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Group-theoretical derivation of the numbers of independent physical constants of quasicrystals
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Formulas for calculating the characters of the representation matrices and the number of independent
components of any physical-property tensor of quasicrystals have been derived by using group-
representation theory, where the internal symmetry of the physical-property tensor was considered. As
an example of their application, we have calculated the number of independent elastic constants up to
cubic order for many of the quasicrystals discovered to date.

I. INTRODUCTION

As is well known, the number of independent com-
ponents of a physical-property tensor in a certain struc-
ture is determined by the point-group symmetry which
the structure possesses. It follows that the number of in-
dependent components of all kinds of physical-property
tensors can be obtained with group-representation
theory. For periodic structures, systematic results have
already been given.!

Since the discovery of icosahedral quasicrystals in Al-
Mn alloys,? other quasicrystals with ten-,* twelve-,* and
eightfold® symmetries have been obtained in succession.
Additionally, Feng and co-workers®” have discovered an
incommensurate structure with cubic point-group sym-
metry in V-Ni-Si alloys. Recently, Janssen® gave a clear
theoretical explanation for quasiperiodic structures,
which may have either crystallographic or noncrystallo-
graphic point-group symmetry. They can be obtained by
projecting a higher-dimensional periodic structure upon
the physical space or by cutting a higher-dimensional
structure.”'°

Quasicrystals possess various point-group symmetries.
Moreover, in the process of the group-theoretical deriva-
tion of the numbers of independent physical constants,
the internal symmetry of the physical-property tensor
must be considered.!! In the case of quasicrystals, a vec-
tor in the complementary subspace may transform under
nonequivalent irreducible representation compared with
that for the vector in the physical subspace. These spe-
cial properties of quasicrystals make it more complicated
to derive the number of independent physical constants.

In this paper, we will apply group-representation
theory to derive formulas for calculating the characters
of the representation matrices and the number of in-
dependent components for any possible physical-property
tensor in a quasicrystal (Sec. II). As an example we will
also calculate the number of independent elastic con-
stants up to cubic order for many of the quasicrystals
discovered to date.
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II. THE FUNDAMENTAL THEORY

A. The basic formula for calculating the number
of independent components

In a periodic structure, let F;;...; represent a com-
ponent of a tensor of rank n in three-dimensional space;
the total number of such components is 3". In general,
they are independent of each other. If A is a coordinate-
transformation matrix, the relationship between com-
ponents F}... . and Fyy  is

Fipp p=(AXAX X D popwe . oFip 0> (D

where Fj; ; are related to the old coordinate system and
F|. k. .. 10 lhe new system. In addition, the direct prod-
uct f(g)= A X - -+ X A spans a 3"-dimensional represen-
tation space of the symmetry group G. In general, it is
reducible. The character of this tensor representation
can be calculated by the following formula:

x(g)=Trl(g)=[Trd(®)]", )

where f'(g) and A (g) are the representation matrices cor-
responding to element g in G. The representation can
also be reduced to the direct sum of some irreducible rep-
resentations. The number aq; of the ith irreducible repre-
sentation I''") is determined by:

1
a:

=gl S x(g)TrI(g), 3)

gEG

where |G| is the order of group G and the overbar means
the complex conjugate.

As we know, the symmetry of a physical-property ten-
sor is decided by the macro-symmetry of the material
considered, so the number of independent components of
the tensor is fixed for a given material. In other words,
every independent component will transform under iden-
tity representation. This means that the number of in-
dependent components is just the number a; of the iden-
tity representation (I';) in the direct representation.
Therefore, the basic formula for calculating the number
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of independent components is:

= (g) . 4)
a, G| gg,GXg

B. The principal characteristics of physical-property tensors
in quasicrystals

A quasicrystal can be obtained by projecting a higher-
dimensional periodic structure onto a three- or lower-
dimensional physical subspace.”! Let T be a position
vector in the higher-dimensional space, r; and r, its pro-
jections in the parallel (physical) subspace P! and the per-
pendicular (complementary) subspace P!, respectively;
hence

r=rer, . (5)

As we know, for d-dimensional quasicrystals with a
noncrystallographic point group there exist at least two
d-dimensional nonequivalent irreducible representations.
r, transforms under a d-dimensional irreducible represen-
tation I'; whereas r, transforms under a different d-
dimensional representation I';. Moreover, the action of
a given element of such a noncrystallographic point
group on r, and r, gives a certain intrinsic relation

A'(glr =[A(g)r],. For example, we have
(r1), =(r))(3n)(moas) for the pentagonal structure. How-
ever, it should be noted here that, for some quasicrystals
with crystallographic point symmetry, such as cubic
quasicrystals, these two representations are equivalent!?
(both of them are I';), so the difference discussed above
disappears.

As an example, we will analyze the transformation

J

F Flj’ij7ijI’ijlmn" .

FanFazj’FkBI’Fajﬁl’F

It is very important to point out that, as in periodic
structures, physical-property tensors have some internal
symmetry because of physical definitions or thermo-
dynamics, even if macrosymmetry is not considered.
Such an internal symmetry implies that some subscripts
are commutable, and the number of independent com-
ponents of this physical-property tensor reduces. Now
we use the notation { ---} to represent that the sub-
scripts in { } can commute with each other. For quasi-
crystals with the n-dimensional point group, the repre-
sentation space of which can be reduced to the direct sum
of two equivalent irreducible subspaces, the two types of
subscripts / and a are also commutable, unlike those for
quasicrystals with noncrystallographic point-group sym-
metry (in this case, the two irreducible subspaces are non-
equivalent).

[f(g)]ijk],i’j’k'1'= HAXAYX{AX AV g i jrierr

ajBlyn vF‘
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TABLE 1. Characters of icosahedral symmetry
[r=(1+V'5/2]. a, is the number of independent components
of the elastic-constant tensor.

1E 12C; 12C2 20C; 15C, a,
T, 1 1 1 1 1
*T, 3 T 1— 0 -1
'y 3 1—7 T 0 -1
T, 4 -1 -1 1 0
Ts 5 0 0 -1 1
Ciui 21 1 1 0 5 2
Kiju 45 0 0 0 5 2
Rl}kl 54 - 1 - 1 0 2 1
Cikimn 56 1 1 2 8 4
K imn 165 0 0 3 5 5
R tmn 189 -1 -1 0 5 4
Rimn 270 0 0 0 10 7

characteristics of the elastic-coefficient tensors in quasi-
crystals with the above theory. The elastic deformation
in quasicrystals is described by the phonon strain tensor
E,-j=(8j U;+9,U;)/2 and the phason strain tensor
W,;=0;W;. Here, E;; is the gradient of phonon displace-
ment U(r”) hence both 9; and U; transform under the
same operator A(g). W,-] is the gradient of phason dis-
placement W(r), so 3; and W, transform under the
operators A4(g) and 4'(g), respectlvely From now on
we use subscripts i,j,k,l,m,n,..., for coordinate com-
ponents in P, and subscripts a,B,y, ..., for coordinate
components in P,. It follows that the physical-property
tensors in quasicrystals may be classified as follows

ijBlyn ’Fijklyn’ e

C. The representation matrices and character formulas

In order to determine the value of a, in Eq. (4), we will
give the formulas for calculating the representation ma-
trices and the corresponding characters of various kinds
of tensors below For each operator, we use 4 and A4’
for 4 (g) and A '(g) for convenience

(1) Tensor of rank 2, Fy;;;.

(B =(AX A}y p=H Ay A+ AypAy),  (6)

i’

X(8)=4(Ad; A+ A A;)=L{[TrA(g)*+Trd(g))} .

™
(2) Tensor of rank 4, F;} (x1}}-

=3[ AXAYXEAX A g iy H({AXAYX{AX A g ey ]

=g Ay djpt Ay A )(Ape A+ Agp A )+ 3 (Ao A+ Ay Ao N A Ayt Ay Ay (8
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X(8)=1[(TrA(g)*+Trd(g)P+1{[Trd(g») 2 +Trd(g") . ©)

(3) Tensor of rank 6, Fy;y k1), (mn}}-
[f(g)]ijklmn,i'j’k'l’m’n’={{ AXAJX{AXA}X{AXA}}
=L{AxX A4}

ijklmn,i’'j'k'l'm'n’

ij,i’j’{ AX A }kl,k’l'{ AX A4 }mn,m'n'+ { AXA } {A X A4 }kl,m’n’{ AX A }mn,k'l’
+ { AX A }ij,k’l'{ AX A }kl,i’j'{ AX A }mn,m’n’+ { AX A }ij,k'l’{ AX A }kl,m'n'{ AX A }mn,i'j'

H{AX A} el AX A il AX A o HAX A} g { AX A g o { AX A o) -

ij,i'j'

(10)
X(@) =4 {[TrA(@)P+Trd(gh) P+ L{[Trd(g) P+ Tr A (g} {[TrAd(g)P+Trd(g*)
+1{[Trd(g>)P+Trd(g®)} . (1)
(4) Tensor of rank 2, F ;.
(D) =(A4"X A)gi g = Aty At » (12)
X(8)= Ay A;=TrA'(g)-TrA(g) . (13)
(5) Tensor of rank 4, F,; g/ -
(£(8) aipjarpy = {(A' X AYXCA"X AN gy, ccipy
=3H(A'XAXA'X A)yip; igyt (A X AXA'X A)yigi girai] s (14)
x(g)=L[Trd'(g) Trd(g)*+1Tr4'(g*)- Trd(g?) . (15)

(6) Tensor of rank 6, Fy4; g ; 1k} -
[f(g)]aiﬁjyk,a’i'ﬂ'j’y’k’z [{(4'XA4)X(4'XA)X(4"X A4)} ]aiﬁjrk,a'i'ﬁ'j’r'k'
L(A'XAXA'XAXA'X Dy iy (A XAX A X AX A X A) igivk aivyicpy

FA'XAXA'XAX A XA gigiyiepraiyi (A X AX A X AX A" X Dgiginiepiycai
FA'XAX A X AX A" X A igiyiyieaipy (A X AX A X AX A" X Dgigivicyicgyar]

(16
x(8)=L[Trd'(g) TrAd(g)P+4iTr4'(g) TrAd(g) Trd'(g}) - TrA(g})+1Trd'(g*)- Trd(g?) . (17:
(7) Tensor of rank 4, Fy;;; 5.
(0@ yprijpr=2( Ay A+ Ay A;p) Apg Ay (18)
x(g)=1{[Trd(g)?+Trd(g?} Trd'(g) Trd(g) . (19)
(8) Tensor of rank 6, F (i}, (ki}},yn-
(B ijutym iy m =3[ Ayt Ay A Ao A+ Ay Ager)
H( Ay A+ Ay Ay A Ajp+ Ay Ap) 1A'y Ay (20)
X(&)=t({[TrA(g)P+TrA(gH}>+2{[TrA(g))P+Trd(g")})-TrA'(g) TrA(g) . 21
(9) Tensor of rank 6, F; (g1yn}-
(&) iprym.iyprym =+ (A Ayt Ay A (A" X AX A" X Apryn prym+ (A X AX A" X Agiyn ywpr] » (22)
x(g)=1{[Trd"(g) TrA(g)P+Trd'(g?) TrAd(g*)}-{[TrA(g)*+Trd(g?)} . (23)

In a similar manner, the representation matrices and the characters of tensors of higher ranks and other kinds can be
obtained.

III. APPLICATION: CALCULATION OF THE NUMBER OF INDEPENDENT
COMPONENTS OF THE ELASTIC-CONSTANT TENSOR IN QUASICRYSTALS

The elastic energy density f of a quasicrystal is a function of phonon strain field E;; and phason strain field W

LA
can be expanded in terms Of a Taylor Series in the Vicinity Of E'] —O and ;; ij O to the third Order:
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TABLE II. Characters of Cg, symmetry. TABLE III. Characters of C,o, symmetry [t=(1+1/5)/2].
€ 2a 2a? 24a° a* 48 4aB a, € 2a 2a? 2a° 20 & 58 5aB a,
r, 1 11 111 1 I, 1 1 1 1 1 1 1 1
T, 1 11 1 1 -1 -1 T, 1 1 1 1 1 1 -1 -1
T, 1 -1 1 -1 1 1 -1 r, 1 -1 1 -1 1 -1 1 —1
T, 1 -1 1 -1 1 -1 1 T, 1 -1 1 -1 1 1 -1 1
*Ts 2 v2 0 —-v2 =2 0 0 *Ts 2 T —1 -7 —7 =2 0 0
| 2 0 —2 0 2 0 0 s 2 T—1 -7 -7 71 2 0 0
'r, 2 -v2 0 v2 =2 0 0 r, 2 -7 —7 rr—1 -2 0 0
Cia 6 0o 2 0 6 2 2 2 | g 2 -7 —1 ™—1 —7 2 0 0
Kga 10 2 2 2 10 2 2 3 Cijui 6 1 1 1 1 6 2 2 2
Ry, 12 -2 0 -2 12 0 0 1 Kg 10 0 o0 0 0 10 2 2 2
Cikimn 10 0 —2 0 100 2 2 2 Ry, 12 —7r —1 —1 —7 12 0 0 1
Kitkmn 20 -2 0 -2 20 0 0 2 Cijkimn 10 0 o0 0 0 10 2 2 2
Rlimn 24 0 o 0 24 0 0 3 Kijgimn 20 0 o 0 0 20 0 0 2
Rimn 30 2 -2 2 30 2 25 Rlymn 24 -1 -1 -1 —1 24 0 0 2
Ciw 21 34+2v2 1 3-2¢2 5 5 5 5 Rigmn 30 0 o0 0 0 30 2 2 4
Cikimn 56 4+2v2 0 4-2yv2 8 8 8 9 Chu 21 3+44r 1 7—4r 1 5 5 55
Rl 24 —4—2v2 0 —4+2v2 8 0 0 1 Clkimn 56  5+67 1 11—6r 1 8 8 8 9
Rlimn 84 —6—4y2 0 —6+4y2 20 0 0 5 Rijg 24 —1—-2r —1 —3+2r —1 8 0 0 1
Riumn 60  4+2v2 0 4-2v2 20 4 4 8 Rijiamn 84 —3—47 —1 —7+47 —1 20 0 0 4
Riimn 60 0 o0 0 0 20 4 4 6
f(E |74 )=lﬁ_ E..E +li_ W.. W, +_a_2f_ E.W +L_______asf— E.E, E
PR 2 BEOEy |o VM T 2 0WdWy |, UK T BE0Wyy |g 7 ¥ 6 OE8EOE y |g 1 KT
1 3 f 1 3f
*6 AW, 0, OW,,, OW'JWk’W'""+ 2 3E;;0E;,dW,, OE'JE"’W'""
1 3 f
ot | E, Wy W, + -, 24)
2 3E QW dW,,, |, 17 K7 mn
TABLE IV. Characters of C,, symmetry.
€ 2a 2a? 2a® 2a* 2a° at 68 6af  a,
r, 1 1 1 1 1 1 1 1 1
T, 1 1 1 1 1 1 1 -1 -1
I, 1 -1 1 -1 1 -1 1 1 -1
r, 1 -1 1 -1 1 -1 1 -1 1
*Ts 2 V3 1 0o -1 -3 =2 0 0
| 2 1 | 1 2 0 0
r, 2 0o -2 0 1 0o -2 0 0
| g 2 -1 -1 2 -1 -1 2 0 0
b 2 -3 1 0o -1 v3i o =2 0 0
Cijur 6 2 0 2 0 2 6 2 2 2
K 10 5 1 2 1 5 10 2 2 3
Riju 12 —6 0 0 0 —6 12 0 0 0
Ciikimn 10 1 1 =2 1 1 10 2 2 2
Kigimn 20 —6 2 0 2 —6 20 0 0 1
Rivmn 24 -6 0 0 0 —6 24 0 0 1
Riumn 30 10 0o -2 0 10 30 2 2 5
Cliua 21 7+3v/3 2 1 0 7-3v/3 5 5 5 5
Cliimn 56 12463 2 0 2 12—6v/3 8 8 8 9
Ry 24 —9—3y/3 2 0 0 —9+3/3 8 0 0 0
Rlimn 84  —21—9v/3 2 0 0 —21+9v3 20 0 0 1
Riumn 60 15+5v/3 2 0 0 15—5v/3 20 4 4 8




12 660

with the conditions f(0,0)=0, 3f /3E;; |o=0, 3f /dW,

;/lo=0, where |, means E,,
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=0and W,, =0.

The definitions of the fourth-order and sixth-order elastic-constant tensors are:

3’f _&f 3’f
Coyy=—>""—1| , K; , =
UK 3EEy |, ikl W o R 3EdWy |,
3f f
Ci‘kl ’ K"kl
LY JOEGOE,, |, Uk aw, W dW, |,
3f 3f
R} —F+— | , R2 |
ki = B BB Wy |o” ™ T O, W, 3 W o |, 23

According to the analyses of physical-property tensors in
quasicrystals in Sec. II, C;j, corresponds to F (1ij), {kl}}
K j1; corresponds to Flaj,Bll and so on, i.e.,

Cisi—>Fyijyikyy > Kin—=Fiajpy
Rijii—Fijy81
Cijkimn = F (ijy, k1), imn)y > Kijkimn —F (aj,lyn} »

1 2
Rijiimn —F yijy, (ktyy,yn > Rijkimn —F (ijy, 181, yn) (26)

Obviously, once the point symmetry group of the
quasicrystal is given, the representation matrices and cor-
responding characters of the above seven types of
elastic-constant tensors can be derived, and then the
number of independent components a, can easily be ob-
tained from Eq. (4). The results for the icosahedral quasi-
crystal are listed in Table I.

In Tables II-1V, the tensors Cyu;, Kijes Rijurs Cijicimns
Kiikimn» R,Jk,m,,, Rjk,,,,,, correspond to planar quasicrys-
tals with eight-, ten-, and twelvefold symmetries, the ten-
sors Cl{ikl’ Kijkl? Ri’jkl’ iljklmn’ Kijklmn’ Ri}';clmm Rx]klmn
three-dimensional cases. For cubic quasicrystals, the sub-

TABLE V. Characters of cubic quasicrystal point symmetry.

1E 8C3 3Ci 6C2 6C4 a,
T, 1 1 1 1 1
r; 1 1 1 -1 -1
r, 2 -1 2 0 0
*1, 3 0 -1 -1 1
r; 3 0 -1 1 -1
Ciui 21 0 5 5 1 3
K 21 0 5 5 1 3
Ry 36 0 4 4 0 3
Ciikimn 56 2 8 8 0 6
K jkimn 56 2 8 8 0 6
Rl iimn 126 0 10 10 0 9
R imn 126 0 10 10 0 9

f

scripts of a tensor which refer to the physical space can
commute with those which refer to the complementary
space, ie., ai—{ai} and F,—F,; for the tensor of
rank 2. Similarly, commutation relations between sub-
scripts can be found for other tensors. All the results are
listed in Table V.

In Tables I-V, the notations * and T are used to indi-
cate the transformations in physical space and comple-
mentary space of icosahedral, planar quasicrystals with
eight-, ten-, and twelvefold symmetries and cubic quasi-
crystals, respectively. For the three-dimensional quasi-
crystals with eight-, ten-, and twelvefold symmetries in
Tables II-1V, both 9; and U; in E;; transform under the
representation (I‘1+I“‘) but 9; and W; in W; transform
under the representation I'* and rt respectlvely (here, T'*
and I'" are the representations labeled by * and T respec-
tively in Tables II-IV; hence, in the characterlstxc formu-
las in Sec. II, the representation of Ag) under ; which E;;
transforms is (I'; +T'*) the representation of A(g) under
whlch W, transforms is I'*, and the representation of
A'(g) takes the representation r' for both planar and
three-dimensional cases.'*

Finally, we would like to make mention of some previ-
ous work. Levine et al.'> derived the elastic-constant
tensor of rank 4 of icosahedral and pentagonal quasicrys-
tals, Socolar'® gave those of planar octagonal and dode-
cagonal quasicrystals, Hu, Ding, and Yang'* obtained
those for three-dimensional eight-, ten-, and twelvefold
symmetries, Yang et al.'? derived those for cubic quasi-
crystals, Ishii'? discussed thoroughly the relation between
phase transformations and the cubic-order invariants for
the phason strains in icosahedral quasicrystals, Oxborrow
and Henley'® pointed out that there exists only one
third-order phason strain constant in the dodecagonal
phase, and so on. Our results all agree with theirs. Of
course, using the method in the above example, we can
easily obtain any higher-order constants of physical-
property tensors for quasicrystal structures.
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