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Migdal theorem for the Millis-Monien-Pines model of high-temperature superconductivity
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The validity of the Migdal theorem for the two-dimensional electronic system interacting with the an-

tiferromagnetic excitations with a relaxational dynamics has been investigated. We explicitly show that

the first-order vertex correction for this interaction is small for the domains of small and high frequen-

cies.

I. INTRODUCTION

The importance of the antiferromagnetic excitations in
high-critical-temperature superconductivity (HTS) has
been pointed out by Millis, Monien, and Pines (MMP) in
the explanation of NMR experiments. The main point of
the MMP phenomenological model is the existence of the
relaxational dynamics of the antiferromagnetic excita-
tions, which have an imaginary part of the dynamical
susceptibility y(p, to) with the property that
Imp(p, to)-to at all p measured from the zone corner
(tr/a, tr/a ). The model has been successfully applied by
Arfi to calculate the normal optical conductivity for
YBa2Cu306+ and by Brenig and Monien for the Ra-
rnan scattering theory. Using the plausible arguments
given by Millis, " Monthoux, Balatski, and Pines built a
weak-coupling theory of HTS taking bosons that mediate
the two-dimensional electronic quasiparticles and the an-
tiferromagnetic paramagnons described by the dynamical
susceptibility from the MMP model. On the other hand,
Hertz, Levin, and Heal-Monod have shown the absence
of a Migdal theorem for the electron paramagnon, which
is essential for obtaining the Eliashberg equations, pro-
viding the justification for the BCS theory. However, we
have to mention that in the MMP model the antiferro-
magnetic correlations have a relaxational dynamics

which makes the problem more complicated than in the
case of Berk-Schrieffer paramagnons. In this paper we

analyze the validity of the Migdal theorem for a two-
dimensional (2D) MMP model. The results will be dis-

cussed in connection with the hydrodynamic behavior of
the antiferromagnetic excitations and with the results ob-
tained by Millis.

II. FIRST-ORDER VERTEX CORRECTION

The Migdal theorem states that in the electron-phonon
interaction the vertex corrections are small compared to
the bare interaction. In the case of the electron-phonon
interaction, the first-order vertex correction I'" is of or-
der of toD/E~, where toD is the characteristic frequency
for phonons and E+ is the Fermi energy. It was expected
that in the case of paramagnons with the energy cozen the
vertex correction could be of the order tosz/Ez. Howev-
er (see Ref. 6), this correction is comparable to the bare
vertex for the Berk-Schrieffer paramagnons, and this re-
sult justifies the weakening of the superconducting state
predicted in Ref. [8]. In order to analyze the validity of
the Migdal theorem for a 2D MMP model we can follow
the same method used in Ref. 6 and we get at T =0 the
first-order vertex correction as

d2I"'—= r'"(k )= ' "( ~) 1/2 +
(Eg+p co)

1/2

(ez+ +to)

25(e„~ )

k =kF

where g is the electron-antiferromagnetic excitations bare
interaction, y"(p, co) is the imaginary part of y(p, co), and
5(sz+ ) is the Dirac function. The angular integration
shows that the last term from Eq. (1) vanishes and (1) be-
cornes:

d2

This equation will be used in the case of the antiferro-
magnetic paramagnons and diffusive paramagnons.

A. Antiferromagnetic paramagnons

The phenomenological MMP model has the main
characteristic of a dynamical susceptibility of the form

1 2+
(Ej + co) (Eq +@+to)

yg(T)
x(p+Q, ~)=

1+g p i to/cos~—
(2)

with the imaginary part
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CO/CO~F

(1+~2 2)2+ 2/ 2
y"(p+, a))=g (T) (4)

~SF
(5b)X"(P,~) =X(2

for high frequencies.
In the evaluation of the vertex correction we will take

where g is the antiferromagnetic correlation length and

yt2( T) is the static susceptibility.
This equation will be approximated as

co=cosF(1+p g )

where

y"(p, a) ) = yg/(1+ (' p')'
~SF

(Sa)

I a

&n

2

for small frequencies and as

I and 13 being parameters which have been determined
from the NMR data. Using the relations (Sa) and (5b) the
vertex correction (2) becomes

d p dt's +Qr -g
(2~)2 fo n a)sF (1+(2 p ) (e), +

—co)

1

(E), +a))

p f ~ dco SF

(2m. )

1

(E), +
—a)) (Ek +&+CO)

1 (1)+1 (1) (7)

2+ dN
(E + CO) 0 (e), +@+co)

The first term from (7) represents the small frequencies contribution and is given by

3 2kF

(2n)mosF . O (1+g' p')'

The c0 integration in (8) can be performed analytically and we obtain

g yg 2kF3
2n.f p dp 2 2 2 f d0 lnlek +~

—a21+ln e(, +&+@I 2lnlE& +~
(22r) ncosF O. (1+( p )

F+p F+p

~kF+p
+

Ek +p CO

~kF+p

+p+ CO

2 7 (9)

where

k 2 kF+P+PF
2m 2m m

cosO .

pkF+ ~sF a1sFkmp ~

2m 2m m

The condition a )
l bl implies

The angular integration in (9) can be performed using
the formula

kF + P 2 2 P Fk
~sF ~sF (m P2m 2m m

(13)

2m. ln
l —,

'
( a + '(/a b) l, a )

l
b l-

d81n a+6 cos8 —
b

10

a+((3cos8
d p8 ab —ap dH

a +b cosO b b a +b cosO

or

where

kF kF
a2sFK~ P P +

m 2m
COgF )0, (13a)

f

dic

o a +b cosO

27
lba2 b2

(12)
—

cosF( — EF 1 — kFg )0
1 SF

2m kF2 EF

Then

2' lnl —,'(a ++a —b

,+, ~l= 0
—

lal &lb

because co+F /EF ((1.
The condition (13) and cosF /EF «1 requires that p be

in the interval

P C [O,P)]U [P2, 2kF ],
where
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and

COgF
p~=kF 1 ( kF

F

1/2

(14)

kF 2'+~
2m 2m

The fourth angular integral is

COgF

p» =kF I+/ kF
F

are the roots of the equation corresponding to (13a).
However, the length of the interval [p„p»] is (much)
smaller than [0,2kF].

The second angular integral is

f delnl ze + +Sl =2m lnl —,'(c+&c b)—
l

0

f 'de &VF+P

Cg +p CO

2~
8

d+b cos8
o a+b cose

2~+~sF(1+0'.p'), , a & lbl,
a2 b2

(17)

for p K [0,2kF] and

kFc= + +p»sF(1+g~p } .
2m 2m

In a similar way:

f d8 inlay +~1=2m. lnl —,'(d +&d b)—
I

forp&[0, 2kF]/[kF]. Here

(16)

The first line of (17) implies that

pE[0,pi]U[p», 2kF] .
The integral

f"de XF+P

Eg +p+CO
=2m cosF(1—+g p }

c b—(18)

has no restrictions in the interval [0,2kF ].
The low-frequency first-order vertex correction is then

given by:

f pdp . .. ln —(a+&a b) +f —pdp . ..» —(a+&a —b )
f Xg 2 2 F 2 2

2nmosF o (I+( p ) 2 (I+g~p ) 2

2kF 1 1+f p dp ln —(c++c b)—
p ( 1+(2 p2)2

2kF 1 1—f p dp ln —(d +'t/d b)—
o (I+/ p ) 2

+ f pdp» 2 +~sF( +&'p')
2 +f pdp

p (I+f2 p2)2 a 2 b» i —( I +g»„p 2)2

2kF 1 2+f p dp 2 2 2 I+p»sF(1+/ p )(I+/ p ) a2 b2

(1+g2 2)2 s + 2 b» p (1+g2 2)2
(19)

The p integration may be estimated and the leading con-
tribution to the first-order vertex correction is

N(0)=m/2n . (21)

Here

g ygN(0) cosF I+/ p2»
4—1n

EF I +g2 p 2)

(20)
In the low-frequency domain p»sF «EF and Eq. (20)

shows that the Migdal theorem is valid. If we take the
susceptibility y(» as (see Ref. 2)

1+$2 p24) ln
1+0' pf

and N (0) is the 2D electronic density of states:

r
XQ X0

7TCOgF

we get from (20)
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()) g N(0) I 1+kmp~
~2 E 1+F2 2 (23)

L

Usual values for I are of order of 0.4 eV and EF~ is of
order of few eV. Then I /EF~ && 1 and in the high-T,

materials it is claimed that yol'/n =0.1 « 1 (see Ref. 4).
With these observations and with (23) we see that the
Migdal theorem is also valid.

The second term from Eq. (7) corresponds to the high-
frequency limit and is given by

g g Q) 2kF

(2'} rr o 0 a co(co E)—, +&) r~ ~(~+Eg ~&)
(24)

After performing the co integration in (24) we get

g Xg sF
d f w 12kF

I — p p
(2~) ~ ~~F+p

»le), +p
—~l+»IEg, +p+~l —»nl~l—

kF+p

C1, +p CO

~kF+p

E1 +p+ CO
F P

(25)

Here the angular integral and, as a consequence, the
momentum integral are more complicated than in the
case of the low frequencies. This is so because of the
presence of sz +~ in the denominator of (25). However,F+p
the order of magnitude can be estimated and it is not very
difficult to see that the first-order vertex correction is now
given by

2 g ggN(0) cusF
I (&)

2 EF
(26)

There is a small difference between (26) and (20) but
both formulas have the same order of magnitude. Be-

B. Di8'usive paramagnons

The importance of the diffusive paramagnons in HTS
has been pointed out by Brenig and Monien [3] in con-
nection with the Raman scattering.

For the diffusive paramagnons, y(p, co) has the form

D 2

x(p, ~)=so
Dp 1 co

(27)

D being the diffusion constant. Using (2) we find (rough-
ly)

cause ~~F «EF, I,'"«1 and the Migdal theorem is val-
id.

Pc1(d"-—g f pdpDp ln 1+
2 (2'�) o Dp 2

2

f "de
2

'2
kF p2 l pkF+ ——cu, + cosO
2m 2m 2 ' m

+f d8
2

2

kF 2 l pkF+ + —co, + cos6I
2m 2m 2 ' m

Here ~, and p, are the frequency and wave vector
cutoffs, respectively. Taking p, =kF we get

23
g Xo ~c

(2~) D EF
z (1)

d (29)

and if co, -co&F, I d" «1 and the Migdal theorem is val-

1d.

III. DISCUSSIONS

We showed the validity of the Migdal theorem for the
phenomenological MMP model of the electron-
antiferromagnetic paramagnons interaction. This result,
in agreement with the Millis analytic Eliashberg ap-
proach, is different from the standard statement concern-

I

ing the absence of a Migdal theorem in the electron-
paramagnon system because the MMP model implies
paramagnons with relaxational dynamics which is not the
case of the Berk-Schrieffer paramagnons. The Migdal
theorem can be invalidated if we use for the staggered
susceptibility g& the Moriya-Tekeheshi-Ueda self-
consistent spin fiuctuation theory. In this case we get
I ',"and r z" proportional to g and the Migdal theorem is
no longer valid. However, the MMP model has as an
essential characteristic of the form of y"(p, co), which is
not calculated as in Ref. 9, by taking the form (3) and, in
this case, y& is given by (22). Our results can also have a
restricted validity because of many phenomenological pa-
rameters, but at the present stage of the model it is the
only way to discuss the problem.
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