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Starting from a microscopic Hamiltonian for interacting quadrupoles (QP's) randomly placed in

a solid, we obtain a model for the two-level tunneling states and the constant density of states in

quadrupolar glasses from fundamentals. We use perturbation theory to show that in a quenched
system of strongly interacting QP's, 180' reorientational Qips of single QP's give low-energy exci-
tations. These low-energy excitations arise from our starting Hamiltonian and are described in the
form of an efFective two-level state (TLS) Hamiltonian. For intermediate concentrations of CN ious
dissolved in KBr, we propose that it is the center of mass displacement of the CN ion that leads to
a constant density of states rather than the electric dipole interaction between the cyanides, as was

proposed earlier by Sethna et al. The physical mechanism for the glasslike low-energy excitations
proposed here thus involves 180' tunneling Sips with a translation of the center of mass of the
tunneling unit. We then show that it is the elastic random Be1ds experienced by the QP's that give
a constant density of states and specific heat linear in temperature and logarithmic in time and that
this result is not sensitive to the exact form of the QP-QP interaction or the presence of a weak
electric dipole interaction. We suggest that the concepts developed for KCN-KBr mixed crystals
may also help to explain the quasiuniversal low-temperature thermal properties of canonical and
other quadrupolar glasses.

I. INTRODUCTION

At low temperatures amorphous materials and glasses
exhibit distinct anomalies in their thermal, acoustic, and
dielectric properties2's known to arise from the glassy
state. For temperatures T below 1 K the specific heat has
a component linear in T with a logarithmic time depen-
dence. The low-T thermal conductivity is proportional
to T2 and develops a plateau around 2—10 K. The &e-
quency dependent dielectric susceptibility e(u, T) shows
long relaxation times in addition to a lnT term in its real
part. The thermal expansion coeScient is also greatly
enhanced from that of its crystalline counterpart. In ad-
dition phonon echoes and saturation of the ultrasonic
absorption have been observed. The above properties
(denoted in this paper as glasslike properties) are within
the same order of magnitude for many glassy materials
and are often referred to as quasiuniversal properties of
glasses.

To explain these anomalies, a phenomenological model
was proposed based on the assumption that glasses
contain localized two-level systems (Tl S's) with a ran-
dom distribution of barrier heights and a random distri-
bution of asymmetry energies. It was also proposed '

that below T & 1 K quantum-mechanical tunneling is
the primary relaxation mechanism between the two po-
tential wells. An ad hoc assumed constant density of low-
energy excitations could then explain a number of exper-
imentally observed properties of glasses, including time
dependent efFects, supporting the idea of the TLS tun-

neling model. However, the TLS tunneling model gave
no information on (i) what is the nature of the tunneling
unit, and (ii) why the density of states for low energies
is a constant.

In spite of the considerable efFort to understand
the low-temperature universal properties of canonical
glasses~ &om a microscopic point of view, little progress
has been made in this direction over the past 20 years.
One of the difFiculties was the lack of a microscopic
Hamiltonian for canonical glasses. In an attempt to
clarify the nature of the "glassy" state, theorists have
treated, instead of canonical glasses, systems which have
similar experimental properties to glasses, but for which
microscopic model Hamiltonians could be formulated.
Among these systems are the so-called orientational
glasses (OG's) which have attracted a lot of attention
over the last years.

Orientational glasses (OG's) are systems in which
molecules with a dipole, quadrupole (QP), or higher mo-
ment randomly occupy regular lattice sites in a crys-
talline solid. The impurity molecules introduce addi-
tional rotational degrees of &eedom and interact with
each other. For example in the prototype quadrupo-
lar glass (KGN) (KBr)i (x denotes the fractional
concentration of GN ions) the cyanide molecule has
a large elastic dipole moment (usually referred to as a
quadrupole moment) and a relatively small electric dipole
moment. Below a certain freezing temperature TI(x)
this special system exhibits glasslike properties for inter-
mediate concentrations x between x q x x 2, where
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FIG. 1. Schematic concentration-temperature phase dia-
gram for (KCN) (KBr)i, mixed crystals No.te that the
glass regime and the ferroelectric regime overlap slightly.
The term "disorder" refers to the directions of the elongated
CN molecules. The value of x,q is not well defined in al-
kali-cyanide alkali-halide crystals; x,2 ——0.62. The very dilute
case ("impurity regime") has been treated previously in Refs.
44—46 and will be discussed in Sec. II B. The "glass regime"
will be treated in Sec. III.

x q = 0.1 and x,2 0.6. In this concentration range
the low-temperature state is characterized by quenched
orientational disorder of quasi-&ozen-in cyanide QP's. s

The "&ozen-in" state is referred to in the literature as
orientational or quadrupolar glass phase (Fig. 1). Upon
lowering the temperature below 1 K, KCN-KBr mixed
crystals exhibit glasslike properties very similar to those
of canonical glasses.

A quadrupolar glass (QG) state is also observed in
a broad concentration range in alkali-cyanide systems
like KCN-NaCN or KCN-RbCN, ' in N2-Ar and N2-
Ar-CO mixtures and in paraortho H2 solutions,
to name only a few examples. All these systems show
very similar phase diagrams, ' despite the fact that
the dominant interactions between the moments may be
quite diferent in nature: in alkali-cyanide alkali-halide
crystals, like KCN-KBr or KCN-KCl, elastic dipole in-
teraction between the cyanide ions dominates. ' Elas-
tic forces are also believed to be important in alkali-
cyanide mixtures like KCN-NaCN, but there are also
strong random elastic fields experienced by the cyanide
molecules arising from the volume mismatch between the
alkali atoms. In the orthopara hydrogen mixtures
o-H2 p-H2 electric QP interaction between the ortho-
H2 molecules dominates. ' In N2-Ar and N2-Ar-CO
it is the electric QP moment of N2 and CO and nearest-
neighbor-atom attraction and repulsion that is believed
to play an important role in the freezing process. Since
the low-temperature state for intermediate concentra-
tions is mainly determined by the dominant quadrupo-

lar interaction forces, we will denote these materials as
quadrupolar glasses (QG's).

In all the systems mentioned above nonspherical
molecules (CN, N2, CO, o-H2) substitute randomly host
atoms or molecules (Br, Cl, Ar, p-H2) on regular lat-
tice sites. This allows one, at least in principle, to model
such systems in terms of a microscopic Hamiltonian in-
volving the host and impurities. A similar separation
of the system into host and impurity is not obvious for
canonical glasses. However, since there are no micro-
scopic models for canonical glasses, one hopes that the
study of OG's may finally yield further insight into the
real glass problem.

The purpose of this paper is to give a microscopic ex-
planation for the low-energy excitations and heat capac-
ity of QG's and to derive the Tl S model and a con-
stant density of states from a model Hamiltonian for
a glassy material. In this paper we focus on the very
low-temperature and intermediate-concentration regime
of QG's (the "glass regime" in Fig. 1), and we are not
concerned with the glass transition ' that occurs at
higher temperatures or structural phase transitions of the
sohd. We thus concentrate on the glasslike properties
of QG's and not so much on the elastic spin-glass aspect
of the problem which is still a subject of controversy.

In our model we will start from a microscopic QG
Hamiltonian describing the QP-QP interaction2s and the
interaction of the QP's with static random strain fields. 2

For example in KCN-KBr these random strains arise from
the dilution of the Br host atoms by the randomly
placed cyanide QP's, i~ 2s leading to static strain fields
that couple to the orientational degrees of freedom of the
CN ions. These random fields have received a lot of
attention over the last few years and their importance in
connection with the glass transition seems by now well
established. Since we are only concerned with the
orientational degrees of freedom of the QP's and the ran-
dom fields couple linearly to the QP moment, we will de-
note the random fields here as random "external" fields
in distinction from the "internal" quadrupolar mean field
arising from the QP-QP elastic or electric interaction.
Starting from a model Hamiltonian for the orientational
degrees of freedom of the QP's, we derive an effective
TLS Hamiltonian for the low-energy excitations using
first-order perturbation theory. We propose here that
the low-energy excitations responsible for the glasslike
behavior arise froin single QP's undergoing 180' tunnel-
ing reorientations simultaneously coupled with a small
translational displacement of the tunneling unit. Such
a small center-of-mass displacement of the CN ion is,
for example, expected in KCN-KBr mixed crystals but
also in other materials. We show that a specific heat lin-
ear in T and a constant density of states arises without
using the e8'ect of the weak electric dipole interaction
between the QP's. The latter was an essential compo-
nent of a model proposed earlier by Sethna et al. In
the Sethna model 3 the low-energy excitations were
also related to 180' tunneling fiips of QP's, however, in
this model the electric dipole-dipole interaction played a
crucial role in the heat capacity. Furthermore, in their
model a Gaussian-distributed internal quadrupolar mean
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field was assumed to fit the experimental data for the
specific heat. 2s's It has been suggested that (i) there
are difIiculties with the Gaussian distnbution which pre-
dicts a finite probability for zero fields, since the "true"
internal-field distribution is believed to develop a "hole"
for small fields, 2 and (ii) the specific heat of N2-Ar-CO
mixtures, which is very similar to that of KCN-KBr, is
independent of the CO electric dipole moment, show-

ing that the dipole moment, at least in Nq-Ar-CO, plays
no crucial role in the specific heat. Both of the above
difBculties are absent in our derivation since the electric
dipole moment plays no important role in our model, and
a constant density of states arises from static "external"
random fields. Our physical mechanism is therefore very
different from that proposed by Sethna et at. Since
the Sethna model is widely quoted in the literature, we
will discuss the difFerences between our model and theirs
in more detail later on. Moreover, we do not make use
of mean-field theory known to be very problematic in
systems with random and competing interactions.
To our knowledge this is the first model which examines
the effect of the static random fields on the very low-

temperature thermal properties of QG's and obtains the
TLS model with a constant density of states from funda-
mental considerations.

This paper is organized as follows. In Sec. II we give a
brief introduction to orientational glasses and quadrupo-
lar glasses in particular. We also review some of our own
theoretical developments for the dilute systems which
could be rather rigorously established. In particular, the
result that it is the strong interactions that give rise to
lou-enemy excitations in dilute systems, will lead us to
the approach proposed in Sec. III. In Sec. III we intro-
duce our physical model in detail and derive an effective
TLS Hamiltonian and a constant density of states for
the low-energy excitations in KCN-KBr using perturba-
tion theory. Finally in Sec. IV we discuss how the same
ideas could apply to other systems than KCN-KBr mixed
crystals.

II. QUADRUPOLAR GLASSES: BACKGROUND

In this section we focus on the low-temperature ther-
mal propertiess of QG's. Consider randomly substituted
impurity molecules dissolved in a crystalline nonpolar
host matrix. The impurities carry a dipole moment, a
quadrupole moment, or both and are randomly placed on
lattice sites in the crystal. In addition to their transla-
tional modes the moments have orientational degrees of
freedom and interact. ' Depending on the dominant
interaction between the multipolar moments, one dis-
tinguishes between dipolar glasses, quadrupolar glasses,
etc. In all of the mixed crystals mentioned in Sec. I,
the impurities were to a first approximation head-tail
invariant. For our purpose the important consequence
of this is (Sec. III) that the inversion symmetry of a
QP opens additional relaxation channels which are ab-
sent for instance in electric dipolar glasses. These sec-
ondary or P relaxations are 180 QP flips that will give
the low-energy excitations. The reason for this is that

for head-tail symmetric impurities, 180' flips leave the
dominant quadrupolar interaction invariant; hence the
system possesses a multiple degenerate ground state. A
small perturbation will lift this degeneracy and give low-

energy excitations. Later on in Sec. III we will suggest
that it is these excitations that are intrinsically related
to the glasslike behavior of QG's. Therefore we can ap-
proach the problem perturhationally and avoid many of
the complications arising from the elastic spin-glass char-
acter of the problem which will not be our concern in this
paper.

A. Intermediate and high concentrations

The properties of the prototype quadrupolar glass
KCN-KBr have been measured extensively. s In (KCN)
(KBr)i, mixed crystals the CN ions are soluble for
all concentrations x &om zero to unity. The principal
interaction between the elongated CN ions is an ef-
fective elastic dipole-dipole interaction referred to here
as QP-QP interaction. For concentrations greater than
an upper critical concentration z,2

——0.62 and below
a concentration-dependent &eezing temperature Ty(x),
the low-T state exhibits elastic long-range orientational
order. ' ' For even lower temperatures an antiferro-
electric ground state due to the weak electric dipole in-
teraction between the CN ions is observed (Fig. 1). In
this high concentration range mixed crystals show a wide
variety of polymorphism. It is believed that dipolar
&eezing, when it occurs, is decoupled from quadrupo-
lar &eezing. is The behavior of the highly concentrated
systems (x & 1) is reasonably well understood. 2s s~ The
small electric dipole moment of CN in cyanide mixed
crystals, and similarly of CO in N2-Ar-CO mixtures, is
believed to be unimportant for the structural properties
of these materials.

For intermediate concentrations z,i & z & z,2 and
for T ( Ty(x) the QP's freeze into a state of quenched
orientational disorder (Fig. 1).i2'is In this concentration
range the orientations of the QP's are characterized by
dynamic disorder at high T and "frozen-in" disorder at
very low T. As T decreases, the impurities which can be
viewed as quasifree rotors at higher T are quenched into
random directions by the dominant quadrupolar interac-
tion forces. In this paper we are not concerned with de-
tails of the freezing-in transition that occurs at higher
temperatures, nor with structural phase transitions that
may take place for z ) z~2. ' The relaxation process
associated with the orientational &eezing-in of the QP
moments is denoted in the literature as o. relaxation.

In addition to a strong orientational coupling between
the impurities elastic random fields introduced by the
dilution of the host sublattice are believed to play an
important role in the freezing process. The random
dilution of the host atoms (for example Br in KCN-
KBr) by the QP's and the volume mismatch between
hosts and impurities (i.e., Br and CN ), is believed to
generate additional static elastic fields throughout the
crystal and random displacements. This effect was first
postulated by Michel and seems to be experimentally
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well established by now. Because the impurities are
randomly placed in the solid, hence find themselves in
random strain environments, these elastic fields act on
the QP's as if they were random "external" fields. 2s This
point will be discussed in greater detail in Sec. III. Since
the random fields are a direct consequence of the substi-
tutional impurity-host disorder, their importance is ex-
pected to be most pronounced for concentrations around
x —0.5. Thus the OG state has to be viewed as a deli-
cate balance between multipolar interaction forces on one
hand and elastic random fields on the other hand.
This very complex behavior is also reflected in the phase
diagrams which are surprisingly similar for all OG s inde-
pendently of the nature of the dominant interaction. 24 2s

The influence of random fields on orientational or-
der can be studied best in alkali-cyanide systems like
(KCN) (NaCN)q, where the cyanide sublattice re-
mains undiluted. ' ' Substitution of the K+ ions by
the smaller Na+ ions, or vice versa, leads to a disturbance
in the local strain environment of the cyanide QP's. In
alkali-cyanide mixed crystals the generated elastic fields
are believed to be even strong enough to suppress the
transition to an elastically ordered state that is otherwise
found for x & z, q or x & x,2. For example in (KCN)
(NaCN)q mixed crystals an OG state with randomly
frozen-in QP's is observed for intermediate concentra-
tions 0.2 & x & 0.9, similar to the alkali-cyanide alkali-
halide systems, despite the fact that the CN sublat-
tice is undiluted. Thus, in alkali-cyanides local random
fields can even dominate over the strong elastic CN
CN interaction. Experimentally it is found that the
strain fields force the cyanides into preferred directions
with a probability distribution for the orientations which
is strongly temperature dependent. For instance in KCN-
KBr it is the [111]directions that are the preferred ori-
entations of CN at high T, whereas it is the [100] direc-
tions that are favored at lower T. The [100] orientations
are also favored in KCN-NaCN at low T which is believed
to be dominated by random strains.

A further difBculty in the treatment of mixed crystals
arises from the existence of a local crystal field potential.
For example in pure KCN or NaCN the cyanide molecule
is surrounded by six alkali-metal ions resulting in a lo-
cal crystal field potential of octahedral symmetry. 4o The
local crystal field or Devonshire potential is a conse-
quence of the repulsive Born-Mayer overlap potential act-
ing between the ends of the CN dumbbell and its neigh-
boring atoms. ' The importance of the crystal Geld for
the low-T glasslike properties of very dilute systems in
which random fields play most likely no important role
will be discussed in Sec. II B.

For very low temperatures and concentrations x i
x + x 2 the thermal, dielectric, and ultrasonic proper-
ties of many QG's are very similar to those found in real
canonical glasses. In particular, there are strong temper-
ature and time dependent changes in the thermal prop-
erties and long relaxation times. In this intermediate-
concentration range the phenomenological TLS model '

describes the very low-temperature properties of many
QG's almost equally well as for canonical glasses. KCN-
KBr for instance forms a static QG (Ref. 16) between

0.1 & x & 0.6 and T & 5 K. For temperatures below
1 K the specific heat of KCN-KBr shows a term linear
in T which has a logarithmic time component ' that
exceeds the Debye phonon specific heat CD oc T3. As in
real amorphous materials it is believed that the observed
linear term in the specific heat has its origin in two-level
tunneling states. It is these TLS's and their density of
states which will be our primary concern for the rest of
this paper. There exists an additional excess nontime de-
pendent T term in the specific heat of unknown origin
which is presumably not related to quantum-mechanical
tunneling ' and also observed in canonical glasses.

For temperatures higher than T 1 K a crossover &om
tunneling phenomena to thermally activated behavior is
expected to take place. Also other excitations not re-
lated to the TLS's might become more important. This
change of behavior is indicated by a strong change in the
thermal conductivity which changes &om its T varia-
tion for low T and develops a characteristic plateau at
T —2—10 K in the glass phase. Furthermore, a hump in
C/CD is observed for T & 1 K. s It has been suggested
that the dominant excitations at higher T are related to
librational modes of single QP's, s~ but this question has
not yet been settled.

The exact nature of the ground state in OG's is un-
known. It has been suggested that it is a metastable
state with long relaxation times, and probably a state
of broken ergodicity similar to what is expected for spin
glasses. However, there is common agreement that
the site disorder together with the anisotropic QP-QP
interaction leads to a multiple frustrated ground state.
The role of &ustration in OG's and their similarity to
spin glasses has been stressed previously in connection
with their glasslike behavior. ' Further on we will ar-
gue that it is only the disorder in connection with the
randomly placed QP's and not necessarily frustration
which gives rise to the glasslike behavior in QG's at very
low T. For example glasslike behavior has also been ob-
served in KCN-KBr in the orientationally more ordered
state~s between 0.6 & z & 0.7 (Fig. 1). Furthermore,
glasslike behavior is also seen in alkali-cyanide systems
like KCN-NaCN, where the CN sublattice remains fully
occupied, and the random interaction picture in combi-
nation with a frustrated ground state is not applicable.
To our knowledge glasslike behavior, i.e., the quasiuni-
versal properties of glasses, has not been observed in OG
systems without P relaxations, e.g. , in dipolar glasses. It
would therefore be important to measure the very low-T
properties of electric dipole glasses in the intermediate-
to high-concentration range to investigate the possibility
of glasslike behavior without secondary relaxations.

A mean-field approach to the statistical mechanics
of OG's at higher temperatures has been developed by
Michel. ' Unfortunately the validity of current mean-
field techniques for systems with competing and random
interactions is very questionable for low temperatures,
i.e., well below the OG transition temperature. As a
guide towards an understanding of the various processes,
we now turn to the very dilute systems which are the-
oret;ically reasonably well understood. The very dilute
systems have the advantage that, within certain simpli-
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fying assumptions discussed in the next section, they can
be treated rigorously. However, collective effects, like the
freezing-in transition, do not exist in a very dilute sys-
tem, i.e., x « 0.01.

B. Dilute systems: Theoretical developments

We next discuss some of our own theoretical develop-
ments for very dilute tunneling dipole and quadrupole
glasses. In particular, our discussion here serves to
clarify (i) the role of quantum-mechanical tunneling, (ii)
the role of the crystalline field, (iii) the role of strong
interactions. These effects are much easier understood
in the dilute systems, where collective phenomena are
absent and random fields can most likely be neglected.

The low-temperature thermal properties of pure alkali-
halide crystals (z = 0) are well understood within the
Debye theory of phonons. At extreme low impurity con-
centrations z, we can view the dipoles or QP's as isolated
defects surrounded by a crystal field potential arising
from the interaction of the impurity with its surround-
ing neighbors. It has been shown that for nonspheri-
cal molecules this leads to preferred directions (potential
wells) for the defect molecule. In a cubic crystal one can
have 6, 8, or 12 off-center potential minima. 4r 4s At suf-
ficiently low T only the ground state in each potential
well will be populated. The total wave function is then a
linear combination of single-well wave functions and de-
termined by the crystal field symmetry and the tunneling
matrix element A. The latter is related to the quantum-
mechanical overlap between the localized ground-state
wave functions corresponding to different wells. Libra-
tional excitations or excitations to higher states within
a single well, or Arrhenius-type excitations over the po-
tential barriers separating the wells, can be neglected at
sufficiently low T.4o'4"'4s However, for higher tempera-
tures these excitations become also important. For even
higher T the nonspherical molecule approaches more and
more the states of a quantized rotor. The Devonshire
model in which the impurities are treated as isolated
defects, each sitting in a crystal field of octahedral sym-
metry (Fig. 2), describes this situation reasonably well
and has been discussed in detail in the literature.

At very low T the important degrees of freedom are
tunnel reorientations between nearest-neighbor potential
wells. The tunneling motion between the potential wells
will split the degenerate ground state of the defect into
low-energy levels separated by energies typically of the
order 4 = 1k~. This tunnel splitting is reflected by a
Schottky anomaly in the specific heat. For example the
CN ion in KCN-KBr has local potential minima along
the [ill] directions and therefore eight preferred direc-
tions of orientation (Fig. 2). The CN ion can tun-
nel to its three nearest-neighbor potential wells. ' For
(KCN) (KBr)i and concentrations z & 0.05 (the "im-
purity regime" in Fig. 1), these tunnel split tings result in
a specific heat anomaly of the Schottky type ' 4 with a
peak at T 0.5 K, where k~T is typically of the same
order as the tunneling matrix element A.

For higher concentrations x of the order of a few hun-

FIG. 2. Model of an isolated eight orientational tunneling

QP, e.g. , CN in KBr. The corners indicate the preferred
"easy" directions of orientation corresponding to minima in
the potential energy (Devonshire potential) of the cyanide QP.
In a dilute system tunneling can occur, for example, from well

7 to 1, 6 or 8, i.e., between nearest-neighbor wells. The elastic
energy of a cyanide QP is invariant under inversion.

dred parts per million (ppm), elastic interactions between
the moments become more and more important, and
the impurities can no longer be viewed as isolated tunnel-
ing units. Experimentally a broadening of the Schottky
specific heat is observedi i4 which cannot be explained
within the Devonshire model. For example at T = 0.08
K the specific heat of 340 ppm CN in KBr is about 50
times of what one would expect from the Schottky termi4
with a single tunneling matrix element A. The thermal
conductivity also behaves anomalously and is strongly
decreased compared to that of the pure crystal. s In addi-
tion, dilute orientational glasses show a largely enhanced
thermal expansion coefEcient 5 and a large Gruneisen
parameter~14, 51 characteristic for "glassy" systems. It
must be mentioned, however, that the observed anoma-
lies in the very dilute systems (z (& 0.01) are in general
distinctly different from the universal glasslike properties
observed in the QG phaseis i4 around z 0.5.

In the higher, but still dilute concentration range (z
200—1000 ppm), a model of isolated tunneling impurities
with a single tunneling matrix element cannot explain
the experimental data. Beside the increasing importance
of interactions between the impurities with higher con-
centrations, it has been speculated4~ that a spectrum of
tunneling matrix elements 6 arises from local strain fields
and that this might explain the broadening of the Schot-
tky specific heat. However, it has also been estimated
that the strain fields needed to explain the experimen-
tally observed broadening in the dilute samples would
have to be unphysically large.

We have treated the dilute case using a virial
expansion in the impurity concentration x of the
free energy arising from a quantum-mechanical model
Hamiltonian. In analogy with the cluster expansions in
the theory of gases, the virial coeKcients involve interac-
tions among clusters of a finite number of particles. In
this model the Hamiltonian had two noncommuting
parts. A longitudinal part which describes the QP-QP
interaction and a transverse part (tunneling matrix) to
account for quantum-mechanical tunneling between the
easy directions of orientation. The tunneling matrix was
determined by the symmetry of the local crystal field sur-
rounding the dipoles or QP's. With current techniques
it is not possible to get general solutions for the statis-
tical mechanics and the thermal properties arising from
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this Hamiltonian. However, if one considers only the first
two virial coefficients in our low-concentration expansion,
one can get corrections to the noninteracting Devonshire
model (in our case the first virial coefficient) from pair
interactions which contribute to the second virial coeffi-
cient. In particular, we found good agreement between
specific heat measurements for dilute concentrations of
Li+ in KC1 and CN in KBr and our calculations.

Our exact treatment for the second virial coefficient
also showed that the energy spectrum is strongly modi-
fied by the interaction between the QP's. We found that,
somewhat counterintuitively, the lowest excitation ener-
gies are determined by the strongest interaction. This
finding, namely that strong interactions cause low-energy
excitations, had very important consequences. Instead of
solving for the low-energy excitations from our model ex-
actly, we also approached the problem using second- and
third-order perturbation theory which greatly simpli-
fied the calculations compared to the exact solution car-
ried out in Ref. 45. A similar perturbation approach will
be used in the next section to derive an effective Hamil-
tonian for the low-energy excitations for a concentrated
system of interacting QP's.

The virial-expansion approach used in Refs. 44—46 is
expected to break down for concentrations x & 1000
ppm. For higher concentrations the evaluation of higher
virial coefIIcients is needed to describe effects like frus-
tration which becomes increasingly difficult. For ex-
ample triplets enter our calculation only on the third
virial coefficient level which has not been considered so
far. In addition, collective phenomena, like the freezing
in, are difficult to describe within this virial expansion
method. Furthermore, at higher concentrations new im-
portant physical phenomena occur, like for instance ran-
dom strain fields which are not so important in a dilute
system, but will be considered in the next section.

III. QUADRUPOLAR GLASS MODEL

In this section we treat the case of intermediate con-
centrations and very low temperatures (T & 1 K), i.e.,
the glass regime in Fig. 1. The major difference between
our physical models for the dilute and the concentrated
systems is that in the latter we will include elastic ran-
dom fields into our considerations which are believed to
dominate over the crystal field potential in the glasslike
systems for x & 0.1, " but vanish in the limit x —+ 0.
Moreover, the tunneling motion in the dilute systems is
determined by the crystal field symmetry, whereas in the
more concentrated systems the crystal field is believed to
play no important role in the tunneling process. We will
come back to the role of the crystal Geld later on, but
neglect it here at first.

Consider a set of N quadrupoles randomly distributed
in a lattice at sites i with position r;. To be more specific
our discussion here is presented with (KCN) (KBr)i
in mind. An extension of our treatment to other sys-
tems will be given in Sec. IV. We describe the orienta-
tional coupling betweeri the cyanides by a classical elas-
tic QP-QP interaction. ss ss We also include an additional

interaction between the QP moments and random strain
fields, generated by the replacement of the spherical host
Br atoms by the QP's. Since we neglect here the crys-
tal field at first and emphasize the importance of random
fields instead, the following discussion will not apply to
dilute or highly concentrated systems. Consider a zeroth-
order QG Hamiltonian 'R~ l of the form

m~'~ = Aq+m~
N N

) g nppsqapqpb )~
Imp qnp

where Q; is an elastic second rank QP tensor, ss ss H; the
local strain field at site i arising &om the elastic random
fields, 2s N the number of QP's, and n, P, p, b = 1, 2, 3
denote tensor coordinates. We used the summation con-
vention to sum over superscripts. E,~ is the strength of
the interaction which for an elastic dipole (QP) falls off
like r, and. like r, for ele.ctric QP's;s r;~ is the dis-
tance between a pair of QP's located at sites i and j.
The QP-QP pair interaction can take either plus or mi-
nus sign with the same probability and depends on the
vector connecting site i and j. The interaction is there-
fore random due to the site randoinness of the QP's and
competing. Our zeroth-order Hamiltonian 'R~ ~ in Eq.
(1) thus consists of two different parts: an "elastic spin
glass" Hamiltonian 'Rg and a random field Hamiltonian
RR ~

The second part of the Hamiltonian in Eq. (1), 'RR,
arises from the coupling of the orientational degrees of
freedom of a QP to random strain fields 'RR. is al-
ways an elastic interaction generated by the random fIuc-
tuations in the local strain environment of the cyanide
QP's. 4i Since the QP's couple linearly to the random
strain fields which are not correlated with the rotational
excitations of the QP's, these elastic random fields act
like random external fields, in distinction from the inter-
nal fields which arise from the elastic QP-QP interaction
in Wq. Presumably it is the W~ part of the Hamil-
tonian which prevents an elastic spin-glass transition to
occur at higher temperatures.

The QG Hamiltonian introduced in Eq. (1) describes
only the orientational degrees of freedom of the QP's.
We have neglected translational degrees of &eedom in our
model Hamiltonian which gives rise to additional terms
in the Hamiltonian. Our point of view here is that it
is the orientational degrees of freedom of the QP's that
are intrinsically related to the TLS's and the glasslike
behavior and that translational modes play no impor-
tant role for the low-energy excitations at very low tem-
peratures. A derivation of an OG Hamiltonian starting
from microscopic potentials between the host and impu-
rity molecules was given by Michel. However, since the
details of the impurity-host interactions are in general
unknown, a formulation of an appropriate OG Hamilto-
Dian using a lattice-dynamical approach still seems to be
an elusive task (see also Ref. 56). A recent review on
the theoretical aspects of this still controversial subject
is given in Ref. 28. Since our following discussion will not
be sensitive to details of the quadrupolar interaction, the
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model Hamiltonian in Eq. (1) is sufficient for our pur-
pose.

A. Perturbation approach

A natural approach to the statistical mechanics aris-
ing from a Hamiltonian of the form Eq. (1), would be
via mean-field theory. However, it is by now a well-

known fact that current mean-field techniques not only
lead to quantitatively but also to qualitatively incorrect
answers, if applied to systems with random and compet-
ing interactions. The failure of standard mean-field
techniques in these systems is one of the major theoreti-
cal problems in spin-glass theory and has been discussed
intensively in the spin-glass literature. We therefore
choose here an approach that avoids introducing mean
fields, however at the same time, restricts us to the very
low-T regime.

Previous calculations have shown that, at least in
the dilute systems, 4 the low-energy excitations come
from strongly interacting QP's. The lowest excitation en-

ergies could then be obtained &om a virial expansion in
the QP concentration using perturbation theory on the
ground state of a pair Hamiltonians, 4s with the tunnel-
ing Hamiltonian (crystal field) acting as a perturbation. s~

We use here the same perturbation argument and assume
at first that the orientational coupling between the QP's
is sufficiently strong to allow us to treat 'R~ol in Eq. (1) as
an unperturbed or zeroth order Hamiltonian. We think
that this assumption is well justified by experiments and
our own work on dilute systems. The low-energy excita-
tions of the system can then be obtained by doing pertur-
bation theory on the ground-state energy, say Eo, of the
unperturbed Hamiltonian R~ol. For N head-tail symmet-
ric QP's this ground state is 2+-fold degenerate. A small
perturbation will lift the degeneracy and the energy lev-
els will fan out as indicated in Fig. 3. The low-energy
excitations arise therefore from 180' rotational Hips of
the QP's, as was proposed earlier by Sethna et aL2s si
Since these low-energy splittings are small compared to
higher excited levels (Ei, E2, ... in Fig. 3) of 'R~ l, we can
describe them in an efFective Hamiltonianss derived later
on in this section. This effective Hamiltonian will give us
the TLS Hamiltonian. The higher excited levels of 'R~ol

are not known and are not necessary for our purposes.
The low-T thermal properties of the system can then be
obtained from this new effective TLS Hamiltonian and
not from the original QG Hamiltonian, Eq. (1), which
is a significant simplification of the problem. Clearly the
approach proposed here works only for systems which
have a secondary relaxation process associated with the
head-tail symmetry of the impurities and would fail, for
instance, for a dipole glass.

In order to do perturbation theory on the ground state
of 'R~ ~, we will introduce a second part R~ ~, in our
total Hamiltonian Q. The different parts contributing to
R~ ~ in our model will be discussed below. Thus, for the
moment we make the following ansatz

z = a&'&+ a&'~, (2)

E,

E0

I

gi

r

1

I

FIG. 3. Fanning out of energy levels of the 2 -fold degen-
erate ground state of a system of N interacting QP's. Eo de-
notes the ground-state energy of 'R~ ~ in Eq. (1),Ei is the first
excited level, etc. The whole set of 2 low-lying excitation
energies will be described by an efFective TLS Hamiltonian.
Note that the fanned-out levels may overlap.

B. Crystal field

To a first approximation we assume that the strain QP
tensor q; in Eq. (1) is symmetric and that the QP's are
elongated (Fig. 2) with their principal axes pointing in
direction p,;, where p,, is a unit vector, and i labels the
position r; of the QP in the solid. Let the axis of the ith
QP in the ground state be along direction n;, where n;
is also a unit vector. For a head-tail symmetric impurity
the two states n; and —n; are degenerate under inversion
and will be represented by their wave functions ~@+) and
~@, ), respectively. Using the fact that in the ground
state g,. ' (0; = 6) are two degenerate eigenstates of gs;,
we have

with'R~o~ given in Eq. (1) and 'R~i~ && 'R~ &. We empha-
size that we do perturbation theory to distinguish our
approach from a, mean-field treatment.

Contrary to our approach here that strong interactions
between the QP's are important, it has also been pro-
posed that the low-energy excitations might arise &om

weakly interacting QP's and that in this case frustra-
tion might play an important role for the glasslike low-

energy excitations. Since the system is in a quasi&ozen-
in state, it has been argued that only a small number
of completely frustrated QP's (namely the ones that see
basically no quadrupolar fields) can relax at very low
T.ss These QP's would almost behave like the isolated
impurities in a highly dilute system. In the proposed
scenario4s 180' relaxations of tunneling QP's play no im-
portant role, only "higher" excitations Eq, E2, E3,... of
'8~0~ (Fig. 3). It has also been suggested that excitations
not related to the rotational motion of single or groups
of QP's might be the microscopic originii of the low-

energy excitations in QG's and tunneling might play no
important role whatsoever. However, none of these mod-
els could successfully explain a constant density of low-
energy excitations which is characteristic for all glassy
materials at very low temperatures.
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gs;Q,
' = 0;n, g, ', 0., = +,

and

(& I&,")=~vb-. -,

where b denotes the Kronecker b function. The total
ground-state wave function of N quadrupoles in this spe-
cial representation is given by

N

with 0'; = + or

FIG. 4. A two-dimensional cut through the crystal field po-
tential in Fig. 2, showing two off-center equilibrium positions
for an orientationally "frozen-in" QP. In the intermediate con-
centration range the crystal field potential V& is believed to
be strongly disturbed by the presence of random elastic fields,
leading to an asymmetry energy for the QP.

(4)

R(p)y(~) g y(~)

where o denotes the whole set of quantum numbers

(~i, ",~iv)
We will now obtain a new e8'ective Hamiltonian, de-

noted here as 'RTLs, for the fanned out low-energy exci-
tations of Ep (Fig. 3). In first-order perturbation the-
ory the matrix elements of 'RT are given by 'R( ") =
(g~( ) ~'R(i) ~g(")) with the zeroth-order wave functions of
'R(P) &om Eq. (4) and 'R(i) being the perturbation in
Eq. (2). Note that the order of perturbation theory in
which the degeneracy of Eo will be lifted is determined
by the physical process involved in a 180' QP fiip. If
we view this as a one-step tunnel process (Sec. IIID)
over an effective angular elastic potential barrier aris-
ing &om the Hamiltonian, Eq. (1), the degeneracy is
lifted in first-order perturbation. It should be mentioned,
however, that if the random Gelds are strong enough to
"fix" the quadrupolar axes in, say the [100] directions,
as is believed to be the case in some of the alkali-cyanide
systems, the tunnel relaxation would be a two-st;ep tun-
nel process over one intermediate state. This case would
require a second-order perturbation calculation as for the
dilute system. Since the dominant interaction in KCN-
KBr is believed to be the elastic QP-QP interaction, we

continue here with first-order perturbation theory. The
mathematical treatment of the concentrated system is
therefore somewhat simpler than the dilute case, where
the octahedral symmetry of the crystal Geld potential de-
manded a higher-order perturbation calculation. 4s

We next examine the different parts of 'R& ~ that will
contribute to 'R ~ in our model. The rotational motion
of molecules in solids is often coupled with a center-of-
mass displacement of the defect molecule. Such an effect
is not described by the quadrupolar Hamiltonian in Eq.
(1) which takes only the orientational degrees of freedom
of the QP's into consideration. Consider, for example, a
small one-dimensional displacement of a "&ozen-in" QP
along its long axis n, . For these translational degrees of
&eedom the ends of the elongated QP's will also expe-
rience strong repulsive forces (the Born-Mayer repulsive
potential ) from their nearest-neighbor atoins in addi-
tion to the harmonic potential. It has been shown that
in the presence of such an additional repulsive potential,
the harmonic modes can become unstable which then
leads to new equilibrium positions displaced &om the
center. ' Thus, the same physical mechanism which

manifests itself as a crystal Geld in the dilute samples,
might also lead to the experimentally observed off-center
displacement of the defects in the higher-concentration
range.

A small center-of-mass displacement is formally de-
scribed by introducing an effective crystal Geld potential
Vc with oK-center potential wells, like in the very dilute
systems. Since the crystal Geld is believed to be small
compared to the elastic interaction, we treat the crys-
tal Geld potential as a perturbation. For an orientation-
ally frozen-in QP, an anisotropic but symmetric crystal
Geld with off-center potential wells, for example, in the
[ill] directions (Fig. 2), leads to two new off-center equi-
librium positions along the QP axis n, (Fig. 4). This
point of view is quite different &om that in the litera-
ture, where the influence of the crystal field is usually
neglected for higher concentrations. Since the random
and crystal Gelds have difFerent physical origins, the
crystal field potential (V~ in Fig. 4) will become distorted
by t;he presence of random strain Gelds. It has been men-
tioned before that due to the random placement of the
defects, the resulting elastic random Gelds are believed
to be strongly inhomogeneous in the glassy concentration
regime, i.e. , H, = H(r, ), where r, denotes the lattice po-
sition in the solid, and H, is the elastic field at site i, Eq.
(1). If we consider not only 180' rotational motion but
also a small translational displacement dr, (Fig. 4), the
asymmetry energy s, between the two states [g+) and

[g; ) becomes

s, = Q, ~(V',
I H, ~) .dr, ,

where V', , H,. is the strain gradient at site i introduced
by the fluctuations in the random strain environment.
Since the QP tensor Q; depends on r, and n;, and hence

Q; = Q(n;, r;) and Q(n;, r;) = Q( —n;, r, ), first-order
perturbation theory yields an effective asymmetry energy
of the form

RTLs 1) z

where we have used a pseudospin notation in which o,'-
denotes the z component of the Pauli spin matrix. Thus,
we have related the asymmetry energies of the TLS's to
inhomogeneous random fields via Eqs. (5) and (6).
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C. Electric dipole interaction

In addition to their large QP moment, the cyanide ion
possesses a relatively small electric dipole moment. Next
we consider the effect of a weak electric dipole interaction
which will also be treated as a perturbation.

Let R~ be the classical dipole-dipole Hamiltonian

However, a small electric dipole moment makes it pos-
sible to follow the reorientations of the electric dipoles,
i.e., the QP's, dielectrically. s The importance of the
strong elastic coupling between the QP's can also be seen
from deviations of the static electric susceptibility &om
Curie-type behavior which would be expected in a sys-
tem of noninteracting QP's.

For completeness we include here an external electric

field E to our Hamiltonian. From 'R&" ———(Q~ i
~ P,. E

(py, ;)~Qi"&) and by use of Eq. (3), we obtain

where p is the magnitude of the electric dipole moment
and y,; a imit vector along the direction of the electric

dipole. Evaluation of R&'" ——(g~ i~'RD~Qi"i) with the
wave functions from Eq. (4) yields an effective electric
dipole-dipole contributioa of the form

N
gTLS 1 ) ( &s (10)

where the projection (; = 2p E n, is a random variable
because of the orientational randomness of the frozen-in
axes n; in the ground state.

RTLs = —) J ~'o'
jgj

(8)
D. Tunneling and time dependence

where J;z is now a "quenched" random variable given by

J~ = —p [n;n~ —3(e;~n;)(e;~nz)]/r;~ . (9)

The random character of J;~ results from the site ran-
domness of the QP's on the oae hand aad orientational
randomness of the &ozen-in axes n; on the other hand.
Provided that the freeziag of the axes n; is purely ran-

dom, one could in principle derive a probability distri-
butioa fuaction for the random coupliags J;z from Eq.
(9).

In the Sethaa model~9 si the asymmetry energy s; be-
tween the two states ~Q+) and ~g, ) was related to the
iaternal electric field, i.e. , c; = P. J;~o' in Eq. (8).
In order to obtain a linear specific fteat, as is observed
experimentally, the distribution function of asymmetry
energies, say D(s, T), must be sufficiently "flat" and fi-

nite on energy scales of the order k~T arouad s = 0.
In their mode12 i the value of D(0, T) which is crucial
for obtaining a linear specific heat was obtained from the
tail of a shifted Gaussian distribution. ' However, sub-
stantial deviations of the "interaal" electric fields from a
mean-field theory predicted Gaussiaa distribution are ex-
pected for small fields (energies) s in the limit T ~ 0 (as
usual we measure fields in units of energy). Spin-glass
theory predicts that for an infinite-range interaction a
"hole" in the distribution function D(s, T) develops at
the origin when T approaches zero and that most likely

D(e, 0) oc e. According to numerical calculations by
Sethna et al. a "hole" also develops for a short-range
interaction. Thus based oa Eq. (8), we believe that
the electric dipole moment will not contribute a linear
term to the specific heat and will not lead to a constant
density of states, contrary to what has been suggested
previously. Furthermore, the specific heat and low-

energy excitations in QG's do not seem to depend on the
presence of an additional electric dipole moment, as spe-
cific heat measurements for N2-Ar-CO and N2-Ar have
clearly indicated. We will come back to the N2-Ar prob-
lem in Sec. IV.

Dielectric loss experiments at higher T have
shown that the P relaxations in QG's exhibit Arrhenius-

type of behavior and that they may involve 180' reori-
eatations of QP s over a Gaussiaa-distributed orienta-
tional potential barrier. s ss We adopt here a similar
point of view2s'so and assume that the relaxation pro
cess betweea the two wells involves a 180' reorientation
of a QP rather than a simple displacement jump. We
also assume that for very low T quantum-mechanical
tunneling rather than thermal crossover is the primary
relaxation mechanism between the two wells, as experi-
ments on dilute systems have demonstrated. The physi-
cal mechanism proposed here for the glasslike low-energy
excitations in QG's thus involves 180' tunneliag flips in
connection with a small center of mass displacement, as
indicated in Fig. 5.

Ia order to iatroduce quantum-mechanical tunneling,
we must assume a finite overlap between the two single-

00
I

90 180

Rotational
angle

FIG. 5. Tunneling relaxation via a 180 reorientational Hip.
In our model the asymmetry energy e is related to inhomoge-
neous elastic random fields in connection with the off-center
xnotion of a QP. The major contribution to the angular po-
tential barrier V, is provided by the elastic fields arising from
the Hamiltonian, Eq. (1), aud not the crystal Beld Vo in
Fig. 4. At very low T the assumed relaxation mechanism is
quantum-mechanical tunneling through the potential barrier.
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well wave functions ~i/i,
+. ) and ~i/i,. ), denoted as tunneling

matrix element 4; = —2(@, ~'Rl ~~x/i,+) ) 0 (the factor
of —2 is introduced for convenience). This is so because
the major contribution to the angular potential barrier
through which the QP has to tunnel (V, in Fig. 5) comes
from the strong elastic fields in Eq. (1). Using the stan-
dard TLS model ansatz, we can express the tunneling
Hamiltonian in the form

N
gTLS 1 ) g z

where o.* denotes the x component of the Pauli spin ma-
trix. In the 180' tunneling model the tunneling ma-
trix element for QP's with moment of inertia I tunneling
through a 180' angular potential barrier of height V, (Fig.
5), is approximated by an expression of the form

6, = 2k' exp( —4/2IV;/h) .

A distribution of attempt &equencies ~ is usually ne-
glected in the TLS model, since 6; depends only strongly
on the distribution of barrier heights V, . The time de-
pendent probability I';(t) for a QP to tunnel within time
t, is then given by o

I';(t) = 1 —exp( —6;t/25),

In our case there are two additive parts to the effective
orientational barrier V; arising from Eq. (1). An "in-
ternal" part f'rom the QP-QP interaction 'Rg that was

already considered previously by Sethna et al. , and
the "external" static fields H, that arise from the ran-
dom strain fields in 'RR and were not considered before.
Both the random "external" fields and the "internal"
quadrupolar fields contribute to V in our model. Thus
the probability for the efFective rotational barrier P(V, T)
which reBects the sum of both fields could be finite for
small fields and not develop a hole, otherwise expected for
a "pure" elastic spin glass Hamiltonian gq. s2 The exper-
imentally found distribution of efFective elastic fxeldss

with a nonzero probability for small fields, is thus ren-
dered more understandable from our model. s2

E. TLS tunneling Hamiltonian

Our effective TLS Hamiltonian '8+L for the low-

energy excitations in Fig. 3 is now given by the sum of
Eqs. (6), (8), (10), and (ll). Collecting all parts in one
Hamiltonian, we arrive at the following effective low-T
glass Hamiltonian:

i.e., only QP's which experience sufficiently small elas-
tic fields can relax on experimental time scales and con-
tribute to the low Ttherm-al properties. Thus, to ex-
plain the experimentally observed time dependencies, the
probability distribution P(V, T) of barriers V; in Eq. (12)
is needed (Sec. IIIF).

In the Sethna model i the distribution of bar-
rier heights P (V, T) was provided by the "internal"
quadrupolar mean field arising from the first part in Eq.
(1), i.e. , V, = P.X; ~ Q . If in the simplest ap-
proximation only the most favorable path for a 180' re-
orientation is considered, the potential barrier V; can be
described by a scalar quantity as indicated in Fig. 5, with
the tunneling xnatrix element 6 given by Eq. (12). The
distribution of barrier heights P(V, T) was obtained by
Sethna by fitting the experimentally measured high-T
dielectric-loss data to a Gaussian distribution as-
suming a single-particle Debye-Arrhenius model for the
relaxation. ' ' Using an ad hoc introduced temper-
ature dependent width, the Gaussian distribution was
then extrapolated to low temperatures to obtain the de-
sired distribution P(V, T) near T = 0. ' Again, the
question about the true nature of P(V, T) is closely re-
lated to the internal Geld distribution problem in spin
glasses and substantial deviations &om the mean-field
predicted Gaussian distribution are expected for low T
and small internal fields V. ' In particular, it is be-
lieved that P(V, 0) oc V for small values of V, if random
fields are not considered. This would lead to time de-
pendencies for the linear specific heat considerably dif-
ferent kom the observed logarithmic form. Since it is
the small field part of the distribution which gives the
time dependencies, special attention has to be paid to
this crucial point (Sec. IIIF).

(14)

A theoretical approach to the statistical mechanics
arising froxn the full Hamiltonian, Eq. (14), was devel-

oped in Ref. 67, including also an additional TLS-phonon
coupling. A phonon-TLS coupling is needed to obtain
for instance thermal conductivity. The dominant long-
wavelength phonons at very low T that contribute to the
thermal conductivity are believed to scatter resonantly
from the TLS's and to be only weakly coupled. ' These
phonons could in principle be introduced perturbation-
ally in our model, like in the TLS model. In fact a strong
coupling between the phonons and the TLS's in Eq. (14)
would introduce a new non-negligible TLS-TLS interac-
tion, as was pointed out in Ref. 69. This would lead to
an inconsistency with the TLS model which assumes
a priori only weak or no interactions between the TLS's.
Since in our case a strong phonon coupling was already
incorporated in the first part of the Hamiltonian, 'R@ in
Eq. (1), with an effective coupling strength A;~ (the elas-
tic QP interaction is a phonon-mediated interaction),
the same problem does not arise in our discussion. It is
the strong interaction between the QP's which "freezes
out" effective TLS's which can then be treated in a weak
coupling approximation to obtain, for example, the ther-
mal conductivity. This would explain the paradoxical
fact that a model of weakly interacting units (the TLS
model) describes the (low T) properties of a st-rongly in-

teracting system of QP's so well.
We next derive the TLS Hamiltonian and the density

of states. Instead of treating the full Hamiltonian, Eq.
(14), it is sufficient for us to consider a much simpler
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case. The major simplification arises from neglecting
the electric dipole-dipole term in Eq. (14). The rea-
son for this is twofold: (i) the electric dipole moment is
small and is known to depend highly on the dilution fac-
tor (for example ferroelectric order is only observed in
highly concentrated systems), (ii) specific heat measure-
ments for N2-Ar-CO mixtures have already demonstrated
that the small electric dipole moment of CO makes an in-
significant contribution to the low-energy excitations.
It seems very unlikely that the glasslike properties in
KCN-KBr and N2-Ar-CO should arise for two difFerent
reasons in two systems which are so much alike. For
simplicity we will therefore neglect the electric dipole in-
teraction in our following discussion and treat a "pure"
QG instead.

With no external electric field and the above simplifi-
cations, the TLS contribution in Eq. (14) becomes

N
'R = —

2 ) (s;a,'+ 6;0,'),

with yet unknown distributions of asymmetry energies
ci and tunneling matrix elements 6;. Diagonalizing Eq.
(15) leads to the well-known resultss

N
gTLS 1 ) g z (i6)

where

E; = @2+62

is the energy of the TLS.

F. Density of states

Next we derive the density of states and time depen-
dent specific heat for KCN-KBr. In the 180 tunneling
modelM the excess heat capacity arising from 'RTLs in
Eq. (16), can be obtained from the expression

C(T, t) = Nkg de D(s) dV P(V, T) x I'(b„t)((p/2)/s + 62sech[(p/2)y s + b, ] ~

0 0 i

where P = (k~T), D(e) is the distribution of asymme-
try energies, Eq. (5), P(V, T) the distribution of barrier
heights arising from the Hamiltonian, Eq. (1), b, the
tunneling matrix element in Eq. (12) and I'(b, , t) the
tunneling probability, Eq. (13). Values for the attempt
&equency u = 8.3 x 10 Hz and the moment of inertia
I = 2.65 x 10 kgm of a cyanide molecule dissolved in
KBr which enter the calculation of b, through Eq. (12)
were given in Ref. 30. For the above choice of param-
eters numerical calculations have shown that 4 can be
neglected compared to e in Eq. (18). Thus the dou-
ble integral decouples, yielding a time dependent linear
specific heat in T of the form

C(T, &) = (vr /6)Nk~DpA(t) T, (19)

where

A(t) = dV P(V, T) (1 —exp[—6(V)t/2h]) . (20)
0

In deriving Eq. (19) we have assumed that the density
of asymmetry energies in Eq. (5), denoted here as D(s),
is a constant for small energies, i.e., D(e)= D(0) = Dp. '

The above expression for the specific heat fits the exper-
imental data for (KCN) p s (KBr)p 5 remarkably well, as
has been pointed out previously.

A constant density of states Do follows &om our model
in a very natural way. Since the directions of orientation
of the QP's are fixed in the ground state, the distribu-
tion of asymmetry energies results &om a distribution of
random fields H; in Eq. (5). Since H; is the sum of elas-
tic fields created by the randomly replaced host atoms
(which are not correlated with the orientational degrees
of freedom of the QP's) acting at site i, we can use the

law of large numbers to justify a Gaussian distribution for
e (the same can be found by doing a numerical calcula-
tion). The important result, namely D(e) —Dp for small
energies e, follows now from an estimate of the width of
this distribution:~p the strength of the QP-QP nearest-
neighbor elastic interaction, denoted as Ko, has been es-
timated previously to be of the order of 400 K in dilute
KCN-KBr crystals. ' ' '5 It is believed that the elastic
fields are of a similar order of magnitude as the quadrupo-
lar interaction. Using Ko as a rough estimate of the
strength of the interaction and assuming a rotational am-
plitude that is of appreciable size compared to the inter-
atomic spacing, our numerical calculations show that the
resulting distribution for the asymmetry energy e is suf-
ficiently Hat on energy scales of the order of k~T (( Ko,
and that Dp ——(m'0 /2) i~2 & 1/(k~ x 400K), where
0. is the second moment of the distribution. Calcula-
tions by Sethna et al. ' have shown that a value of
Dp ——1/(k~ x 314K) in Eq. (19) provides the best fit to
the experimental data for (KCN) p s (KBr)p s, is in agree-
ment with our estimate. However, these authors con-
cluded that Do reQects the asymmetry energy due to the
electric dipole moment of CN in Eq. (8) which is very
difFerent &om our viewpoint.

Time dependencies enter the 180 tunneling model
via the time integral in Eq. (20). Using a shifted Gaus-
sian distribution for P(V, T), suggested by high-T suscep-
tibility measurements, a computer calculation leads
to a specific heat that varies approximately logarithmic
in time and that fits the experimental data rather well.
However, difFerent forms of P(V, T) have been suggested
by theorists (see for example the discussion in Ref. 32).
This discrepancy has been a serious problem in the 180
tunneling model, because it was the value of P(V, T) in
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the limit V, T —+ 0 that played a very crucial role in the
heat capacity and density of states.

The same diKculty does not arise in our case for two
reasons: (i) The distributions of asymmetry energies
D(c) and barrier heights P(V, T) are independent in our
model. Thus we get a linear specific heat in T and con-
stant density of states without resorting to the exact an-
alytical form of P(V, T). (ii) The time factor in Eq. (20)
that determines the order of magnitude of the specific
heat is not very sensitive to the value of P(V, T) at V = 0
and T = 0 when the random external fields are taken into
account. As a numerical calculation shows, both a shifted
Gaussian for P(V, T) (Ref. 30) and a P(V, O) oc V (Ref.
32) lead to results that agree very well with experimen-
tal findings for 6fty percent CN dissolved in KBr. We
think that this result is physically reasonable since we
do not expect that the speci6c heat arises merely from
tunneling quadrupoles with zero barrier heights (Fig. 5),
but &om the small-6eld tail of the distribution.

For completeness, the total low-temperature specific
heat of KCN-KBr is now given by

{21)

where the 6rst part renects the phonon contribution to
the specific heat. There is also an additional nontime
dependent contribution to the specific heat arising &om
'Rlol, Eq. (1), which has not been included in our dis-
cussion. This term is not related to quantum-mechanical
tunneling and becomes more important at higher T be-
cause it reflects "higher" rotational excitations of QP's
(Eq, E2, in Fig...3. ) than the 180' fhps that gave the
low-energy excitations. Indeed, here only a more de-
tailed knowledge of the elastic field distribution P(V, T)
for small fields would enable us to calculate the thermal
properties arising from 'Rlol alone. ~ It could be specu-
lated that this additional contribution to the specific heat
might have a low-temperature tail that is related to the
excess T term observed in the heat capacity of almost
all disordered materials. However, it has also been ar-
gued that librational excitations of single QP's could be
the origin of this term.

IV. DISCUSSION

The physical model that we suggested to explain the
glasslike excitations in QG's at very low temperatures
involved strongly interacting QP's, random strains, and
a crystal field potential, in connection with quantum-
mechanical tunneling. Since all these e8'ects have been
observed in QG's and seem to play important roles, we
think that we have a good justification for our proposed
physical mechanism. Furthermore, we had previously
shown ' that a pair of strongly interacting QP's each
tunneling in a local crystal potential has low-energy ex-
citations. Using a similar perturbation argument (Sec.
III A), the same approach carries over to a system of N
interacting tunneling QP's. By carefully distinguishing
between "internal" and "external" fields for the orienta-
tional degrees of freedom of the QP's, we could avoid a

con8ict with the yet unsolved internal-field distribution
problem that also arises in the theory of spin glasses,
and derive a constant density of states.

One of our fundamental assumptions in this paper
was to separate the total Hamiltonian into a QP-QP
Hamiltonian and a QP-random-field Hamiltonian of
the form Eq. (1). A calculation of this QG Hamiltonian
starting &om realistic microscopic potentials between the
host and impurity atoms or molecules would therefore be
a highly desirable task. One major step in this direction
is the work of Michel et aL Numerical arguments
for modeling QG's in terms of a defect Hamiltonian were
also given by Grannan et al. However, the latter au-
thors argued that glasslike behavior arises from the first
part 'Rg of the Hamiltonian, Eq. (1), in connection with
the electric dipole moment of the defects and did not
consider local 6elds in their discussion, like the proposed
random fields and crystal 6elds which were crucial in our
derivation.

It has also been suggested that a semiclassical de-
scription like the one in Eq. (1) is not valid and that
a quantum-mechanical strong coupling calculation em-

phasizing the role of the phonon coordinates would be
necessary to obtain glasslike properties. While we admit
that this is the right procedure, we do consider our QP-
QP interaction as the renormalized one. The resulting
strong efFective orientational coupling between the QP's
which also manifests itself, for example, in the OG tran-
sition is however an experimentally mell-established fact.
Furthermore, our mechanism for the glasslike low-energy
excitations does not depend on the details of the QP-
QP interaction which enters the calculation indirectly via
the distribution of barrier heights P(V, T) in Eq. (20)
and leads to time dependencies. As mentioned earlier in
Sec. III F, almost any sensible choice for P(V, T) leads to
reasonable agreement with the experimentally observed
heat capacity because of the presence of random "exter-
nal" 6elds.

Our physical mechanism which leads to the TI S tun-
neling model is not directly related to the presence of
frustration or long-range order among the QP's. How-

ever, the perturbation approach in Sec. III demanded a
clear separation between the ground-state energy Eo and
higher excited levels Eq, E2, ... (Fig. 3), i.e. , suKciently
strong orientational couplings between the QP's. A sec-
ond necessary ingredient for our model was fluctuations
in the local strain environment in which the tunneling
takes place. Both conditions are satisfied in QG's for
intermediate concentrations (x 0.5), but not in the
highly concentrated (x ( 1) and very dilute systems
(a (( 0.1).

Whereas the orientational coupling is strongest for
x = 1, the eÃects of randoxn fields are expected to be
most pronounced around x = 0.5. As the concentration
of the QP's is lowered below x —0.5, the efFective QP-QP
interaction becomes weaker and the orientations of the
QP's are no longer frozen into their random directions.
Other quadrupolar excitations di6'erent &om 180' Hips
become more likely, leading to an increased overlap of the
fanned-out energy levels Eo, Ei, ... in Fig. 3. In addition,
fluctuations in the local random environment of the QP's
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vanish as they become more and more diluted; hence the
importance of random strain fields diminishes. Simul-
taneously the importance of the crystal field increases
which finally completely dominates over the elastic ran-
dom fields in the very dilute limit. The net result
is that dilution destroys the glassy state. On the other
hand for higher concentrations interactions between the
QP's becomes more and more important. As the system
orders elastically (or even electrically), the appropriate
internal fields become less random. The broad distribu-
tion functions, which are crucial to obtain a linear specific
heat, are no longer flat but approach 8 functions in the
ordered state. The QP's can no longer relax via tunnel-
ing on experimental time scales, since the low-field tail in
the distribution P(V, T) is missing. As the host-impurity
disorder vanishes, so does the asymmetry energy. In ei-
ther case the glasslike behavior results &om a delicate
balance between random fields and quadrupolar interac-
tions. Since both effects are coupled with the impurity
concentration, the density of states and heat capacity is
expected to have a nontrivial concentration dependence.

A. Nq-Ar-CO mixtures and the glass problem

In our work we considered the properties of QG's
for the case when, according to our understanding, the
electric dipole interaction plays no or little role in the
very low-temperature glasslike properties. Since glasslike
properties have also been found in QG's like N2-Ar
and N2-Ar-CO, independently of the CO electric dipole
moment, one might wonder if our mechanism applies
to these systems as well. However, it has also been
suggested that quadrupolar order might be important
in niobium-doped systems like KTa~z ~Nb 03, where,
in contrast to the alkali-halide alkali-cyanide crystals, a
strong electric dipole moment is present. Again, we
think it would be most interesting to measure the very
low-T properties of systems in which the electric dipole
interaction dominates to see if these systems behave
glasslike at very low T.

The TLS asymmetry energy in our model was related
to the center-of-mass displacement associated with a 180'
tunneling Hip of a QP. Such a small displacement of the
cyanide ion is expected, for instance, in KCN-KBr which
in principle could have its origin in the asymmetrical
shape of the CN molecule. However, in N2-Ar-CO
mixtures in which the N2 has a symmetrical shape, the
off-center position would have to come from the repul-
sive interaction as is discussed further on. Furthermore,
large rotational amplitudes are also observed in a wide
variety of other materials. Earlier we have suggested
that the off-center motion of CN in KCN-KBr mixed
crystals is a result of the elongated shape of the QP's
and the repulsive potential acting between the ends of
the CN dumbbell and its neighboring atoms. An ofF-
center displacement of interstitial atoms or molecules due
to strong repulsion between host and impurity is also a
well-established fact in metals 2 (however, here the re-
pulsive forces are difFerent in nature). Recently it has
been argued that the observed radiation e6ects of in-
terstitial iron atoms Fe in o,-Zr provide unambiguous

proof that the iron atom occupies off-center octahedral
sites. The experimental data indicate that the Fe atoms
can perform local jumps in an octahedral "cage" that is
formed within the hcp host lattice with off-center equilib-
rium positions lying at the corners of the cage displaced
from the center of symmetry" (for example along the
corners of the cube in Fig. 2). Off-center potential wells
are also believed to exist in various other OG systems.
For example it has been speculated that NH4 tetrahe-
dra in the electric dipolar glass (NH4I) (KI)i occupy
ofF-center positions of about 0.1—0.3 A. . An off-center mo-
tion of Li+ was also observed in the dipolar glass LiC1-
KCl.s However, in dipolar glasses the dominating elec-
tric dipole moment is not invariant under inversion, and
thus does not give glasslike low-energy excitations. The
self-induced lowering of symmetry~s of defects (here by
going off-center) is a well-known efFect which also arises
in connection with the Jahn-Teller effect. Since it is
the off-center displacement that gives the asymmetry en-

ergy and constant density of states in our derivation, and
not the electric dipole moment of CO, this could explain
why the specific heat of N2-Ar-CO mixtures is glasslike,
irrespective of the CO electric dipole concentration.

We now want to make some speculative comments
about the reason for the constant density of states and
the nature of the tunneling unit in canonical gla88e8. The
major problem in modeling canonical glasses is that no
clear distinction between lattice and defects can be made
on experimental or theoretical grounds. However, let us
assume that canonical glasses contain defects. Assume
that (i) these defects interact via elastic strains, and
that (ii) they also experience elastic random fields from
the random structure of the amorphous solid. Then a
description of the defects in terms of a model Hamilto-
nian like the one in Eq. (1) would be in place, and the
mechanism suggested here for the glasslike low-energy
excitations could apply to the real glass as well. Sim-
ilar physical ideas have been suggested by experiments
on vitreous silica. In this context the work of Buchenau
et al. deserves some special attention. These authors
concluded from their experiments that the relaxation
processes in vitreous silica, although at higher T, can be
interpreted as collective reorientations of Si04 tetrahedra
in combination with a jump width dr of approximately
0.5 A. . Whereas we have no explanation for the formation
of these Si04 defects in canonical glasses, we suggest that
the TLS model might be placed in the same theoretical
framework as our discussion for the quadrupolar glass
presented till here. Since positions and strain environ-
ments of the Si04 tetrahedra are random, our proposed
mechanism for the glasslike excitations could apply here
as well.

V. CONCLUDING REMARKS

We have proposed a new physical mechanism to ex-
plain the microscopic origin of the two-level tunneling
systems in quadrupolar glasses and their constant density
of low-energy excitations. Even though the quadrupole
(QP) axes in our model are effectively frozen-in at very
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low T, the head-tail symmetric QP's maintain their mo-
bility to perform 180' tunneling Hips. A 180 tunnel-
ing reorientation of a QP coupled with a small center-of-
mass displacement then yields isolated two-level states
(TLS's), responsible for the glasslike behavior. This tun-
neling motion takes place in a local crystal field environ-
ment which is, however, disturbed by the presence of ran-
dom elastic fields from the substitutional host-impurity
disorder on the lattice. Since the TLS asymmetry en-

ergy results from the sum of external random fields (as
far as the orientational degrees of freedom of the QP's
are concerned), we can use the law of large numbers to
derive a Gaussian distribution for the asymmetry ener-
gies. This distribution, rather than having a "hole" for

small fields, will have a finite probability and therefore
give a constant density of states. Furthermore, the phys-
ical mechanism for the low-energy excitations proposed
here, does not depend on details of the QP-QP interac-
tion, nor do we have to use mean-Geld theory, known to
be very problematic in systems with random and com-
peting interactions. Our model seems to be sufficiently
universal to account for the linear low-temperature spe-
cific heat in other quadrupolar glasses, like N2-Ar-CO
mixtures, too. We remark that similar ideas to the ones
developed here are suggested by experimental work on
vitreous silica. However, the identification of the tun-
neling unit in canonical glasses still remains one of the
foremost problems in glass science to be solved.
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