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Surface magnetization and critical behavior of aperiodic Ising quantum chains
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We consider semi-infinite two-dimensional layered Ising models in the extreme anisotropic limit
with an aperiodic modulation of the couplings. Using substitution rules to generate the aperiodic
sequences, we derive functional equations for the surface xnagnetization. These equations are solved

by iteration and the critical exponent P, can be determined exactly. The method is applied to
three specific aperiodic sequences, which represent difFerent types of perturbation, according to a
relevance-irrelevance criterion. On the Thue-Morse lattice, for which the modulation is an irrel-
evant perturbation, the surface magnetization vanishes with a square-root singularity, like in the
homogeneous lattice. For the period-doubling sequence, the perturbation is marginal and P, is a
continuous function of the modulation amplitude. Finally, the Rudin-Shapiro sequence, which cor-
responds to the relevant case, displays an anomalous surface critical behavior which is analyzed via
scaling considerations. Depending on the value of the modulation, the surface magnetization either
vanishes with an essential singularity or remains finite at the bulk critical point, i.e., the surface
phase transition is of first order.

I. INTRODUCTION model (QIM) with the Hamiltonian

Since the discovery of quasicrystals, one has witnessed
a growing interest in understanding their structure and
physical properties (for recent reviews see Refs. 2—6).
The study of phase transitions on quasiperiodic lattices is
now an active field of research. Since quasiperiodic and,
xnore generally, aperiodic systexns can be considered as a
state of matter which interpolates between the periodic
(crystalline) and the random (disordered, glassy) states,
the corresponding critical behavior is very rich and the-
oretically challenging.

The first results obtained in this field were mainly
numerical. For example, it was shown that difFerent
systems on the two-dimensional Penrose lattice (Ising
model, r 9 percolation, i ' self-avoiding walks ) are uni-
versal in the sense that the critical exponents are the
same as in regular, two-dimensional lattices. The same
conclusion was reached for three-dimensional quasiperi-
odic structures, although with a weaker nuxnerical ac-
curacy.

Exact results about critical properties can be obtained
on two-dixnensional, layered Ising models, where the in-
tralayer couplings Kq are kept constant, whereas the in-
terlayer interactions K2(k) follow the aperiodic rnodula-
tion of the underlying lattice. One usually works in the
extreme anisotropic limit, with K2(k) ~ 0, Ki ~ oo,
keeping fixed the ratio Ai, = K2(k)/Ki where Ki is the
dual interaction corresponding to Kq. In this limit the
system is described by a one-dimensional quant»m Ising

1 z
2 ) +k + ~&+%+%+i' k=l

where the o's are Pauli spin 1/2 operators.
The first exact results on the QIM were obtained for

the bulk critical properties on the Fibonacci and related
lattices, where the specific heat is found to have a log-
arithmic singularity of the Onsager type. 9 It was
Tracyzo who first showed examples of aperiodic layered
Ising models where the logarithmic singularity in the spe-
cific heat is washed out, like in the layered Ising model
with random couplings (McCoy-Wu model).

A systematic study of the bulk critical behavior of
aperiodic QIM's has been performed recently by Luck.
Generalizing the Harris criterion, 2s the relevance or irrel-
evance of the aperiodicity is shown to be connected to the
size of the Huctuations in the couplings Ag. For bounded
fiuctuations (as happens for the Fibonacci lattice) the
specific heat of the systexn diverges logarithmically as
in the homogeneous one, while, for unbounded Buctua-
tions, the critical behavior is anomalous; e.g. , the specific
heat displays an essential singularity like in the McCoy-
Wu xnodel. In the marginal case, when the auctuations
grow on a logarithmic scale, nonuniversal critical behav-
ior is expected with critical exponents depending on the
strength of the aperiodicity.

The relevance-irrelevance criterion has been gen-
eralized for other systems24 and higher dimensional
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m, = (ll~ 10) (1 2)

where ~0) is the ground state of 'R and ~1) is the first ex-
cited state, belonging to the odd sector of the Hamilto-
nian, which is degenerate with the ground state in the or-
dered phase of the infinite system. The matrix element in
Eq. (1.2) can be rewritten using a Jordan-Wigner trans-
formation of the spin operator, followed by a canonical
transformation to Fermi operators which diagonalizes the
Hamiltonian as described in Ref. 27. The surface mag-
netization finally takes a simple form involving sums of
products of the couplings2

m8
)

—i/2

1+)
j=l k=1

(1.3)

which stays valid for any distribution. The surface mag-
netization has been evaluated in the critical region for
difFerent sequences with bounded fiuctuations in Ref. 29
and in each case it was found to vanish with a square law

singularity, in agreement with scaling arguments. On
the other hand it was shown in Ref. 24 that any type
of marginal modulation results in a nonuniversal critical
behavior, with a surface magnetization exponent which
is a continuous function of the modulation strength.

In the present paper, we continue and extend our stud-
ies of the surface critical behavior of aperiodic quantum
Ising models. To evaluate the infinite sum for m, in
Eq. (1.3) we have developed a method leading to func-
tional equations for the surface magnetization which do
not contain explicitly the form of the aperiodicity. It-
erating these relations, a closed form expression for the
surface magnetization is obtained, &om which the critical
exponent as well as corrections to scaling can be deter-
mined exactly. To illustrate the method, diHerent aperi-
odic sequences with irrelevant, marginal, as well as rele-
vant modulations, are evaluated. For the Rudin-Shapiro
sequence, which represent a relevant perturbation, a
combination of numerical results and scaling arguments
has been used. The surface magnetization is found to
display a first order transition for some range of the cou-
pling ratio, whereas the bulk transition is expected to be
continuous.

The setup of the paper is the following. In Sec. II,
the properties of aperiodic sequences generated through
substitutions are summarized and a relevance-irrelevance
criterion is deduced from scaling considerations. Then we

study successively the Thue-Morse sequence (Sec. III),
the period-doubling sequence (Sec. IV), and the Rudin-
Shapiro sequence (Sec. V). The results are discussed in
the final section.

aperiodicities. For relevant modulations, the form of
the singular quantities near the critical point has also
been determined, using scaling arguments.

As far as the surface critical behavior of aperiodic sys-
tems is concerned, only a few results are available. For
the QIM in the ordered phase, the asymptotic limit of
the spin-spin correlation function in the surface gives the
square of the surface magnetization m, . This leads to
the expression

II. APERIODIC SEQUENCES
AND SCALING CONSIDERATIONS

Aperiodic sequences can be generated through iterated
substitutions on the letters A, B, . . . such that A ~
8(A), B~8(B),. . . . The properties of a given sequence
are then obtained &om its substitution matrix M whose
columns contain the numbers of letters A, B, . . . in 8(A),
8(B), . . . , respectively:

8(A) S(B)
A A
8(A) S(B)

n~ n~ (2.1)

It follows that M" has matrix elements giving the corre-
sponding numbers in the sequences constructed on A,
B,. . . after n substitutions. For example, when one
starts with A, i.e., with the substitutions A ~ 8(A) ~
8(8(A)). . ., the number of A, L+, in the sequence after
n steps is (M")ii whereas the length of the sequence is
L„=P, (M"),.i. Making use of the right eigenvectors
V of the substitution matrix

MV =A V, (2.2)

(2.3)

Fluctuations in the numbers of letters L„, L„,. . . , are
connected to the next-to-leading eigenvalue A2.

In the case of the aperiodic quantum Ising chain con-
sidered above, with a two-letter sequence (As = Ag, A~)
and an averaged coupling A, one may write

A~ =A —p h', (2.4)

where h = A~ —A~. Then, at a length scale L„Ai,
the sum of the deviations &om the averaged coupling is

A(L„) = ) (Ai, —A) hA2 hL„ (2.5)

and involves the "wandering exponent"

ln Ai
(2-6)

When the number of letters is greater than 2, one may
have two complex conjugate next-to-leading eigenvalues
and the power law in Eq. (2.5) is modified by a factor
which is periodic in n lnL /1n Ai.

The aperiodicity introduces a thermal perturbation
above A which, at a length scale L, is given on the average

by

L„and L+ are found to be asymptotically proportional
to Ai where Ai is the largest eigenvalue of the substitu-
tion matrix, whereas the asymptotic density of A letters
involves the components of the corresponding eigenvec-
tors
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hA(L) = = bL (2.7)
III. THUE-MORSE SEQUENCE

Under a change of scale by a factor b = L'/L this trans-
forms according to

(2.8)

As a first example, we consider the binary Thue-Morse
sequence, which may be deduced &om the binary rep-
resentation of non-negative integers, 0, 1, 10, 11,. . ., by
counting the sum of their digits modulo 2,

01101001.. . . (3.1)

(2.9)

with a crossover exponent

where v is the bulk correlation length exponent. It fol-
lows that the perturbation amplitude b scales like22'24

g b4/vg

(
Am AB 0-+01
BABA 1w10 ' (3 2)

This sequence is also generated through the substitution

4 = 1 + v(bd —1). (2.10) with 8(A, B) = (0, 1), so that one obtains, successively,

m, (tb) = b , tmt , (b't tbt b),"," (2.11)

where P, is the surface magnetization exponent. Taking
the scale factor b equal to the bulk correlation length
b = ( = t ", one obtains m, in the form

As a consequence, for the two-dimensional Ising model
with v = 1, the aperiodic modulation is a relevant (irrel-
evant) perturbation when u )0 (u (0) and it becomes
marginal when ~ = 0. In the latter case a nonuniversal
behavior is expected.

For a relevant aperiodic modulation, the form of the
singular thermodynamical quantities can be deduced
from scaling considerations. Let us consider the surface
magnetization as a function of the thermal scaling Geld
t = 1 —(A, /A) and the modulation amplitude b. In a
scale transformation it behaves as

01
Q11Q
01101001
0110100110010110

(3.3)

The corresponding substitution matrix (2.1) has eigenval-
ues A1 ——2, A2 ——0. The asymptotic density, p =1/2,
is deduced from Eq. (2.3) and, according to Eq. (2.16),

(3.4)

The form of the substitution in Eq. (3.2) immediately
leads to the recursion relations

m, (t 6) = tP'F
~

—~,
/'t

(2.12)
f2p ——1 —fp, f2p+1 —fp+1 ~ (3.5)

where the scaling function F(z) involves a new charac-
teristic length,

g
~
b

~

—v/t2' (2.13)

where

g(A, r) = ) A 'r "&, (2.14)
j=O

which is introduced by the aperiodicity and remains finite
at the bulk critical point.

In the following, an aperiodic sequence will be writ-
ten as a succession of digits f1, = 0, 1, which are im-
ages 8(A, B) of the letters considered before. Then, with
Ai = Af', Ao = A, one obtains Ag, ——Ar~' for the kth cou-
pling and the surface magnetization in Eq. (1.3) can be
rewritten as

From the second one, the sequence of odd terms, under-
lined in (3.3), reproduces the whole sequence. Splitting
the sum giving n~ into even and odd parts and using
(3.5), one obtains

A2p p7 +2p+1 H + fp+1t P = 071727b ~ ~

g(A ) A
—2(2p) —2tbg~ + A

—2(2p+1) —2tbg~+b

(3.6)

so that a chain with length I = 2p has a density equal to
the asymptotic one, p = 1/2, which explains the vanish-
ing second eigenvalue giving ~ = —oo, i.e., no wandering
in this case.

The sum S(A, r) involved in the surface magnetization
(2.14) can be rewritten as

nO ——0. (2.15) p=O

The critical coupling, A = A~, is such that
liml. ~ g& 1 Ag„=liml. ~ A, r"~ = 1, so that p=O p=O

) (A2 )
p + ) ~

A
—2(2p+1) 2p 2f~~t (37)——

A C
AL,

p = lim (2.16) Using the identity a~" = 1+(a —1)fg, (fi, = 0, 1) and the
value of the critical coupling in Eq. (3.4), one obtains
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S(A, r)= '
4 + (r —r) (A/A, ) Z (A, /A)

1 —(A./A)'
IV. PERIOD-DOUBLING SEQUENCE

Z(z) = ) flax".
%=1

(3.8)

We now turn to the period-doubling sequence which
follows &om the substitution

1m10,
The Thue-Morse series, Z(x), satisfies a recursion rela-
tion which follows froxn Eq. (3.5), Om11,

(4 1)

x'
Z(*) =. ..+ (

' —1)Z(*'),
leading to

(3.9)

so that, iterating this relation,

(3.10)

10
1011
10111010
1011101010111011

which is convergent for z ( 1. Equations (2.14), (3.8),
and (3.10) give the surface magnetization shown in Fig. 1
for any value of A & A, .

Near the critical point, A ~ A,+, the leading contribu-
tion to S(A, r) comes from the first two terxns in Eq. (3.8).
The next ones in Z (A, /A) give the corrections to scal-

ing. Collecting these results, the surface magnetization
Gnally takes the form

(4 2)

The eigenvalues of the substitution matrix are then Ax ——

2, Az ———1 and the asymptotic density p = 2/3 gives
the critical coupling

—2/3 (4 3)

The form of the substitution is such that f2~
——1 —f„,

f2„+x ——1, from which one deduces

ms = 2tx/' 1 (I —A'l

A. +A, ' 4 1+A.')1+-~; ~

t+O(t'), (3.11)
A2J): 2p Ap) A2p+1 —2p + 1 Ap p 0 1 2

(4 4)

where t is the deviation from the critical point defined
in Sec. II. The surface magnetization exponent takes
the value P, = 1/2 for homogeneous Ising systems in
two dimensions as expected &om scaling since ~ & 0
here and the aperiodic modulation of the couplings is an
irrelevant perturbation. The critical amplitude depends
on T through A, in agreement with previous results. 29

S(A, r) =
~
1+, , ~

S(A'r', r ').1
A'rz )

(4.5)

After l iterations the arguments in S(A, r) are changed
into

Splitting the sum in S(A, r) into even and odd parts as
in Eq. (3.7) and using (4.4), one obtains the following
recursion relation:

l odd,
even,

I =0)1)2).. . ) (4 6)

0.8 and the series can be written as an in6nite product

0.4

0.2

S(A, r) =
~ 1 ~ ~

k=1
1 + A.

J

—
I

1 + A. '( —
/

(A,l, (A, l
'~A gA)

(4.7)

0.2 0.4 0.6

FIG. 1. Thue-Morse surface magnetization as a function
of 1 —t = (A, /A) for different values of the coupling ratio
r = Ax/Ao. The critical exponent keeps its value for the homo-
geneous Ising system P, = 1/2 whereas the critical amplitude
is r dependent. S(u) (1 —u) (4-8)

which, together with (2.14), gives the surface magnetiza-
tion shown in Fig. 2.

In order to analyze the critical behavior of the sur-
face magnetization, one may use a scaling method intro-
duced by one of us. 4 Let S(u) denote the series expan-
sion of S(A, r) in powers of u = (Ac/A)2. According to
Eq. (2.14), S(u) should display a power law singularity
near the critical point:
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FIG. 2. Period-doubling surface magnetization for difFerent
values of r. The exponent P, varies continuously with the
modulation amplitude.

FIG. 3. Marginal variation of surface exponent P, with the
coupling ratio t for the period-doubling sequence. In the ape-
riodic system the singularity is always weaker than in the ho-

mogeneous one and the surface transition is of second order
for any value of v.

Sr, 2u(1) = (1+A~)(1+ A~ ) ~ (2 )

from which the surface magnetization exponent

(4 9)

It may be shown that in this case, the truncated series

SL, (u) given by the first L terms in S(u) behaves, for large
values of L, as L2~' at the critical point, u = 1. Now

it may be verified that the first l terms in the infinite
product (4.7) just contain the L = 22' first terms of the
series expansion. As a consequence, one obtains

zation vanishes on a finite chain, m, (L) remains nonvan-
ishing and scales with L as L ' at the critical point. ss ss

The exponent z, = P, jv is the scaling dimension of the
surface magnetization. For the finite chain the sum over

j in Eq. (1.3) stops at j = L and the same is true for
S(A, r) in Eq. (2.14) so that the truncated series consid-
ered above also behaves as L '. It follows that P, = x,
and v = 1: The marginal aperiodic modulation does not
change the bulk correlation length exponent.

ln (1+A.)(1+A.-')
41n2

(4.10)

follows.
The same result can be obtained by considering the

recursion relation (4.5) at the next step:

S(A, r) =
I
1+

I I
1+

I
S(A r, r). (4.11)

1 5 ( 1

V. RUDIN-SHAPIRO SEQUENCE

As a final example, we consider the Rudin-Shapiro
sequence, ' which is generated using a four-letter sub-
stitution

At this stage the new coupling on the right-hand side
(RHS) is A' = A4r2 whereas r and, as a consequence, A,
remain unchanged. When A -+ A„S(A, r) behaves as in
Eq. (4.8) with an amplitude A(r) and, in the same way,

A-+ AB,
B-+AC,

wDB,
D m D|".

(5 1)

2- —2P,

S(A r, r) =A(r) 1 —
I

—
I

4,
(A'y

(4.12)

One may take either single-digit images of the four
letters in (5.1) with22 B(A, B,C, D) = (0, 0, 1, 1) or,
more naturally, two-digit images with 9(A, B,C, D) =
(00, 01, 10, 11) so that

where the value of A, given in Eq. (4.3) was used. In-
troducing these results into (4.11) an equation for P, is
obtained which leads to (4.10).

The surface magnetization exponent depends on the
amplitude of the aperiodicity r through A as expected
for this sequence since cu vanishes and the perturbation
is marginal. The variation is shown in Fig. 3.

Let m, (L) be the matrix element in Eq. (1.2) for a
chain with length L. Although the spontaneous magneti-

00 + 0001,
01 + 0010,

10 m 1101,
11 m 1110.

(5.2)

The two processes lead to the same sequence of 1 and 0
since the two-digit images are related to the single-digit
ones through a substitution on the letters. Starting on
A, one obtains
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VI. DISCUSSION

The JIM on aperiodic lattices studied in this paper
shows a rich critical behavior. Depending on the value of
the wandering exponent cu, scaling arguments show that
the perturbation introduced by the aperiodic modulation
can be either irrelevant, marginal, or relevant. This has
been verified on three specific sequences for which the
diHerent typical behaviors are observed.

For the period-doubling sequence, displaying a
marginal modulation, the surface critical exponent P,
and the corresponding scaling dimension z, = P, /v are
nonuniversal and show the same continuous variation
with the strength of the modulation. As a consequence
v itself stays constant, keeping its value in the homoge-
neous system, v = 1. Thus the marginality condition
1/v = 1 —ur is fulfilled along the critical line, as required.
On the other hand one knows &om numerical studies
that the bulk specific heat exponent o. does vary with b

so that the hyperscaling relation dv = 2 —n is violated for
this marginal sequence. Such a violation of hyperscaling
is likely to occur for other marginal sequences too. It may
be due to the presence of a dangerous irrelevant variable
in the problem. 3

With the Rudin-Shapiro sequence, the relevant modu-
lation was found to lead to diferent surface critical be-
haviors, depending on whether the coulings near to the
surface are greater or smaller than their average. In the
first case, the surface stays ordered at the bulk critical
point. The variation with r of the surface magnetiza-
tion discontinuity can be deduced from the scaling form
in Eq. (2.12). For m, (0, b) to remain finite at the bulk
critical point, the t dependence on the RHS has to can-
cel. The scaling function then behaves as a power of its
argument which follows &om the cancellation, leading to

(6.1)

In the present case the exponent is equal to 1 and the
discontinuity varies as ~b~

= 1 —r in agreement with the
numerical results in Fig. 6.

The same behavior is obained in the the Hilhorst —van
Leeuwen (HvL) modeiss in the case of an inhomogeneity
decaying as AL " where L is the distance &om the free
surface. In this case the crossover exponent is 1 —vy so
that, according to (2.10), y corresponds to 1 —u which,
in the present problem, is the decay exponent for the av-
erage deviation of the couplings given in Eq. (2.7). The
jump of the surface magnetization in the Ising HvL model
has been obtained analytically for a relevant perturba-
tion with A ) 0 and is in agreement with (6.1).

When r ) 1., the local couplings at the surface are in
average weaker than the critical one and, according to the
numerical results shown in Fig. 5, the surface order van-
ishes in an anomalous way. In order to obtain the form of
the scaling function E(x) in Eq. (2.12), one may use the
above-mentioned analogy with the HvL model as done
in Ref. 24. An argument of Burkhardt, going beyond
scaling theory, leads to a stretched exponential behavior
for the critical correlation function, from which the lead-
ing singularity of the susceptibility can be deduced,

-10

-15

E
a

-30

-35

-40
0 40 80 120 160 200

(r-1)i /t

FIG. 7. Logarithm of the reduced surface magnetization
as a function of x for the Rudin-Shapiro sequence with
r ) 1 and L = 2' . The linear variation (dashed line) is in
agreement with the stretched exponential form in Eq. (6.3).
Deviations from scaling are mainly due to finite-size efFects.

exp —C,x ~l (6.2)

In this expression z = l /( is the scaling variable defined
in Eq (2.12. ). The same form is likely to occur in the
temperature dependence of other singular quantities and
one expects the reduced surface magnetization to behave
as

s g 1+1/v(w —1) (6.3)

The authors are indebted to J. M. Luck for commu-
nicating his work, prior to publication. This work was
supported by the C.N.R.S. and the Hungarian Academy
of Sciences through an exchange program. F. I. grate-
fully acknowledges support by the National Hungarian
Research Fund under Grant No. OTKA TO12830. The
Laboratoire de Physique du Solide is Unite de Recherche
Associee au C.N.R.S. No 155.

where C is some constant. The scaling function may
also involve some unknown power of z in &ont of the
exponential. This expression, when properly translated,
is in agreement with the analytical result obtained by
Peschel for the surface inhomogeneity. For the aperiodic
Ising model with Rudin-Shapiro modulation, ur = 1/2
and v = 1, so that the argument of the exponential in
Eq. (6.3) is x i = (r 1)2/t. The numer—ical results shown
in Fig. 7, although perturbed by finite-size effects, con-
firm the proposed scaling form.

All these systems containing a characteristic length,
which, like l, stays finite at the bulk critical point when
the perturbation is relevant, seem to display the same
type of critical behavior. Besides the two examples con-
sidered so far, one may also mention systems limited by a
surface with a parabolic shape, for which the character-
istic length is fixed by the geometry. 4o They also differ in
some aspects: In the marginal HvL model, for instance,
the surface transition is first order when the amplitude of
the inhomogeneity is positive and strong enough, whereas
it remains second order for the period-doubling modula-
tion studied here, whatever the modulation amplitude.
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