
'

H

1/2 '

(20)

This formula, which determines the critical current den-
sity at H =H„due to the surface magnetic pinning, will

be discussed in the next section in more detail. Here we
just notice that J,(H) given by Eq. (20) increases with H
due to the increase of the depth of magnetic potential
well Go(xII ) with H (see Fig. 7).

C. Vortex-vortex interactions in thin films

f= Jr
C

(21)

In the presence of an external magnetic field H & H, 1, a
vortex interacts with both the screening Meissner field
and other fluxons. As follows from Eq. (15), the force
f= dG /'I3x0 pr—oduced by the screening current
JL = —(c/4n )FBI /BxII is given by the standard formula
for the Lorentz force:

U(r„,r )

40
ln

cosh —(y„—y )+cos—(x„+x )

cosh —(y„—y }—cos—(x„—x )

(23}

$2

16mB, d

2&xp
sin

2&yp 2 ITx p
cosh —cos

d

g4)

0o

8m)I, d

~yp exp
tanh cos

277y p
cosh

27Txp
cos

d

where 0 & xo & d /2, 0 &yo & ao . Both components f„and
f» are positive, which corresponds to a vortex repulsion
at any xp and yp. However, unlike the infinite supercon-
ductor, the force f generally is not central, that is, the
vector f is not parallel to the line which connects the
fluxons (see Figs. 8 and 9). A similar situation occurs in
anisotropic superconductors.

Unlike the infinite superconductor, the function
U(r„,r ) depends not only on the spacing between vor-
tices r„=~r„—r ~, but on their positions in the film as
well. For instance, if a vortex is at the surface
(x„=d/2), it has zero magnetic flux P(x„)and therefore
does not interact with other vortices. In addition, the po-
tential U(r„,r } of the pair vortex interaction in thin
films changes over the length d, which can be much
shorter than A, .

As an illustration, we consider the force f between two
vortices at the points x„=xp,y„=yp, and x = —xp,
y = —

yo (Fig. 8). The corresponding field and current
distributions determined by Eq. (8) are shown in Fig. 9.
For such a symmetric case, the differentiation of Eq. (23)
gives the components of the force, 2f„=—BU/Bxo and

2f» = —BU/Byo in the form

G=QGO(r„}+—g U(r„,r },1

n num
(22)

regardless of the film thickness d.
By contrast, the magnetic interaction between vortices

is strongly affected by the film geometry for d &&A, due to
the reduced magnitude of the flux quantum P(xo). Mak-
ing use of Eqs. (13), we can write the thermodynamic po-
tential 6 of any vortex configuration in the form

-d/2

~f
ye

I

where Go(r„)is the thermodynamic potential Eq. (15) of
a single vortex located at r =r„,and

U(r„,r ) =PDB„(r„,r )/4m

I

I

I

I

I

I

I

I

0 Xo x

is the energy of the pair vortex interaction. Here
BI,(r„,r ) is the field at the point r caused by the vor-
tex being at the point r„[asfollows from Eq. (8), the field

BI, is symmetric, i.e., B(r„,r )=B(r,r„)].Using Eq.
(8), one obtains

FIG. 8. Noncentral forces between two vortices being at
x =+xo and y =+yo.
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Formulas (24) and (25) simplify if the vortices are on
the film axis (xo =0). Then

zero magnetic flux P(xo) for vortices being at the film
surface [see Eqs. (10)—(12)].

2

f.=o, f, =
8m.l, d sinh(2myo/d )

(26) IV. CRITICAL CURRENTS OF THIN FILMS

Likewise, for the vortices lying on a line perpendicular to
the film axis (yo =0):

(()o m.xp
2

f =0, f„= cot (27)

At small distances between vortices (x()+ye «d ), the
forces f, and f» given by Eqs. (24) and (25) do not de-

pend on d and are the same as for the infinite sample.
However, as yo increases, the force f exponentially de-
creases over the length d /~ &&A, . On the other hand, for
fixed yo and changing xo, the force f decreases as xo in-
creases, vanishing at xo=d/2. The latter is due to the

A. Bulk pinning

In the Meissner state at H &H„(orH, ) vortices are
absent and the critical currerit density J, is determined
by the screening field described by Eq. (14). Assuming
that J, is achieved when the maximum current density
J(x) at the film surface reaches Jd, we obtain from Eq.
(14) that at d « A, the value J, is given by

H
(28)

f
where

Snab, Jd
Hf =

cd

20o

3v'3m. gd
(29)

B(x,y)
~ 5

O.5 0.

0.4

0.2

-0.2

-0 4

-0.4 -0.2 0.2 0.4

FIG. 9. Field distribution (a) and current lines (b) of a pair of
Auxons located at xo=+0.4d and yo=+0. 25d calculated by
means of Eq. (8) IB(x,y ) is measured in the units ofPo/4nA],

Here J,(H) linearly decreases with increasing H, the field

Hf being of the order of H, . Since at d «A, , both H„
and H, increase as d decreases, the field range over which

J, is determined by the Meissner currents turns out to be
much wider than for d &)A, .

At H & H„(orH„depending on the degree of the sur-
face roughness), vortices can penetrate the film, and J, is
then determined by the balance of the Lorentz and pin-
ning forces. Here we focus on the case of thin films with
d «A. in parallel field, for which the transport current I
is mostly due to the Meissner component JL, unlike bulk
superconductors, where I is determined by the gradient
of the Auxon density. In both cases, however, the
Lorentz force is given by the same formula (21), where JL
is a mean transport current density. As follows from Eq.
(21), the Lorentz force is independent of the film thick-
ness. Thus we now consider the dependence of pinning
forces on film thickness.

Unlike a bulk sample or a thin film in perpendicular
field, where vortices form a triangular lattice in the ab-
sence of pinning, the vortex structure in thin films in

parallel field can be more complicated, due to the noncen-
tral, position-dependent interaction between vortices de-
scribed above. In addition, the vortices are in a nonuni-
form external potential caused by the screening field

BI (x) (see Fig. 7). As a result, the vortex structure is

generally nonuniform across the film and nonperiodic
along the film, even in the absence of bulk pinning. For
instance, at H =H,

&
vortices form a single periodic chain

along the film axis; ' however, the further increase of
H leads to the successive splitting of the initia1
chain ' ' and the appearance of additional vortex
rows. Here we confine ourselves to a qualitative analysis
of J, at H„«H«H, z, assuming that the elementary
pinning potential U (r) is the same as in the bulk sample.

Now we estimate a mean equilibrium vortex density
n( )Hin the film in the high field limit H »H, i, where
the number of vortex rows is much more than unity. The
value n (H) is determined by a competition between the



49 EFFECT OF GEOMETRY ON THE CRITICAL CURRENTS OF. . . 1283

intervortex repulsion and the gain in the magnetic energy
P—nH/4'. Here the mean energy of vortex interaction

per unit length of a fluxon is of order d n($0/4m'. ),,
where d n is a number of vortices within the effective
range -d of the fluxon interaction [see, Eq. (22)]. Since
the mean flux quantum P in thin films is of order
Pod /12K, , we find that

'2 "'
HnH .

48@A,

00
48@k.

(30)

c WJ
H V,

(31}

Minimization of this expression with respect to n gives
a thickness-independent fluxon density n-H/Po which
is of the order of that for bulk superconductors. This
qualitative estimation is in agreement with previous cal-
culations of the vortex structure in thin films, ' which
have shown that vortices at H )&H,

&
form the same tri-

angular lattice as that in the infinite superconductor pro-
vided that all vortex rows have the same period along the
film. The latter condition is rather an a priori assump-
tion, nevertheless we shall use the fact that n -H/Po for
further qualitative analysis for which knowledge of the
detailed structure of the mixed state is not critical.

Since the Nb-Ti from which our films were fabricated
seems to exhibit only a weak bulk pinning, we estimate J,
by means of a collective pinning model in which J, is
given by

c(f) -c(b)
66 66 (35)

This formula reflects the fact that the shear of neighbor-
ing vortex rows at H, &

«H «H, 2 is determined by the
short-range part of the fluxon interaction U(r) on lengths
of the order of the mean distance between vortices a «d,
unlike the tilt and compression of the vortex structure for
which the whole interaction range r &d is essential.
Since, however, the vortex spacing a -($0/H)' and the
characteristic interaction energy U(a } at a « d are of the
same order of magnitude for both thin films and infinite
samples, we again arrive at Eq. (35).

Making use of Eqs. (31)—(35), we can now evaluate the
dependence of J, on film thickness d in the regime of 3D
bulk pinning (for which R, «d}, assuming that the ele-
mentary pinning forces fr are independent of d, and that
the main effect results from the dependence of c44 on d.
Then we obtain that R, ~ c~ c66 ~ d,

c„(k)=c„(0)/(1+ A, k )

derived by Brandt for the bulk case d))k. These for-
mulas do reduce to Eq. (34), if one takes into account the
fact that for thin films with d «A, , the minimum charac-
teristic wave vector k of elastic distortion of vortex struc-
ture is of order ~/d.

By contrast, the shear modulus c66 is not dispersive, as
long as ka «1, where a —(Po/H)' is the spacing be-
tween vortices. Hence it follows that for
H„«H«H„

where W=n f, f is an averaged elementary pinning
force, and n is the density of pinning centers. The corre-
lation volume V, =R,L, is determined by the competi-
tion between elastic and pinning energies, the longitudi-
nal (L, ) and transverse (R, ) correlation lengths being

8mr
1/2 3/2Rc C44 C66 (32)

L, —R,+c44/c66, (33)

C C(b) C(f) — C(b)d
C11, C44 ~2 C44 (34)

where the indices b and f concern the cases d»A, and
d «A. , respectively. Formulas (34) also follow from the
expressions for nonlocal elastic moduli,

where c66 and c44 are the shear and tilt elastic moduli of
the vortex structure, respectively. We consider here the
3D core pinning for which R, & d, and characteristic pin
sizes, r, are of order g. At H„«H«H, z, both the tilt
(c44) and the bulk (c») moduli are of the order of the
mean interaction energy of fluxons per unit volume,
( U)n . However, as follows from Eq. (23), the value
( U) for d «A, is strongly reduced by the factor d /A, ,
as compared to the case d ))A, because of the decrease of
the effective range of the intervortex repulsion. Hence, it
follows that

2 2CW k (b)

(87rr ) c44c H d
(36)

Therefore J,(d} increases as d decreases, which gives rise
to a crossover between collective and single-vortex pin-
ning regimes below a critical thickness d, . Indeed, the
elastic moduli c» and c44 in thin films decrease as the
thickness d decreases. Such a "softening" of the vortex
structure leads to a better matching of fluxons to pinning
centers, which results in a corresponding increase of
J,(d) and a drop in R, and L, as d decreases. As R, be-
comes comparable to a, the vortex lattice becomes highly
deformed and its continuum elastic description is no
longer valid. In the limiting case R, &a the correlation
volume contains only one vortex, which implies that each
fluxon is virtually pinned independently and, instead of
the collective pinning, there arises a single-vortex pin-
ning. Similar crossover between the single-vortex and
collective regimes of pinning in bulk superconductors can
occur under changing T and B. ' ' ' By contrast, in our
case the control parameter is the film thickness; the
single-vortex pinning regime occurs for R,(d)&a. As
follows from Eqs. (30}—(34), the condition R, (d) &a is
equivalent to d &d„where the critical thickness d„
below which the single-vortex regime arises, is given by

and

c44(k)=c44(0)/(I+A. k ) v'8n. WA,

H r~go

(b) 1/2

=35k,
cHr

(37)
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When deriving Eq. (37) we used the following estima-
tion c66-Hgo/64vr A, (Ref. 46) and c44 —(d/vri)2H. /8~
at H„«H«H, 2. To estimate the critical thickness, d„
we take B,' '=0.2 T, A. =240 nm, r =6 nm=(,
Jd =3X 10 A/cm, and the bulk critical current density
J,' '=7X10 A/cm at 8=5 T, which corresponds to a
inoptimized Nb-47% Ti without a-Ti precipitates. Then
formula (37) gives d, =0.4A, .

Therefore, the bulk component of J,~~(d) increases as d
decreases, approaching the single-vortex limit at d &d, .
This is due to the decrease of the range of intervortex
repulsion and the better matching of fluxons to pinning
centers which can then occur. Notice that in the 3D col-
lective regime, J,

~~

proves to be proportional to the pa-
rameter (W/d) which depends on both the pinning
strength and the film thickness. By contrast, in the
single-vortex regime (d & d, ), the critical current density
is independent of d and becomes proportional to
W' . ' However, despite the increase of J,~~(d) in the
single-vortex mode, the J,

~~

value still remains much
smaller than Jd in the case of weak bulk pinning. In or-
der to get J,—Jd due to the core pinning, one has to as-
sume the existence of a very dense (n —I/g ) structure
of pins having sizes r~ of order g. ' In this case both the
discreteness and the plastic deformation of the vortex
structure become essential, and J, is determined by the
direct summation of elementary pinning forces over all
vortices. Thus the bulk pinning seems to be too weak to
account for the observed high values of J,~~=0.2 —0.3Jd
in our A, /2 films. This is due to the fact that the films
were fabricated from inoptimized Nb-Ti for which J,
even at low H is about 2 —3 orders of magnitude lower
than Jd (Ref. 3) (see also Fig. 3).

It is interesting to compare the above J,
~~

in parallel
field to J,~ in perpendicular field obtained in the 2D col-
lective pinning regime (d «L, ). In this case

W ln' (2/aR, )
J,~=

drpcs6&87r
(38)

B. Surface pinning

In addition to the bulk component ofI„there are also
important surface contributions to I, which can be divid-

where R, is the 2D pinning correlation length deter-
mined by the equation

R, = r c6s [S~d / W 1n(2/aR, ) ]
'

Hence it follows that J,~(d) exhibits a qualitatively
different behavior from that of J,~~(d). For instance, J,~

has a 1/d dependence and remains proportional to the
pinning strength parameter W, even at small d. By con-
trast, J,

~~

at d )d, is proportional to W [see Eq. (37)] and
increases as 1/d, approaching the single-vortex limit for
which J, ~ W' at d & d, . Further decrease of d leads to
the change of critical current control mechanism which is
now determined by the Meissner currents in the absence
of vortices. In this case J, =Jz [see Eqs. (28) and (29)].

ed into two groups. The first one is due to the change of
the elementary pinning potential U (r) at the surface due
to variations of the density of pinning centers across the
film, additional surface defects, for example, pyramidal
dislocation structures, ' etc. We do not discuss here
those extrinsic contributions to I, and focus instead on
the intrinsic surface component of I, which results only
from the effect of the film geometry.

One of the pinning mechanisms discussed by Shmidt,
Clem, and Takacs results from the magnetic interac-
tion of vortices with the surface. Qualitatively, this
mechanism is due to the fact that at H &H„afluxon is
in a magnetic potential well (see Fig. 7). In general, the
depth of this well depends on the fluxon density and
therefore needs to be calculated self-consistently. We
first consider the simple case of H=H„, for which
vortex-vortex interactions are negligible. The value of J,
is then determined by Eq. (20) obtained from the condi-
tion of disappearance of the surface barrier. Taking ac-
count of Eqs. (17) and (18), we get

cPoJ = [cos '&a —&a(1—a )],
16m dA, a

where

(39)

a(d)=H /H, ~=(n /8)[ln(d/g)+y]

For d =A, /2=120 nm and (=4.6 nm, formula (39) yields
J, =6X10 A/cm at H=H„(d)=0.3 T [see Eq. (18)].
The calculated J, is about 0.2Jd, which sits between two
experimental values, J, = 10 A/cm and J, =3 X 10
A/cm at H =0 and 1 T, respectively (see Fig. 3). There-
fore, the magnetic surface pinning (unlike the bulk one)
can provide very high values of J, at H -H

&
which turn

out to be comparable to Jd for our nonprocessed Nb-Ti
films at d & k/2 (see also Ref. 52).

As has been already mentioned, the single-vortex criti-
cal current density J,(H) given by Eq. (20) increases with
H due to the increase of the depth of the magnetic poten-
tial well Go(xo) (Fig. 7). However, when taking ac-
count of vortex-vortex interactions, the critical current
density J,(H) experiences sharp drops each time when a
new vortex row appears in the film upon increasing H.
This can manifest itself in a nonmonotonic low field
dependence of J,(H), which has indeed been observed in

LTS thin films. "' '

The surface pinning of the dense vortex structure in
the field region H„«H«K„was discussed by
Shmidt. In this case the intervortex repulsion strongly
reduces the depth of the well in Fig. 7, which ultimately
results in J, of the order of that predicted by Eq. (39).
Qualitatively, this result can be obtained by considering
the following balance of two opposite forces which act on
a vortex at the film surface. The first force

f = —BGo /Bxo = Hood /8m. l. —

is caused by the London screening currents. It is directed
toward the film center (when calculating f we neglected
a contribution of the fluxon self-energy given by the first
term in Eq. (15) which is small at H ))H„).The second
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force fL =JP+(H)/c is due to the transport current
which pushes the vortex toward the surface. Here
N(H) =Hd /$0 is a number of fluxons within the
effective range of the vortex interaction (r & d ), the factor
N(H) taking account of the fact that the vortex at the
surface also experiences the elementary Lorentz forces
applied to fluxons inside the film. By equating f to fi,
we obtain the critical current density J, -cg0/8m', d,
which, within an accuracy to numerical coefficients of or-
der of unity, coincides with Eq. (39) and the result of Ref.
32. Therefore, the magnetic surface pinning can provide
high-J, values in a wide field region H, &(H «H„.In
addition, this mechanism gives a 1/d dependence of J,
which is in agreement with our experimental data
presented in Fig. 5.

As pointed out by Clem, the interaction of fluxons
with Meissner screening currents leads to their repulsion
from the surface, which, in turn, may give rise to a
vortex-free surface layer. This can result in a nonuniform
distribution of the transport current density across the
film, since the local J,(x) in the vortex-free regions is lim-

ited only by J&, which is generally much higher than any

J, associated with the pinning of fluxons in the film.
Such a vortex-free surface layer was observed in recent
computer simulations of fluxon penetration into a super-
conducting slab.

Similar surface effects can be due to the above-
discussed nonuniformity of the intervortex forces which
vanish at the film surface. This can also cause a nonuni-
formity of the local value of J,(x) across the film, since
the vortex interaction at the surface is much weaker than
in the bulk. Employing the above arguments of the col-
lective pinning model, we can therefore conclude that the
single-vortex pinning which result in the maximum J„
first arises at the surface. This can manifest itself in the
enhanced surface component of J,(x), even if pinning
centers are uniformly distributed across the sample. An
analogous effect can occur in bulk superconductors as
well in the case of H parallel to the surface, which may
pertain to the observed increase of J,(x) at the surface of
bulk superconductors. '

V. DISCUSSION

Our results indicate that the film geometry can strong-
ly affect both the absolute values and the orientational
dependence of J,(p). This effect is especially pronounced
in thin films with d (A, in parallel field for which J, in-
creases as d decreases, reaching about 20—30% of J& in
the A, /2 and A, /4 films. Here the critical current density
J,~~(d) in parallel field exhibits a stronger dependence on d
than J,~(d) in perpendicular field. This manifests itself in
the fact that J,~~(d) &&J„(d) for thicker films, but
J,~~(d) ))J,~(d) for thinner films, the crossover being ob-
served at d =2k, . It should be emphasized that we have
specially chosen the isotropic Nb-Ti with weak bulk pin-
ning in order to eliminate any intrinsic pinning and reveal
the effect of the film geometry. Nevertheless, despite a
degradation of T, at d (A, , the J, values turn out to be
higher than those obtained by Cooley et al.
(J,—3—5% of J~) for the best optimized bulk Nb-Ti

after the processing which gives rise to a-Ti precipitates.
The angular dependencies of J,(y) exhibit strong peaks

in parallel field, the amplitude of the peak increasing as d
decreases. Notice that the dependences J,(p) for our iso-
tropic Nb-Ti films look remarkably similar to those ob-
served on high-T, thin films, ' ' although in our case
the contribution from the intrinsic pinning, to which
such a behavior has been entirely ascribed so far, is ab-
sent. Instead, we obtained a significant geometrical effect
which leads to a characteristic cusp in J,(y) about
y=90' which can be well described by the power depen-
dence J, ~ 1/~(p —90'~ ' (see, Fig. 2}. This correlates
with the results obtained on high-T, films' ' and turns
out to be rather close to the prediction of the intrinsic
pinning model, J, 1/~qr —90'~' at ~qr

—90'~ &&1 (Ref.
4) [see also Refs. 55 —57, where the J,(p) dependence was

considered in terms of pinning of vortex kinks in the
framework of the collective pinning approach]. Hence it
follows, that the intrinsic pinning, although being impor-
tant for highly anisotropic bulk HTS (see, e.g., Ref. 58},is
not the only mechanism which can account for the ob-
served orientational dependence of J,(y). Our results
show that at d (A, the sample geometry can also play an
important role in the forming of the J,(y) dependence
and therefore should be taken into account when analyz-
ing experimental data on J,(y) of thin films. For exam-

ple, the sharp peaks in J,(y) observed on

BigSrpCaCugOg ' BizSrzCagCu30g+„( A, =250 nm, '

and YBagCu307 „(A,=150 nm) (Ref. 16) epitaxial films

were measured on the films having thicknesses much
smaller or of the order of A, (d =100—300, 40—100, and
10—100 nm, respectively). At the same time, some
features of the observed angular dependences J,(y) for
our Nb-Ti films differ from those of HTS; for instance,
the data shown in Figs. 1 and 2 do not obey the scaling
law J,(B,qr ) =J,(8 cosy', 0 } often observed on HTS
films. ' ' ' Such a scaling is believed to be due to the in-

trinsic pinning in highly anisotropic layered HTS.
Our interpretation of these results is based on the

above-addressed peculiarities of the vortex behavior in
thin films in parallel and perpendicular fields. First we
notice that within the collective pinning theory, the
values J,

g
and J,~ at A, &&d &L, are proportional to the

second and the first powers of the pinning strength pa-
rameter W, respectively [see Eqs. (36) and (38)], whereas
the surface magnetic pinning gives a small contribution
to the total I,. Hence it follows that J,~ &J,

~~

in the case
of a weak bulk pinning, which does correspond to our
data for thick (d))A, ), weak pinning Nb-Ti films (see
Figs. 3 and 5}. However, the relationship between J,

~~

and

J,~ reverses as d decreases below A, with J,
~~

reaching
about 50J,~ for the A, /4 film . We believe that this is due
to qualitatively different mechanisms of critical current
control for parallel and perpendicular orientations at
d (A, . For instance the experimental J,~ did not undergo
any qualitative change as d became smaller than A, ; this is
in agreement with the 2D collective pinning model which
predicts that J,z should be proportional to the pinning
strength parameter W and inversely proportional to the
film thickness if d & L„where L, ))d in the case of weak
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bulk pinning [see Eqs. (32), (33), and (38)].
By contrast, we have found both experimentally and

theoretically that the value J,
~~

is strongly affected by the
film geometry, since at d & A, the film becomes almost
magnetically transparent. This gives rise to an increase
of H, ~

and the surface barrier, which, both act to enhance
the field range, where J, is mostly due to Meissner
currents and thereby is of order of J& [see Eq. (28)].
Above H, &, the J,

~~

value is determined by flux pinning
which is also strongly enhanced by the effect of the film
geometry. This is due to the drop of the tilt and
compression elastic moduli c~ and e» as a result of the
decreased range of the intervortex repulsion at d &k.
Such a "softening" of the vortex structure at d & k leads
to a considerable growth of the bulk component of J,

~~

due to the better matching of the fluxons to even weak
pinning potentials. This ultimately changes the mecha-
nism of bulk pinning, giving rise to a crossover between
the collective and single-vortex pinning below a critical
thickness d, . However, despite the increase of J,

~

in the
single-vortex regime, the bulk pinning in our films seems
to be not strong enough to account for the high values of
J,

~~

for d =A, /2 and A, /4. Indeed, this component of J,
~~

in
the single-vortex regime weakly depends on the film
geometry and thereby cannot exceed J, for the bulk
unoptimized Nb-Ti at H-H, &. Since, however, the low-
field J,(H) for the nonprocessed Nb-Ti is about 2 —3 or-
ders of magnitude smaller than Jz (Ref. 3) (see also Fig.
3), the core pinning cannot account for the observed high
values of J,

~~

=0.2 —0.3J& in our A, /2 and A, /4 films.
At the same time, the above calculations indicate that

the surface magnetic pinning can provide J,
~~

of order Jz
in the wide field region H, &

&H «H, 2 if the film thick-
ness becomes smaller than A, /2. As was shown in the
previous section, this mechanism which is entirely due to
the film geometry gives a main contribution to J,

~~

at
d & k and indeed allows one to account for the high J,

~~

values in our A, /2 and 1,/4 films. In addition, the surface
magnetic pinning gives rise to a 1/d dependence of J,(

which is also in agreement with our experimental data
shown in Fig. 5.

Therefore, at d & A, , the surface pinning can result in
J,

~~

of order Jz, unlike the value J,~ for perpendicular
orientation which remains proportional to the parameter
8'which characterizes the weak bulk pinning in our sam-
ples. These arguments allow one to account for the ex-
tremely high J,

~~

values which we observed in k/4 and
A, /2 thick films, despite the absence of a-Ti precipitates
and the much smaller J,~ values which should be deter-
mined by weak bulk pinning produced by the columnar
grain boundaries which are the principal pinning centers
in our unoptimized Nb-Ti films.
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APPENDIX

A, V B = —Po5(r —ro) (A3)

with the boundary conditions J,(+d/2, y)=0. An evalu-
ation of the integral in Eq. (A2) (see, e.g. , Ref. 36) results
in formula (8) which is an exact single-vortex solution of
Eq. (A3). By differentiating Eq. (8) we calculate the com-
ponents of the current density J„=(c/4~)BB/By and

J» = —(c/4')dB/Bx, which yields

7T
sinh —(y —

yo )
cPo

16m k2d
cosh —(y —yo) —cos—(x —xo)

sinh —(y —yo)

cosh —(y —
yo ) +cos—(x +xo )

7T
sin —(x —x )cPo

16m', d cosh —(y —
yo )

—cos—(x —xo )

(A4)

As follows from Eqs. (4) and (7) the field B(x,y ) can be
presented in the form

cosq(u —uo)
B(x,y ) = f . [coshg(1 —

~v
—

vo~ )
4~& — g sinhg

—coshg ( v+ vo) ]dq,
(Al)

where q=kd, u=y/d, v=x/d, g=(q +e )', and
e=d/A. . For thin films (d «A, ), the main contribution
to the integral in Eq. (Al) comes from q

—1. This allows
us to set e=O in Eq. (Al), which is equivalent to the re-
placement p=(1/A, +k )' = k~ in Eq. (6). Then Eq.
(Al) becomes

cosk(y —yo)B(x,y )
=- f dk . [coshk(d —x —xo ~

)
0 k sinhkd

—coshk(x+x„)] .

(A2)
This formula gives an integral representation of the
Green function of the Laplace equation
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As follows from Eq. (A4), the normal component J„(x)
vanishes at the film surface, x =+d /2.

Now we estimate a correction to Eq. (8) which comes
from the bulk London screening which is neglected in



49 EFFECT OF GEOMETRY ON THE CRITICAL CURRENTS OF. . . 1287

Eqs. (A2) and (A3). By expanding the Eq. (Al) in power
series in e =d /A, « 1, we obtain the correction
5B(x,y ) to Eq. (A2) proportional to e . For instance, for
the vortex being in the center of the film, the value 5B(0)
at the core (x =xo =0, y =yo =0) is given by

This integral converges, therefore at d «A, the contribu-
tion from the London screening, 5B(0) is of order

(bod /4m A, , which is negligible as compared to

B(0) —(Po/2m', )in(d/g)
d24o -dq

8m', o q cosh q

tanhq
(A6)

given by Eq. (8).
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