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Long-time-scale dynamics observed in directional solidification of a binary alloy
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Asymptotic analysis and finite-element simulations are used to explore the nonlinear dynamics present
in cellular interface patterns that arise in thin-film directional solidification, as caused by the presence of
a codimension-two bifurcation at a specific value of the spatial wavelength for the cells. For certain pa-
rameter sets, the quadratic nonlinearities that dominate the dynamics because of 2:1 spatial resonance
give rise to secondary steady-state bifurcation and to time-periodic states with periods that scale as
5 ' ', where 5 measures the distance from the parameter values for the codimension-two state. The
structure of this dynamics is explored in closed form for a modified Swift-Hohenberg equation and for
the two-sided, solutal model for directional solidification. The asymptotic results for directional
solidification are verified by finite-element numerical simulations for small amplitude cells.

I. INTRODUCTION

There is increasing experimental and computational
evidence that the shallow two-dimensional cellular struc-
tures formed just after the onset of morphological insta-
bility in directional solidification of a binary alloy exhibit
spatiotemporal chaos on long-time scales compared to
the characteristic diffusion times for solute and heat in
the system. The purpose of this paper is to show that the
appearance of long-time-scale dynamics in directional
solidification systems is, at least, partially predictable be-
cause of the flatness of the neutral stability curve associ-
ated with the linear instability of the planar state and be-
cause of temporal dynamics produced from interactions
of spatially resonant wavelengths for growth conditions
very close to the onset of the transition from planar to
cellular interface structures.

In the thin-film solidification of a dilute binary alloy
considered here, cellular microstructures begin as an in-
stability to the planar interface for solidification rates V
above a critical value V= V, . This critical value is given

by the neutral stability curve from linear stability
analysis' as V= V, (co), where co is the wave number of the
disturbance along the lateral dimension of the planar in-
terface. For V & V„a range of wave numbers are linearly
unstable. Weakly nonlinear bifurcation analysis and nu-
merica simulations confirm that, for each value of the
wavelength a family of steadily solidifying, finite ampli-
tude cells evolve, either subcritically or supercritically
with changing V from V, (co). Theory and numerical
simulations have established that the presence of this
band of wave numbers and the nonlinear interactions be-
tween these states, causes no single value of the wave-
length to be selected as the microstructure evolves with
increasing V.

In fact, even the critical wave number co=co, predicted
by linear stability theory to correspond to the lowest
value of the growth rate V= V, (co, ) for instability is ex-
tremely difFicult to observe in either experiments or com-
putations with large samples, because the flatness of the

neutral stability curve leads to a band of unstable wave
numbers for

~
V—V, ~

&&1. This flatness is a direct result
of the small influence of the melt-solid interface free ener-

gy in setting the shape of the interface.
The flatness of the neutral stability curve is particularly

important because of the importance of nonlinear in-
teractions between both steady and transient cells, which
lead to bounds on V for the existence of families of cells
with particular wave numbers. This was demonstrated
by Ungar and Brown using numerically implemented bi-
furcation analysis for a model of two-dimensional cellular
solidification and was analyzed in detail by Haug ' using
techniques from imperfect bifurcation analysis. An im-

portant result of these studies was to identify secondary
bifurcations that occur between families of cells with spa-
tial wave numbers co and 2'. The appearance of these
secondary bifurcations is directly linked to the existence
of the codimension-two bifurcation that occurs where
two families of steady cells evolve from the same value of
the growth rate, V= Vd where the two neutrally stable
wave numbers are related as cod and 2cod. The amplitude
equations presented by Haug ' for describing the non-
linear interactions of the two modes with wave numbers

cod and 2cod were derived as an expansion about the criti-
cal value V= Vd and build on the more general theory
developed by Dangelmayr and Armbruster; ' also see
Ref. 11.

The importance of the nonlinear connectivity between
steady-state solution families is great, especially when

coupled with the flatness of the neutral stability curve.
First, it supplies a mechanism for increasing the wave
number above the critical value predicted by linear stabil-
ity theory, from co, to 2', and to larger values for small

increases in growth rate, as observed several times in
computations and seen in recent experiments. ' Second-
ly, it severely limits the utility of the predictions of side-
band stability analyses of weakly nonlinear states, the so-
called Eckhaus analysis, ' ' by restricting the validity of
these results to a range of V above which the secondary
bifurcations caused by mode interactions dominate the
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evolution of the interface.
Most important to the results presented here, the non-

linear interactions between modes with wave numbers co

and 2' also may lead to time-dependent states through
Hopf bifurcations. Proctor and Jones' demonstrated
this fact in the derivation of general amplitude equations
near a codimension-two bifurcation generated by 2:1 spa-
tial resonance. What is of particular importance is that
the Hopf bifurcations caused by the codimension-two bi-
furcations evolve from the secondary bifurcation point
with a period of oscillation that increases toward infinity
as the codimension-two point is approached. Thus, for
physical systems, like directional solidification, where the
neutral stability curve is very flat, the period of the oscil-
lation can be extremely large. This observation follows
solely from the fact that for the parameters values for the
codimension-two point, no oscillatory instabilities are
possible emanating from the neutral stability curve. We
demonstrate that this long-time-scale dynamics is very
important in the development of microstructure during
the directional solidification of a binary alloy.

Chaotic, long-time-scale nonlinear dynamics were ob-
served by Bennett and Brown in numerical simulations
of thin-film directional solidification. They demonstrated
nonperiodic dynamics in simulations with sample widths
corresponding to 4A,„where A,, =2nlco, T. he f.undamen-
tal mechanism observed in this dynamics was interactions
between neighboring cells that lead to tip splitting of an
individual cell to form two cells with half of the original
width (or twice the wave number) and the lateral migra-
tion, growth or dissolution of these new cells in time.
Each of these mechanisms is expected from the nonlinear
dynamics associated with the Hopf bifurcation caused by
the codimension-two structure. The dynamics computed
by Bennett and Brown occurred on a time scale of ap-
proximately O(10 ) diffusion time units and corresponded
to the time scales seen for simpler, time-periodic dynam-
ics observed in calculations for samples that were only
one wavelength wide. Motivated by these calculations,
Lee and Brown' designed a very large, thin-film
solidification experiment and observed long-time-scale,
chaotic dynamics in the solidification of succinonitrile-
acetone alloys. For growth rates very close to V, (co, ),
long solidification experiments gave a solidification inter-
face with cells represented by a band of wave numbers,
which evolved in time and exhibited nonlinear dynamics
between neighboring cells.

The purpose of this paper is to demonstrate the con-
nection between the time scale of the time-periodic states
predicted for the codimension-two bifurcation arising
from 2:1 spatial resonance and the dynamics observed in
thin-film directional solidification, as represented here by
the two-sided solutal model for directional solidification
used by Bennett and Brown. Because of the complexity
of the solutal model, the asymptotic structure of the Hopf
bifurcation is first explored for a simpler model problem
that displays the saxne dynamical structure; we use a
modification of the Swift-Honenberg' equation for this
purpose.

Asymptotic analysis about the codimension-two struc-
ture is carried out using the center manifold reduc-

II. MODIFIED SWIFT-HONENBERG EQUATION

The importance of quadratic nonlinearities to the dy-
namics near the codimension-two bifurcation point that
corresponds to 2:1 spatial resonance is most easily seen
by considering a model fourth-order nonlinear evolution
equation modeled after the equation introduced by Swift
and Hohenberg. ' Following our previous analysis of the
Eckhaus instability for the Swift-Hohenberg equation, '

we consider this equation augmented with quadratic
terms to yield

'2
2

2
Bu 8+ +1 u —Ru+f +gu +u =0,2

dt Bx

where R is the control parameter and f and g are con-
stants. We refer to Eq. (1) as the modified-Swift-
Hohenberg or MSH equation. The additional quadrati-
cally nonlinear terms scaled with g and f are introduced
into the Swift-Hohenberg equation to represent the
effects of quadratic nonlinearities on the solution struc-
ture near the codimension-two bifurcation point. Quad-
ratic nonlinearities dominate the changes in solution
structure caused by mode coupling, so that these terms
represent the most important e8'ects on the solution
structure. The form of these nonlinearities was not
selected to mimic directly the behavior of the directional
solidification problem. However, each term in Eq. (1) is
present in the evolution equations that govern the dy-
namics of directional solidification; this point is ad-
dressed again in Sec. II B.

tion' ' to compute the system dynamics using two cou-
pled amplitude equations representing the magnitudes of
the two interacting modes. Center manifold analysis con-
structed about the codimension-two bifurcation provides
a very general framework for capturing the dynamics of
both the steady-state bifurcating families, the time-
periodic states and the long-time-scale dynamics of the
oscillatory solutions. This combination involves dynam-
ics both near the primary and secondary bifurcation
points and cannot be captured by a simpler perturbation
expansion using a single expansion parameter. Multiple
perturbation parameters in a multiple-time-scale expan-
sion would be necessary to analyze these dynamics by
classical methods. The center manifold approach is more
straightforward for this analysis because the amplitude
equations derived for the coeScients of the two interact-
ing modes systematically include all couplings between
these and other relevant modes without the need for in-
troducing additional scalings. The scaling of the time
period for the oscillatory solutions on the distance of the
system from the codimension-two point is derived explic-
itly; these results are presented in the next section. The
solutal model is presented in Sec. III. A similar center
manifold analysis of the solutal model is summarized in
Sec. IV and the results are shown graphically in Sec. V.
The comparison between the asymptotic results and nu-
merical simulations for the solutal model are extremely
good for low amplitude cells.
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This equation is in local form, i.e., Q =0 is a solution for
all values of R. Instability of this base state and bifurca-
tion to a steady-state, finite amplitude form is predicted
along the neutral stability curve defined by

R =R«;,:I'(co—)=(1—co) (3)

where the linear disturbances have the form u (t)cos(~x );
Eq. (3) has the form plotted in Fig. 1. Codimension-two
bifurcation between modes with spatial forms cos(co,x)
and cos(co2x} occur when 2'&=coz. For a parabolic neu-
tral stability curve this relationship holds only at one par-
ticular value of R =R&, which is R& =9/25 for the MSH
equation and corresponds to a critical spatial wave num-
ber of co=co& —=v'2/5. For the choices of control param-
eter R& and spatial wave number co& or domain size
A, =A,

&
=2m /co& steady-state solutions with wave numbers

~z and 2~~& branch simultaneously from the base state.
The existence of the codimension-two point is em-
phasized in Fig. 1 by plotting the neutral stability curves
R =R,„., (co) and R =R«,,(2').

The general structure of this codimension-two bifurca-
tion was studied by Dangelmayr and Armbruster ' by
considering the domain length to be fixed at A, & and tak-
ing ~R —R& ~

&& 1, so that both spatial modes have
infinitesimal amplitudes and the interactions can be stud-
ied by asymptotic analysis. We consider more general
spatial interactions between the two modes with wave
numbers m and 2' by introducing an additional perturba-
tion parameter that measures the distance in A. from the

The real-valued solution u = u (x, t) is assumed to satis-
fy the reflectively symmetric boundary conditions

BQ BQ =0, x=0 and x=1. .
Bx

codimension-two value. We consider a perturbation in
the domain length defined by

A, =(1+5Q,g, (4)

Bu Bu =0, x =0 and x =A,z .
BY/

(6)

A. Center manifold reduction

The asymptotic analysis presented here is designed to
construct the solutions to Eqs. (5} and (6) in the parame-
ter region ~5~ &&1 and r = ~R —R~ ~

&&1. The analysis re-
quires constructing the center manifold for the weakly
nonlinear dynamics' and is based on the fact that
near the codimension-two point the entire manifold of
the solution dynamics is described by the nonlinear in-
teractions of the two most dangerous spatial modes, with
all others decaying exponentially in time to zero. If Eqs.
(5) and (6) are considered as a nonlinear evolution equa-
tion in local form

where ~5~ && 1. Then the wave number is perturbed away
from the codimension-two value as
co=co&/(1+5) =(1—5)co&+0(5 ); this choice of pertur-
bation parameter is convenient for direct comparison to
numerical simulation. The perturbation parameter is in-
troduced into the differential equation (1) and boundary
conditions (2) by making the change of variables
q=x /(1+5) and rewriting Eqs. (1) and (2) as

2
aQ 1 a'+ 2+1 Q —R(1+5)' Brt'

2

+f +gu +u =0,1 Bu

(1+5)2 Bq

BQ =L(u)+N(u),
Bt

(7)

0.8

0.6

8
CL

0.4 R(co&)=R(2M')

where L ( u ) is a linear operator and N( u ) is a nonlinear
operator, the linear stability of the trivial solution (u =0)
has the eigenfunctions jq;(x)J, where the first m are
members of the null space satisfying L ( q; (x ) )
=O,i =1, . . .m. Construction of the center manifold
consists of four steps. First, the weakly nonlinear solu-
tion is represented as a linear combination of unknown
amplitude coefficients Ia;(t) I and the eigenfunctions of L
as

0.2
u(x, t)= g a;(t)q;(x) .

i=1
(8)

0
0 O.s

Next, Eq. (8) is substituted into Eq. (7) and equations for
the amplitude coeScients are formed by projection with
respect to the eigenfunctions as

FIG. 1. Schematic of neutral stability diagram showing the
codimension-two bifurcation between solutions with spatial fre-
quency co& and 2~q, which occurs at the value of the control pa-
rameter R =Rz. The paths for the bifurcation diagrams con-
structed for co(co& (5&0) and co&co& (5(0) are shown as
dashed vertical lines.

da;
=(N(u), q, ),i=1,2, . . . , m,

dt
(9)

dai
=(L(u), q;)a;+(N(u), q;), i =m+1, . . . , (10)

dt

where the inner product ( ., ~ ) is
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Ad

(p(x), q(x) ) =J p(x)q(x)dx . (11)
0

Because the amplitude of the stable modes (i & m +1) de-
cay in time, Ba;/Bt =0, i & m +1, and Eq. (10) are solved
to give these amplitudes in terms of the critical ampli-
tudes (i+1, . . . , m) as

a1 = [F'(cod )cod 5+I ]a (+b (a, (22
dk

+c,a,az+c2a, +O((2„(22)

dQ2 = [F'(2cod )2a)d 5+ r ]a2+ b2a (dt

(14a)

a, =f,.(a„a„.. . , a ),i=m+1, . . . . (12) +C 3 Q 102 +C 40 2 +0 ( Q I ~ 0 2 ) (14b)

These equations are referred to as the center manifold
equations. Equations (12}are substituted into Eqs. (9) to
give dynamical equations written entirely in terms of the
critical amplitudes as

a;
=F;(a„a2, . . . , a ), i=1,2, . . . , m .

dt

where

b, =2fo—3 +g, b2= ,'g —
—,—'faP, (15)

and the coefficients (c„c2,c3,c4) are given in Ref. 22 and
are truncated at leading order in the parameters r and 5,
because only this dependence plays a role in the
remainder of the analysis.

The center manifold construction was applied to the
MSH equation to derive a set of amplitude equations val-
id for

~
r

~
&& 1 and ~5( && 1. The solution was expressed as

a cosine series, as suggested by the boundary conditions,
and was substituted into Eq. (5) and expanded to cubic
order in the variables [a; ], 5 and I to yield the amplitude
equations for the modes n =0, 1,2, 3,4. As Proctor and
Jones' have shown, only these five modes are needed to
include all the quadratic and cubic resonant interactions
between the critical modes (a „a2}.

The equations for (ao, (23,a4) were substituted into the
evolution equations for the modes ((2 „(22) to give the evo-
lution equations

(P( —0 (g) —y
I F'(—2cod )—2rad5)

' 1/2

(16)

which exist for

[I+F'(2o3d )2cod5]c4 &0,

and bifurcates from the trivial solution at

B. Steady-state solutions

Equations (14) admit two nontrivial steady-state solu-

tions. The first contains only a nonzero value of the am-

plitude a2', we refer to as the pure solution (a (1I', (2(2I') with

coefBcients
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FIG. 2. Parametric structure and linear sta-
bility results for the steady-state solutions of
the MSH equation with (f,g) = (1,0}, i.e.,
bIb2&0, as computed from the amplitude
equations (14); (a) 5= —0.01 and (b) 5=0.01.
The symbols represent primary (0) and secon-
dary (0) bifurcation points between families of
steady-state solutions and (0) Hopf bifurca-
tions to families of time-periodic states. The
magnitude of the solution is plotted as
~= lo( I+ lo21.
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R' '=Rd F'(co—z)co&6 . (19)

Numerical solutions of Eqs. (14) with the parameters
(f,g) =(1,0) and (f,g ) =(0, 1) are shown in Figs. 2 and 3,
respectively. These bifurcation diagrams correspond to
the evolution of the solutions in R along the two paths
shown in Fig. 1 for each side of the codimension-two
point co=cod. For the first case, the coeScients of the
quadratic terms in the amplitude equations have opposite
sign, i.e., b&b2 &0, and for the second case these terms
are of the same sign, i.e., bib2 &0. Note that the values
of b, and b2 depend on the values of the coefficients f
and g in the modified Swift-Hohenberg equation.

When the coefficients are of opposite sign, the two bi-
furcating solutions are connected, no matter what the
sign of 5, the parameter that controls the distance from
the codimension-two point. This connectivity is qualita-
tively different from the simple sequence of unconnected
bifurcating families for the Swift-Hohenberg equation'
and which corresponds to the Eckhaus instability. ' Al-
ternatively, when b, b2 &0 there is no connectivity be-
tween the nontrivial families. While the solution struc-

R '~'=R„F—'(2'~ )2co~6 .

A second solution contains nonzero values of both ampli-
tudes and is referred to as the mixed solution (a', ', a2' ');
no closed form expressions exist for this solution, which
bifurcates from the trivial state at

ture is reminiscent of the structure for the original Swift-
Hohenberg equation, ' the family which bifurcates with
wave number co has a contribution from the first harmon-
ic 2u that increases linearly with r; no such mode cou-
pling is present for the Swift-Hohenberg equation. Clear-
ly the values of the coefficients in the amplitude equations
are important to the qualitative predictions of the solu-
tion structure. We show in Sec. III that both solution
structures predicted with b

& b2 & 0 and b] b2 )0 occur in
directional solidification, depending on the thermophysi-
cal properties of the alloy.

The linear stability of the pure and mixed solution fam-
ilies was computed by classica1 methods and the results
are summarized in Figs. 2 and 3. For b, bi &0 and 5 & 0,
the mixed solution family first bifurcates from the trivial
solution and is stable up to a secondary bifurcation point
where it connects to the pure solution family. Two
branches of the mixed solution appear, each correspond-
ing to a different sign of the value of the coefficient a', '.
The bifurcation diagram is reversed for 5 & 0, where the
pure solution family branches from the trivial state at the
lowest value of R and the mixed solution bifurcates sub-

critically and connects to the pure family at a secondary
bifurcation point. The most interesting qualitative
difference between the solution structures with changing
the sign of 5, is the appearance of a time-periodic or Hopf
bifurcation on the mixed solution family near the secon-
dary bifurcation point. This Hopf point was noted by
Haug and Proctor and Jones. ' Our analysis is focused

0.1
mixed:

re+
01

0.0 ~e m m m ~ e 0 0 m w w m w w O

-0.1 - -01

0.30 0.35 0.40 0.30 0.35 0.40

0.0

-0 1

0.30 0.35

Dllxed:
pure:---- \

t
I
I

0
t
I

I
I

I
I

I

0.40

0.1

00

- —01

0.30

'I

i
\

i
t

I
t

I

I
I

I
I

0.35 0.40

FIG. 3. Parametric structure and linear sta-

bility results for the steady-state solutions of
the MSH equation with (f,g ) = (0, 1), i.e.,

b l b2 & 0, as computed from the amplitude
equations (14); (a) 5= —0.01 and (b) 5=0.01.
The symbols represent primary (0) and secon-
dary (0 ) bifurcation points families of steady-
state solutions and (U) Hopf bifurcations to
families of time-periodic states. The magni-
tude of the solution is plotted as b = ~a, ~

+02 ).

stable:
'uastable: - ——-

01

0.0

—0.1

—0.2

l
i
1

i

1

t
1

I

I
I

I

02

0.1

0.0

-0.1

- -0.2

r
/

I
Aa I1P

0.30 0.35 0.40 0.35 0.40



49 LONG-TIME-SCALE DYNAMICS OBSERVED IN DIRECTIONAL. . . 12 729

on the temporal frequency of these time-periodic solu-
tions and on the dependence of the period on the scaling
parameters 5 and r.

C. Time-periodic solutions

Detailed analysis of the Hopf bifurcation is greatly
simplified by closed form results for the mixed solution
family and for the linear stability analysis. This can be
accomplished by noting that the Hopf point becomes
asymptotically close to the secondary bifurcation with
the pure solution family as ~5~ &&1. The cubic terms in
Eqs. (14) can be simplified further using this fact. A com-
parison of the scalings between the two amplitudes near
this point suggests that only the cubic term a z is compa-
rable in magnitude to the quadratic terms near 5=0 and
must be retained in the amplitude equations. Hence, Eqs.
(14) and (15) reduce to

FIG. 4. Schematic diagram of the steady-state solution struc-
ture predicted for the amplitude coeScients (a&,a&) by the re-
duced amplitude equations (20) for b&bz &0, and 5&0. The bi-
furcation points, r, and r&, are given as r& = —F'(cod )coq5 and
rp ——F'(2cog )2cod 5.

da)
[F'(m—d )cod5 r]a&+—b, a&az,

ap

dt
= —[F'(2cod )2cod 5 r]az+bza—

&
+c4a z .

(20a)

(20b)

[ F'(cod)c—od5 r][ F'(—2cod—)2cod5 r]—
b, bq

c4[ F'(coo )co—d 5—r ]3
&0 . (22)

b)bq
This simplification of the amplitude equations leads to
closed-form expressions for the mixed solution family as

The expressions for the pure solution remain as Eq. (16).
The leading order terms in r and 5 describe an ellipse if
b &bz & 0 and a parabola if b &bz & 0, thereby giving bifur-
cating solutions that are consistent with those computed
with the full amplitude equations and shown in Figs. 2
and 3; the solution structure predicted by Eqs. (21) and
(22) is shown schematically in Fig. 4 for b, bz &0 and
5&0.

Using the closed-form solution Eq. (21), the location of
the Hopf bifurcation for b]bp &0 and 5&0 is computed
by linear stability analysis of disturbances with the form
&ke '. The two eigenvalues predicted by this analysis are

c4[ F'(cod )co—d5 r]—
b)b~

(21a)

[ F'(cod )a)d 5 —r]—
b

7

1

(21b)

which exists for

[ F'(cod )rod 5 r—][ F'(2coz )2—c—o&5 r]—
a& —+

b, b~

cr& z= — [F'(2cod)2c—od5+r+3c4(az'~')~]~+ QF'(2cod)2m—&5+r+3c4(a~™} ] +8b&bz(a )7 2 (23)

These are imaginary only if b, bz &0 and for r given as
the solution of

Hopf point gives
1/2

F'(2cod )2cod5+r+3c&(az' ') =0, (24) [ F'(cod )co~+—F'(2cod )2a)d ] 5
b

(26)

Q —Q b b (a™)2 (25}

Using the closed-form expression for the mixed solution
and

r = F'(2cod )2cod5+O(r—,5,r5)

as the leading-order approximation to the location of the

which defines the Hopf point as the value r =rH pf where
the real part of the eigenvalues vanishes. At the critical
value r = rH pf the eigenvalues are purely imaginary with
an oscillation frequency

For a parabolic neutral stability curve F'(cod) &0 and
F'(2cod ) &0, so that Eq. (26) suggests that the Hopf bifur-
cation only exists for values of 5 that satisfy c45 & 0;
hence, the Hopf bifurcation appears on the mixed branch
if b, bz &0 and only for a specific sign of 5, which de-
pends on the sign of c4.

Equation (26}predicts that, to leading order, the period
of the time-periodic solutions is

(27)
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FIG. 5. Period of osci11ations computed at the Hopf point as
a function of the distance from the codimension-two bifurca-
tion, as measured by 5. Results are shown for the asymptotic
expressions, Eq. (27) (

———), and for numerical solution of the
amplitude equations (14) (0).

Bc~
V c~+P

By

in the melt and

Bc

a~
(28a)

Bc, Bc,
R Vc, +P (28b)

in the solid, where y is the coordinate direction for
growth, ~ is the dimensionless time, R =D, /D —is the
ratio of solute diffusivities between solid and melt, and
P = VA, /0D— is the Peclet number or dimensionless
translation rate of the sample. The parameter I' is used
as the control parameter in the analysis and in experi-
ments.

The concentrations of melt and solid are connected at
the interface by the relationship for phase equilibrium
c, =kc, where k is the segregation coeScient, and by
the interface solute balance

(n Vc) —R (n Vc),

are modeled as having equal thermal conductivities and
latent heat release and convective heat transport are
neglected. With these assumptions a constant dimension-
less temperature gradient G acts in the direction of
growth and the temperature field is unaltered by defor-
mation of the interface. When solute diffusion is ac-
counted for in both the melt and solid, the dimensionless
solute balances are

=(ez n) [P+V, (x, t)](k —l)c (29)

This is the most important result of the analysis present-
ed here, because it clearly shows a mechanism for the
low-time-scale dynamics for a system very close to the
codimension-two bifurcation point caused by 2:1 spatial
resonance. The relevance of this result to the directional
solidification problem and to the dynamics observed by
Bennett and Brown is described below. The predictions
of the asymptotic analysis for the period of the Hopf bi-
furcation are compared in Fig. 5 directly to numerical
solution of the linear stability problem for the full ampli-
tude equations (14) and (15). The agreement is excellent
for 5&0.1.

III. ANALYSIS OF THE SOLUTAL MODEL
OF DIRECTIONAL SOLIDIFICATION

G I
cref+ y —cm + (30)

where 0 is the mean curvature of the two-dimensional in-

terface, m is the slope of the liquidus curve of the phase
diagram, I is the dimensionless capillary length and c„&
is a reference concentration that is fixed at the concentra-
tion in the melt for a planar interface; i.e., c„t=1/k. We
assume that the interface has re6ective symmetry so that

where V, (x, t) is the vertical component of the interface
velocity in excess of P, e„ is the unit vector in the y direc-
tion and n is the unit vector normal to the interface. The
interface shape is given by the additional constraint of
the Gibbs-Thomson condition for interfacial equilibrium:

A. The solution model

The solutal model for thin-film solidification of a dilute
binary alloy is described in Refs. 5 and 6 and is only re-
peated here in dimensionless form. Dimensionless vari-
ables are formed by scaling lengths with the characteris-
tic wavelength for the cellular interface structure A.o, tem-
peratures with the melting temperature of the pure ma-
terial T, concentrations with the bulk concentration of
the melt far from the interface co, and time with the time
scale for diffusion in the melt A,o/D, where D is the
diffusivity in the melt. In this model the melt and solid

Bcm

Bx

Bc
=0, x=0 and x=A. .

Bx Bx
(31}

The values of the dimensionless groups used in the
analysis described here are for the two sets used in many
previous calculations; the parameters for an alloy Pb-Sn,
with R =0, as used in previous numerical simula-
tions and the parameters far the organic alloy
succinonitrile-acetone (SCN-ACE) alloy that is used in
many thin-film solidification experiments ' these pa-
rarneters are listed in Table I.
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TABLE I. Dimensionless groups and coeScients for amplitude equations for Pb-Sb and
succinonitrile-acetone systems

Value

Segregation coefBcient, k
Dimensionless liquidus slope, m

Capillary Constant, I
Diffusivity Ratio, R
Temperature Gradient, 6
Pd
COd

P„(rod, Pg)
Pp(rdd, Pg)
P (2a)g, Pg)
Pp(2cod Pd)
b)
b2

C)

C2

C3

C4

Pb-Sb

0.4
—1.67x 10-'

8.2x 10-'
0

4.5 X 10
0.2804
0.9593
6.5501

1.6452x 10-'
7.4560x 10-'

—2.0744 X 10
1.7011

1.2418X 10
—3.2992 X 10
—6.3402 X 10
—2. 1308X 10
—5.7236 X 10
-2.9155x 10-'

Succinonitrile-acetone

0.1
—1.34x 10-'

1.9X 10
0.05

4.5x 10-'
0.0761
0.8039
7.8157

4.4552X 10
7.5997X 10

—5.3260x 10-'
1.5645

—1.2804X 10
—2.3380X 10
1.8039X 10

—8.6721 X 10
1.818X 10 '

—2. 1321X 10

B. Center manifold analysis

Amplitude equations of the form of Eqs. (14) have been
derived previously for models of thin-film directional
solidification by Haug ' and Rappel and Riecke. How-
ever, Haug's analysis was restricted to R values of ei-
ther 1 or 0 and is not generally applicable. Rappel and
Riecke studied the evolution of traveling wave states that
exist close to the codimension-two point when the bound-
ary conditions are taken to be periodic instead of
reflective. They did not consider the evolution of the
Hopf bifurcation with reflective boundary conditions,
which is of particular interest here. The derivation of the
amplitude equations is outlined very briefly here and is
given in more detail by Tsiveriotis. The algebra neces-
sary for derivation of the coefficients in Eqs. (14) is com-
plex and was performed using the symbolic manipulator
MAPLE.

The solutal model is put in local form by defining re-

0
c'"'(x,y) = 1+[(1—k)/k]exp( Py)—
c'"'(x y) 1

(3&)

These new variables are

h(x, t ) h '"'(x)
c (x,y, t} = c (x,y, t) + c'"'(x,y)

c,(x,y, t ) c,'"'(x,y )

(33)

Because the solute equations are linear in the concentra-
tion fields (c„c ), the equations for the reduced variables
are unchanged. The modified forms of Eqs. (29) and (30)
are

duced variables formed by subtracting off the steady-state
solution for a flat interface, which is given by

P(k —1)[c +1—exp( PA )]+ —(1—R )
—R

af ~c. 1 at c.
(I+5)~ Bx Bx (1+&)2 Bx Bx

Kcm Kcs

c +1+ exp( Pf ) (1—k)—1 a
k —1 j '

2 —3/2

Gh- m (k —1)
[1—exp( Pf ) ] mc —I'— — 1 af1+

k (1+5) ax (1+$) ax

(34)

(35)

Amplitude equations that govern the weakly nonlinear
dynamics of the interface are derived from these equa-
tions using the forms of (f,c,c,), which satisfy the field
equations (28) and the symmetry conditions (31). The
concentrations in the melt and solid at the interface are

linked by the phase equilibrium condition in the
transformed variables. It is interesting to note that ex-
panding the ex onential exp( PQ in Eq. (34)—in powers
of f leads to f as the leading order nonlinear term, iden-
tically to the form that appears in the modified Swift-
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cT =P( co,P } (36)

that predicts the linear stability of the planar interface to
disturbances with spatial wave number co. Neutral stabil-
ity corresponds to 0 =0 and the neutral stability curve
has the parabolic form shown in Fig. 1. The
codimension-two bifurcation again appears at ~=~d and
P =Pd.

Using the analysis of the MSH as a guide, the reduced
variables are expanded in the five spatial modes, corre-
sponding to the lateral wave numbers
(0, cod, 2cod, 3cod, 4cod) as

Hohenberg equation (1).
The linear stability equations are recovered by substi-

tuting Eqs. (33) into the solutal model, Eqs. (28}—(31),
and expanding for small amplitude disturbances. Each
disturbance to the interface (and the field variables) is
represented by the normal modes h (x, t }= h exp(o t+i cox ). The result of the analysis is a disper-
sion relation

dh,
dj

=[ P—(cod, Pd)cod5+Pp(coq, Pq)(P Pd)]h,

+b, h, hz+c, h, h2+c2h, (39a)

dh2 =[ P~—(2cod&Pd )2cod5+Pp(2cod, Pd )(P Pd—)]h2
dt

+b2h, +c3h,h2+c4h 2 (39b)

C. Numerical simulation methods

where the subscripts, e.g., P (cod, Pd), signify partial
differentiation of the dispersion equation. The expres-
sions for the coefficients are too complex to be given here;
they are available in Ref. 22 in the form of Fortran func-
tions generated directly by MAPLE. The values of the
coefficients computed using the thermophysical proper-
ties for the Pb-Sb and SCN-ACE systems are listed in
Table I. The predictions of the asymptotic analysis are
described in Sec. IV.

f(x, t)
4

c (x,y, t) = g c kexp( —coiy) cos(kcodx), (37}
k=0

c,(x,y, t) c, kexp( —co,'y )

where

co;=Pd/2++—(Pd/2) +cod,

co~ Pd/(2R }——+Q(pd/2) +(codR~)
(38)

The Eqs. (37} for the concentration fields satisfy the
solute equations (28), so that the unknown coefficients are
fully determined by the Eqs. (29) and (30), written in the
reduced variables.

The center manifold reduction described in Sec. II A is
used to reduce these equations to amplitude equations
that govern the dynamics of the interface near the
codimension-two wave number co =cod and for
~P P„~ &&1. The—distance from the codimension-two
state is controlled by the parameter 5, which is defined
identically to the definition (4) used in the analysis of the
MSH equation. Equations (28) are expanded using a
domain perturbation expansion to include terms that are
third-order accurate in (h„h2), second-order in

(ho, h3, h4), and first-order in 5 and (P Pd). Projections—
with respect to the spatial functionality [cos(icodx )] are
used to reduce the interface equations to ten algebraic re-
lations that are resolved for the coefficients in the concen-
tration expansions in terms of the Ih, ]. These equations
are substituted in to the expansion for the interfacial
solute balance, Eq. (29), which is expanded to O(h „h2),
O(ho h3 h4 ),O(5), and O(P Pz), to give five am—plitude
equations for the coefficients in the interface shape.
These equations are reduced to two amplitude equations
by the center manifold approach, in a manner exactly
analogous to the steps used for the MSH equation. These
equations are written as

The predictions of the asymptotic analysis described
above are compared to numerical analysis of the free- and
moving-boundary problems for the steady-state and
time-periodic solutions of the solutal model. The algo-
rithms for solution as described in Refs. 22 and 25 are
only sketched here. The unknown interface shape is ac-
counted for in the numerical method by introducing a
nonorthogonal mapping that transforms the free-
boundary problem to a fixed domain where the boundary
between melt and solid corresponds to one boundary of
the domain. We use the elliptic mapping method de-
scribed in Ref. 25 and that was developed for the compu-
tation of solidification interfaces. The partial differential
equations for the concentration fields and the mapping
equations for the coordinate transformation are discre-
tized by Galerkin finite-element methods, as described in
Ref. 25. The Gibbs-Thomson equation, Eq. (30), is used
to compute the coordinate transformation on the portion
of the boundary of the transformed domain that corre-
sponds to the melt-crystal interface.

The Galerkin's methods leads to a large set of non-
linear algebraic equations for calculation of steady-state
interface shapes and to a system of differential-algebraic
equations (DAE's) for the description of time-dependent
states. The steady-state equations are solved by Newton's
method, augmented with computer-implemented bifurca-
tion analysis for tracking multiple solutions. Time-
dependent simulations use second-order accurate back-
ward difference approximations with variable time step to
solve the DAE's; see Ref. 21 for details.

IV. COMPARISON OF ANALYSIS AND SIMULATION

Finite-element calculations were carried out for both
sets of thermophysical properties in Table I. The com-
parison between the calculation of steady-state cell
shapes and the predictions of the amplitude equations is
described in See. IV A; time-periodic states predicted by
the asymptotic analysis and the finite-element simulations
are reported in Sec. IV B and IV C.



49 LONG-TIME-SCALE DYNAMICS OBSERVED IN DIRECTIONAL. . . 12 733

A. Steady-state solutions

Finite-element calculations of steady-state cell shapes
are represented by the bifurcation diagrams in Fig. 6 for
the Pb-Sb alloy and sample widths equal to 0.72, 0.855,
and 1.1 of the wavelength A.d for the codimension-two bi-

furcation; the symmetry of the interface shapes for each
solution family is shown schematically in the first dia-
gram. Primary and secondary bifurcation points between
steady-state solution families and Hopf bifurcations to
time-periodic solutions are shown; the solution structure
agrees qualitatively with the structure expected from the
amplitude equations for coefBcients which satisfy
b, bz &0 and c4 &0, as is the case for this parameter set.
For this set of thermophysical properties, there is a Hopf
bifurcation point on the mixed solution family, that ap-
pears adjacent to the secondary bifurcation point for
wavelengths greater than the critical value Ad. The
time-periodic solutions that evolve from this point are
discussed in Sec. IV B.

The numerical calculations are compared directly to
the predictions of the amplitude equations (37} in Fig. 7,
where the bifurcation diagrams computed for the Pb-Sb
properties are shown for the value 5= —0. 145 of the im-

perfection parameter. The agreement is quantitative be-
tween the two calculations. Note that the secondary bi-
furcation between the two primary solution families
occurs at lower values of amplitude, i.e., smaller b„ than
in Fig. 6 because the distance to the codimension-two
point is smaller.

Time integration of the linear stability equations
formed about the numerically computed steady-state
solutions was used to assess the stability of these states;
these results correspond identically to the predictions for
the MSH equation for the appropriate sign of 5. For
A, =0.855Ad (5)0) the mixed solution family is every-
where stable from the point of bifurcation with the planar
state to the secondary bifurcation where it connects to
the pure solution. Alternatively, the pure solution family
contains unstable interfaces up to the secondary bifurca-
tion with the mixed family, but these shapes are stable for
larger values of P.

Similar calculations were carried out for the thermo-

physical properties for the succinonitrile-acetone alloy
and are shown in Figs. 8 and 9. The connectivity of the
solution families is qualitatively different than for the
Pb-Sb thermophysical properties. As predicted by the
amplitude equations derived by center manifold theory
for the case b&b2, there is no connectivity between the

primary solution families at low amplitudes, i.e., 6 ((1.
This point is reinforced by the comparison between the
finite-element calculations and the predictions of the am-
plitude equations shown in Fig. 9 for 5= —0.053. Note
that no connectivity between the two families is predicted
for cells with amplitudes satisfying 5 &0.5. However, at
large amplitudes, the pure and mixed solution families do
connect in the finite-element calculations. This connec-
tivity is not predicted by the amplitude equations, which
are valid to cubic-order; hence the connectivity demon-
strated in Fig. 8 must be a higher-order efFect.

B. Time-periodic solutions for Pb-Sb alloy

The Hopf bifurcation point that arises in the solution
structure for the Pb-Sb thermophysical parameters gives
rise to a family of time-periodic solutions. The form and
stability of these states is computed by time integration of
the finite-element discretization of the solutal model. For
A, =1.1A,d, time periodic solutions start at the Hopf bifur-

cation point P=PH pf 0.27930 and evolve supercriti-
cally in P, as shown in Fig. 10. Oscillatory states were
only computed for a very short range of growth rates,
0.279 30(P (0.27945; attempts to compute a stable os-
cillatory state for P =0.27948 produced a transient solu-
tion that evolved back to the pure steady-state form at
that value of P; this result suggested that the family of
time-periodic states has lost temporal stability, either by
reversing directions at a limit point, or by a subcritical
Hopf bifurcation with another frequency. The calcula-
tions cannot separate between these two scenarios for the
evolution. Even in this small range of growth rate the
time-periodic states develop very nonlinear character.
The amplitude of the cell deformation increases dramati-
cally, as shown in Fig. 10, and the period of the oscilla-

~ ~ ~ ~ i ~ ~ $ $ g ~ ~ $ $

L=.8SSP d

$ I

L= 1.1A,d

0.5

0
~Pt

0I
Q
A

0.0

C

0.2

0.0

-0.2

02

0.0

FIG. 6. Bifurcation diagrams
computed by finite-element

analysis for the thermophysical
properties of the Pb-Sb alloy and
for cellular wavelengths close to
the codimension-two bifurcation

point A, =A,z. The symbols
represent primary (0) and secon-
dary (o) bifurcation points be-
tween families of steady-state
solutions and (0) Hopf bifurca-
tions to families of time-periodic
states.

-0.5 I $

0$2S 0.30
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FIG. 7. Comparison between bifurcation di-
agrarns computed by (a) finite-element analysis
of the solutal model and (b) analysis of the am-
plitude equations (37) for the thermophysical
properties of the Pb-Sb alloy. Solid and
dashed curves represent families of steady-
state cells with co and 2' symmetry, respective-
ly. The symbols represent primary (0) and
secondary (o) bifurcation points between fami-
lies of steady-state solutions and (0) Hopf bi-
furcations to families of time-periodic states.
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tion increases by 40%; see Fig. 11.
The changes in the character of the oscillations from

the sinusoidal dynamics predicted close to the Hopf point
(a) to large amplitude oscillations (b) and (c), and the
transient back to the steady-state solution family (d) are
displayed in Fig. 12 by the time histories of the maximum
interface deflection h,„and contour maps of the inter-
face shape. The amplitudes of the cells along the inter-
face oscillate in time. Close to the Hopf point
(P =0.7930) these oscillations are approximately

sinusoidal, but quickly grow in amplitude and begin to in-
clude higher harmonics. Note that the period of the os-
cillation is O(10 ) diffusion time scales. The dependence
of the period on the spatial wavelength of the cells is plot-
ted in Fig. 12 as computed for four values of 5 near the
Hopf bifurcation points. The period increases with de-
creasing 5 and approximately obeys the asymptotic scal-
ing, Eq. (27), predicted by the analysis of the amplitude
equations.

For the case of the SCN-ACE alloy, the asymptotic

I ~ w % ~ I w 0 ~ ~ I ~ ~ ~ ~

L=P,=O.VOX.~

1.0

0
O 0.5

A
004
El
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I I

L= 1.023Rd

0.0782 0.0784

Growth Rate {P)

FIG. 8. Bifurcation diagrams
computed by finite-element

analysis for the thermophysical
properties of the succinonitrile-
acetone alloy and for cellular
wavelengths close to the
codimension-two bifurcation
point X=k„. The symbols
represent primary () and secon-
dary (o) bifurcation points be-
tween families of steady-state
solutions and (H) Hopf bifurca-
tions to families of time-periodic
states.
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bifurcations to families of time-periodic states.
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analysis predicts no Hopf bifurcation on the mixed solu-
tion family. Time-dependent numerical simulations
confirm this prediction for small interface deflections and
for conditions close to the codimension-two point. Nev-

ertheless, at large amplitudes and at finite distances from
the codimension-two point a new highly localized mode
for oscillations has been discovered which involves the

pulsation of the narrow grooves that form between the
cells; these states are described in Ref. 26 and cannot be
connected to the weakly nonlinear analysis for nearly pla-
nar states.

V. DISCUSSION

The analysis and calculations presented here gives a
theoretical explanation for the appearance of long-time-
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FIG. 10. Expanded view of bifurcation diagram for Pb-Sb
system with A, =1.1A,d showing the Hopf bifurcation point (~)
and family of time-periodic solutions (0).
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FIG. 11. Computed period of time-periodic solutions as a
function of P for Pb-Sb system with A, = 1.1A,d.
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FIG. 12. Time-dependent dynamics of sample simulations for time-periodic states for calculations at dimensionless growth rates P
of (a) 0.7930, (b) 0.7940, (c) 0.7945, and (d) 0.7948 for the Pb-Sb system with A.=1.1A,d. For each case, both the evolution of the
overall interface deflection 6 and contours of the deflection of the interface are shown as a function of time.

scale, temporal dynamics in thin-film directional
solidification. A mechanism is identified for the dynam-
ics, whereby the proximity to the codimension-two bifur-
cation corresponding to 2:1 spatial resonance between the
wave numbers of cells leads to time-periodic solutions.
These time-periodic states are seen as oscillations in the
amplitudes of neighboring cells and arise as an effect of
the quadratic nonlinearity that describes the 2:1 spatial
resonance near the wave number A,d, corresponding to
the codimension-two bifurcation point. Asymptotic
analysis of the amplitude equations for quadratic reso-
nance of these modes shows that the appearance of the
Hopf bifurcation is connected to the connectivity of the
steady-state solution families that evolve from the planar
state and can be predicted from the signs of coefficients in
the amplitude equations. Also the temporal periods of
these time-periodic states are predicted to scale as 5
where 5 measures the distance of the wavelength from
A,d. Finite-element analysis of the two-sided solutal mod-
e& reproduces the results of the asymptotic analysis for
the Pb-Sb alloy; moreover, finite amplitude time-periodic
states are computed that evolve from this Hopf bifurca-
tion.

The relevance of these results to the dynamics seen in
thin-film directional solidification experiments relies on
the flatness of the neutral stability curves that are typical
for these systems. Computations and experiments' '
have demonstrated that the flatness of the neutral curve
muses codimension-two interactions which increase the

apparent wave number of the interface for growth rates
only slightly above the critical point. Although nonlinear
dynamics caused by these couplings and by other interac-
tions prevent a system with multiple cells from selecting a
unique spatial wavelength, the system evolves such that it
is always close to points of spatially resonant interaction
for growth rates near V, (co, ).

The dynamics for single cells in directional
solidification, as described here, is not chaotic because
only interactions between two modes are considered. In
the large collections of cells that comprise a solidification
front, multiple resonant interactions of the 2:1 type, as
well as other modal interactions characterized by
(n+ 1):n give rise to the nonlinear couplings needed to
achieve spatiotemporal chaos along the solidification
front. In addition, for larger samples, with set growth
rate, the perturbation parameter 5, which measures the
distance from codimension-two points, can dynamically
vary because of the expansion and contraction of cells
along the front, thereby introducing additional complexi-
ty into the dynamics.
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