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We have started a study of quantum ferroelectrics and paraelectrics. Simple two-dimensional
short-range lattice model Hamiltonians are constructed, keeping in mind the phenomenology of
real perovskite systems, like SrTi03 and KTa03. Pertinent quantum tunneling phenomena, and
the presence of an icelike constraint are demonstrated. The two simplest models, namely a plain
quantum four-state clock model and a constrained one, are then studied in some detail. We show
the equivalence of the former, but not of the latter, to a quantum Ising model. For the latter, we
describe a very good analytical wave function valid in the special case of zero coupling (J = 0).
In order to study the full quantum statistical mechanics of these models, a path-integral Monte
Carlo calculation is set up, and implemented with a technique, which even in the constrained case
permits a good convergence for increasing time slice number m. The method is applied first to the
unconstrained model, which serves as a check, and successively to the constrained quantum four-
state clock model. It is found that in both cases a quantum phase transition at T = 0 takes place at
finite coupling J, between a ferroelectric and a quantum paraelectric state, even when the constraint
hinders disordering of the ferroelectric state. These model paraelectric states have a finite excitation
gap, and no broken symmetry. The possible role of additional ("oxygen hopping") kinetic terms in
making closer contact with the known phenomenology of SrTi03 is proposed.

I. INTRODUCTION

It is well known that large enough quantum Buctu-
ations can destabilize the ferroelectric state in favor of
a paraelectric state, which possesses no net polarization
order parameter even at zero temperature. Unlike classi-
cal paraelectrics, where disorder is temperature induced,
quantum paraelectrics (/PE) are in a sense very much
ordered, in that their ground state corresponds to a well-
defined wave function encompassing all dipoles in the
macroscopic system. This aspect makes them especially
interesting, also in connection with a recent suggestion2
that some kind of macroscopic coherence, or oE-diagonal
long-range order (ODLRO), might appear under special
circumstances.

Three-dimensional (3D) examples of quantum para-
electric states are believed to be provided, among others,
by the low-temperature states of SrTi03, KTa03,
as well as KH2PO4 above 16.6 kbar. In these systems,
quantum Buctuations suppress ferroelectricity, character-
ized by an n-component real order parameter (n = 2 in
tetragonal SrTi03, n = 3 in cubic KTa03, n = 1 in
KH2PO4).

Interest in quantum ferroelectrics started in the late
1950s, and revived again in the late 1970s, at a time
when attention was focused on critical exponents of
the quantum phase transition, including the crossover
between quantum and classical critical exponents.
It has continued more recently, with impurity-induced
transitions from quantum paraelectric to domain-type
ferroelectric. Apart from that, there seems to ex-
ist no real attempt as yet to study the nature of the
quantum-mechanical state of /PE's in a well-defined
realization.

Our goal with this paper is to begin a microscopic
study of models which exhibit quantum ferroelectric and
quantum paraelectric behavior. The method we will

apply is a mixture of variational, mean-Geld theory,
and principally the path-integral Monte Carlo (PIMC)
method, coupled when possible with finite size scaling.

The first, and main problem, is the choice of an ap-
propriate model Hamiltonian. In choosing the model, we
try to adhere as much as possible to the actual physical
situation of SrTiO&, whose phenomenology seems best
known. However, a drastic amount of simplification is
clearly needed. On the one hand, the real crystal is rich
in complications, such as coupling to antiferrodistortive
and to elastic degrees of freedom. i4 On the other hand,
even if the PIMC method is a powerful tool for quan-
tum statistical mechanics, the system one can hope to
study with the present means is by necessity very sim-

ple and relatively small sized. Our first step, therefore,
must be a judicious choice of the main ingredients of the
problem. We can be guided, first of all, by the existing
understanding of classical ferroelectrics.

The plan of this paper is as follows. In Sec. II we
first brieHy review the phenomenology of quantum para-
electrics, with emphasis on the crossover kom the dis-
placive to the order-disorder regime. After demonstrat-
ing the relevance of the four-state clock model in the case
of SrTi03, we discuss in detail various possible quantum
e6ects, as well as the presence of several important con-
straints. In Sec. III we then consider the simple (un-
constrained) quantum four-state clock model. Its gen-
eral equivalence to two uncoupled Ising models, already
known classically, will be proved for the quantum case
as well. In Sec. IV, we add a constraint to the quantum
four-state clock model, and discuss a simple approximate
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wave function for the case of zero temperature and zero
coupling. Section V introduces the technicalities of our
PIMC calculation. In order to treat the constraint prop-
erly and preserve the usual 1/m2 convergence in the num-
ber of Trotter slices, we introduce a particular version of
the checkerboard decomposition scheme, commonly used,
e.g. , for simulation of quantum spin systems. Section VI
presents a PIMC test study of the simple quantum four-
state clock model. Comparison with the known results of
the quantum Ising model, done throughout that section,
serves as a check of the basic soundness of the PIMC
method, as well as of the kind of errors to be expected
in later applications. In Sec. VII the PIMC method
is applied to the constrained four-state clock model. It
is found, as expected, that for given values of quantum
hopping and coupling constant, the ferroelectricity is now
stronger, and the ferro-para transition occurs at substan-
tially higher temperature in the constrained case than in
the unconstrained case. In spite of this strengthening of
the ferroelectricity, there still is a critical value of the
coupling constant, below which the system is a quantum
paraelectric at T = 0. However, this critical value is now
a factor of 4 smaller, due to the constraint. Finally,
Sec. VIII is devoted to a general discussion and rele-
vance of the present results to the known phenomenol-
ogy of the perovskite /PE's. In particular, the T = 0
state of both models studied so far does not exhibit in
the /PE regime any broken symmetry or ODLRO, and
can be reached &om the high-temperature paraelectric
state without a phase transition. Therefore, the question
of understanding the phase transition described by Ref.
2 is left open.

II. CHOICE OF MODELS

Microscopic models for classical ferroelectricity have
been available for a long time. 6 Among them, very pop-
ular are soft-mode lattice-dynamical models, and ice
models. Ferroelectricity, in fact, represents just a par-
ticular case of a more general class of phenomena, that of
structural phase transitions. An extensive and definitive
review of critical phenomena related to classical struc-
tural transitions has been provided in Ref. 16. Here
we concentrate on some pertinent points, concerning the
phenomenology of the quantum paraelectrics.

At high enough temperature, the quantum perovskites
SrTi03, KTa03 become just ordinary classical para;
electrics, well described by the displacive limit. This
classical displacive behavior is confirmed by neutron and
Raman spectra showing very well-defined optically active
TO modes, hard and narrow. These modes soften down
upon cooling, as expected in the displacive picture.
However, just above the extrapolated classical Curie tem-
perature T' (37 K for SrTiOs, 40 K for KTaOs), the
picture changes. In SrTi03, the enhanced anomalous
hyper-Rayleigh scattering indicates the presence of lo-
cal disorder, or ofF-center displacement of the ions, which
locally breaks the inversion symmetry. Various anomalies
observed in the spectroscopy of soft and acoustic modes
in SrTiOs (Ref. 21) point to the existence of large clus-

ters, whose typical size is roughly equal to the reciprocal
of the reduced wave vector for which the anomalies are
most pronounced, i.e., ( i = 0.04 i 20 lattice con-
stants at very low T. In KTa03, NMR data of Rod,
Borsa, and van der Klink clearly indicate an ofF-center
displacement of Ta ions which sets up rather abruptly be-
low T' 40 K. In the microwave region, the slow Debye
relaxations typical of the order-disorder regime appear
in KTa03, their typical frequency w again decreas-
ing with temperature. These are the usual signals of
crossover into the critical, order-disorder regime of or-
dinary classical paraelectrics .I'his crossover therefore
takes place also in the @PEperovskites. Unlike the clas-
sical systems, however, in this case the critical slowing
down, i.e., the divergence of 7. with decreasing T, appears
to be blocked at some finite relaxation time r', which in
KTaOs is very long, (r') ~ ( 500 MHz. 22 Because of
this lack of divergence of ~, long-range ferroelectric or-
der is never reached, and the system remains paraelec-
tric even at the lowest temperatures. The failure to or-
der ferroelectrically accompanied by these slow dielectric
Quctuations has been attributed to quantum zero-point
motion. ~ There is clear evidence showing that Huctua-
tions can be easily removed, the system correspondingly
turning into a regular ordered ferroelectric, by applying
either pressure or impurity doping. We conclude that
when approaching T' &om above, the QPE perovskites
are well inside the order-disorder regime. A sort of quan-
tum order-disorder regime appears moreover to persist
all the way down to T = 0. Between T' and T = 0, we
have a sort of "quantum central peak" state —rather
than completing its classical slowing down, and under-
going a regular ferroelectric critical point transition, the
system hangs indefinitely on the verge of criticality, due
to quantum fIuctuations.

An important corollary of this discussion is that a dis-
crete lattice model, which lends itself better to a descrip-
tion of order-disorder critical Huctuations, is more likely
to yield, probably even in the details, a better description
of the /PE state, rather than a continuous, displacive
model.

The paradigmatic discrete model for quantum para-
electricity with a scalar order parameter is the Ising
model in transverse field. ' Its relevance is particu-
larly direct for the description of hydrogen-bonded ferro-
electrics, like KH2PO4. The order parameters in KTa03
and SrTiOs are not exactly Ising like, however. KTaOs
remains cubic down to the lowest temperatures and the
order parameter has thus three components. SrTi03,
which acquires a tetragonal structure at low temper-
atures (below 105 K), can become ferroelectric when
doped by Ca and the resulting ferroelectricity is known
to be XY like. In pure SrTi03, in particular, if the
tetragonal axis z is taken along [001], so that below 105
K two neighboring Ti03 octahedra rotate by an angle
4 and —4 around z ((4') 5 well below 105 K), then
ferroelectricity shows a tendency to occur along either
6[100] or 6[010], and more generally in the (001) XY
plane. In the ferroelectric state, the central ion Ti estab-
lishes a slightly stronger bond with one of the four copla-
nar oxygens (which surround it in the XY plane), than
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with the other three. Coupling between different cells is
not exclusively dipole-dipole, but should have important
electronic contributions (short range), and elastic contri-
butions (long range). The elastic coupling mechanism,
in particular, is likely to be very strong, as confirmed by
the fact that even a small pressure along x is suFicient
to yield ferroelectric order along y. Physically, what we
believe happens is that a double-well situation for the
central Ti ion (or equivalently for a bridging oxygen be-
tween two Ti ions), say, along [100], can occur only if
the lattice is locally expanded along that direction (spon-
taneously or due to an external factor). Some of the
consequences of the coupling of ferroelectricity to elastic
modes, leading in particular to incommensurability phe-
nomena, and the possible role of quantum effects have
been given a separate discussion elsewhere.

In the present lattice modeling, we shall however ig-
nore these details, and assume simply a short-range fer-
roelectric coupling J, between Grst neighbor cells. Each
cell has an XY phase variable P, representing the Ti
displacement, or the dipole direction, subject to a cu-
bic anisotropy, with minima at P = 0, +n/2, x. In the
large anisotropy limit, a minimal lattice model of ferro-
electricity in SrTio3 is therefore a 3D four-state clock
model with first neighbor coupling. This leaves entirely
out possible long-range effects due to dipole-dipole cou-
pling, and to coupling to elastic modes, as mentioned
above, as well as additional coupling to the antiferrodis-
tortive order parameter. In order to make quantitative
progress, we choose to ignore all these complications for
the time being, even though they will probably have to
be reconsidered at a later stage.

By introducing at each site a complex variable

z = e'&'

where P; can take the four values 0, km/2, 7r, the ordinary,
classical four-state clock model can be written as

H'=) H,'. , (2)

H, = ——) cos(P, —P,.) = ——Re ) z;z,'
2 2

where p and p are effective mass and off-center displace-
ment [a very small quantity, of order of 0.03 A (Ref. 1)]
of the Ti ion. In our discrete case, we shall allow the
clock variable z~ to hop, for simplicity, into its two near-
est orientations, i.e. , from z~ into kiz~. If we choose to
describe the system with a wave function @(zq, . . . , z„),
the corresponding kinetic piece of the Hamiltonian reads

where the sum over j runs over nearest neighbors of i.
It was shown by Suzuki that the classical four-state

clock model is mapped in full generality, i.e., indepen-
dently both of dimensionality and of range of interaction,
onto two decoupled Ising models. Hence, everything is
known about the classical behavior of model (2).

However, we must now introduce quantum-mechanical
effects, in the form of a kinetic energy term, not com-
muting with the potential energy (2). In a perovskite
ferroelectric, one can envisage at least two distinct quan-
tum effects, both resulting in dipole tunneling.

The erst is quantum hopping of the central positive
ion (which will be called Ti, since it is Ti in SrTiOs),
&om bonding preferentially one oxygen to bonding the
next one, within the same cage, or cell [Fig. 1(a)]. The
kinetic energy for this is, in the continuous case,

~kin 1 g Hkin 1j
2

H~"'" 'e (zy, . . . , z~, . . . , z„)= —t [4(z], . . . , i z~, . . . , z„) + e (zy, . . . , i z, , . . . , z„)] . —
(4)

In the last expression, the hopping energy has further

been lumped into the constant t = 2", . This term is an2pp
obvious generalization of the "transverse field" term in
the Ising case. If strong enough, it will cause the dipole
in each cell to hop quantum mechanically &om one value
of P~ to the other, irrespective of the state of dipoles in
neighboring cells, thereby destroying ferroelectric long-
range order.

A second type of quantum effect, which has apparently
not been discussed so far, is oxygen double-mell tunneling.
When an oxygen is bonded to a given Ti ion, we can imag-
ine another energy minimum, more or less equivalent,
when that oxygen is bonded to the other Ti ion on the
opposite side [Fig. 1(b)]. Quantum hopping processes
of the oxygen between these two sites (similar to proton
hopping in hydrogen bonds) may play a role in quantum
paraelectrics, both because of a relatively small displace-

I

ment involved and of the small oxygen mass. However,
these processes cause the bond to hop &om one cage to
the next and therefore, unlike the intracage hopping (4),
they do not obey the (apparently sensible) requirement
that the number of bonds per cage should not exceed 1.
An adequate prescription is thus necessary to include the
oxygen tunneling into our scheme.

We have envisaged so far two possible implementations
of oxygen tunneling. The first is one where we force each
cage to retain one and only one dipole bond in any given
con6guration. The second is a different scheme, where
we introduce the possibility of "bond vacancies, " while
still forbidding double bond occupancy of any cage. We
discuss both schemes in this order.

If each cage is constrained to retain strictly one and
only one bond at any given time, bond hopping becomes
extremely problematic. For each bond which hops, a
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(b) 0

0
0
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gen between two cages can "resonate" between two ad-
jacent Ti ions, both of which are &ee from other bonds.
The corresponding piece of Hamiltonian is now a sum of
two-body operators,

Hkin 2b g ~kin 2b

(ij)
These can be written symbolically, e.g. , for a horizontal
link, (i, j = i + x), as

~---- 0
(d)

~ 0
0

FIG. 1. A square lattice of oxygen cages with Ti ions in-
side. (a) Intracage bond hopping, corresponding to kinetic
energy H"'" (4). (b) Intercage bond hopping, due to oxy-
gen tunneling, corresponding to kinetic energy H '" (6),
and H"'" (8). (c) The simplest concerted bond hopping
mechanism, taking place on the elementary plaquette. (d)
A forbidden con6guration, with two bonds sharing the same
bridging oxygen.

suitable "bond back6ow" loop is mandatory, so as to
obey the one-bond-per-cage constraint everywhere. In
other words, only concerted rsarrurtgemertts, such as ring-
shaped currents of bonds, are permitted. The simplest
concerted bond hopping loop is shown in Fig. 1(c). The
associated kinetic energy is a sum of four-body operators
over plaquettes,

~kin 2a + ~kin 2a
)

plaquettes

which can be symbolically written as

~kin 2a

and analogously for a vertical link, where the symbol o;
denotes a bond vacancy on site i. Through processes (8),
vacancies and bonds become mobile, and the possibility
of condensates may arise at sufBciently low temperatures.

In this initial paper, we will restrict ourselves to con-
sider only the on-site kinetic energy (4), as a first step.
Dealing with processes of the type (6) or (8) is evidently
more complex, and we defer that until after obtaining a
good understanding of the more basic terms.

Besides potential and kinetic energies, we have also
found that the problem of ferroelectricity (both classical
and quantum) in a perovskite requires a third, novel in-
gredient. That ingredient is an anholonomic conatraint,
which in Hamiltonian terms can be mimicked by some in
finite repulsion or attraction. The physical constraint we
consider is that rto oxygen should be bound (i.e., form a
dipole) simultaneously to both Ti atoms on the two sides
of the link where it belongs. In other words, while a Ti
atom has always one and only one bond (barring bond
vacancies from now on), an 0 atom can have either zero
or one bond, but not two: The configuration of Fig. 1(d)
is physically xneaningless, and should not occur. The
constraint can also be included as a Hamiltonian term,
in the following way. First we introduce for each link an
operator

In process (6), concerted ring bond hopping can take
place only on plaquettes, around closed loops [Fig. 1(c)].
Also, it is ineffective if the initial state is a fully aligned
ferroelectric. More general concerted processes should
also be interesting, and do not necessarily have this limi-
tation. However, we do not wish to go into this discussion
at this stage.

The second possibility is a scheme in which we still
forbid multiple bond occupancy of a cage, but we allow
for the possibility of bond vacancie8, i.e., cages where
the Ti ion is centrally located (or else it moves out of
plane), so that it has no in-plane dipole bond at all. The
justi6cation for this comes from the necessity to include
at temperatures close to and higher than T', elements
which link the present discrete model with the displacive
picture, eventually applicable when T )) T'. At these
high temperatures, the likeliest Ti ion location is indeed
the cage center, and there are physically no more bonds
to speak of. Introduction of some bond vacancies even
at lower temperatures allows for a new bond hopping
process, where a vacancy in one cage and a bond in a
neighboring cage can exchange positions. The link oxy-

which acts as a projector on the forbidden states. In this
expression, r;~ = r~ —r;, where r; is the complex number
de6ning the 2D position of site i. The Hamiltonian term
equivalent to the constraint then reads

Hoonstr l. U )U-+oo
('~)

Enforcement of this constraint is analogous to an "ice
rule" and has also apparently never been considered be-
fore for the perovskites or any displacive ferroelectric. It
is likely to yield nontrivial modi6cations in the physics.
At the classical level, for example, we expect a dramatic
reduction of entropy due to the decreased number of
available con6gurations, and a possible change of the crit-
ical point universality class. Related effects are expected
in the quantum paraelectric problem, which is of direct
interest to us.

Finally, we have to choose dimensionality. While the
physical system is of course in 3D, we see no major harm
in restricting our study to a 2D square lattice of cages.
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This amounts to treating, so to speak, a single Ti02
plane, ignoring interplanar coupling. This seems a par-
ticularly plausible approximation in the case of SrTi03,
where ferroelectric Ti-0 bonds are mostly planar, and do
not involve the interplanar bridging oxygens.

III. SIMPLE QUANTUM
FOUR-STATE CLOCK MODEL

In this section we shall consider the simplest of the
models, which is defined by the Hamiltonian

H4 + Hkin 1 ) II4 + ) Hkin 1
2 2

2 2

We represent the clock variable P; on each site by two
discrete variables s, and o;, defined respectively by

(12)

It is easily seen that 8, , o., = +1, and thus the new vari-
ables can be regarded as Ising variables. The potential
energy term can be immediately written as

1J
0,'= ——) cos(4* —4&) = —' ) (s's~+&'&1)

This model can be mapped on two decoupled Ising
models in a transverse field, regardless of dimensional-
ity. In order to construct the mapping, it is convenient
to*start from the P; representation.

which is just Suzuki's classical decoupling.
The kinetic energy term can be written as

kin 1 kin 1
@(Sl&&1 j j Si& &ij j Sn 1 &@) = IIi @(4'1& ~ ~ ~ 10'il ~ ~ ~ 10'n)

= —t @'(41, , 4' ——, 4' )+ @(4'1 4'+
l@(»+ij j ~i~ ij j ~~ a~) + @(s»a»

7r

2
~ ~ ~ )

j 6 i) Si) I Sn)On (14)

Because 8;, o; = +1, we have always 8, = ko.;, and the last expression can thus be rewritten as

~kKT In 1ITr( ~ ~ ~ ~ 1Tf e ~~ (81) %1) ) Sq) Oi) ) Sn, ) C"n j "
l
~ (81) O 1) ) Sq) Oz) ) 8~) O~ I ~ ~ (81) O1) ) Sq) Oi) ) S~) O~

%e see that the Ising variables 8;, cr, are decoupled both
in H; and in H,"'", and the latter term corresponds
to the well-known transverse Geld. The quantum four-
state clock model is thus equivalent to two decoupled Ising
models in a transverse field equal to the original hopping
parameter t, and with a new coupling constant J/2.

The Ising model in a transverse field was intensively
studied in the 1970s. An exact solution for 1D case can
be found in Ref. 25. Discussions of higher dimensional-
ities are given in several places. A quantum Monte
Carlo (QMC) renormalization group study of 1D and 2D
cases is available in Ref. 31. In 2D at T = 0, there is
a continuous quantum phase transition at t/J 3.04
between a ferroelectric state and a @PE state. The criti-
cal point extends into a line at finite temperature, where
a characteristic pattern of quantum-classical crossover is
realized. Using the above mapping then results in a
limiting value of Jo/t = 0.66 for our model.

We shall come back to the simple quantum four-state
clock model again in this paper, in Sec. VI, where we
use this model as a test case for our path integral Monte
Carlo algorithm.

First of all we notice that the constraint eliminates a
very large number of configurations. To get an insight,
let us consider a 1D case for a moment, and for the sake
of simplicity let us force the constraint on each other link
only (Fig. 2). Clearly, the number of allowed configura-
tions in this simplified case represents an upper limit to
the number of allowed configurations in the actual 2D
case.

Let us denote the total number of configurations in
the chain of 2N sites as b(N), and that of forbidden con-
figurations as a(N). Adding two new sites to the chain
(increasing N by 1) amounts to increasing b(N) by a fac-
tor of 42. The sequence b(N) is therefore defined by the
relation b(N+ 1) = 16b(N), plus the boundary condition
b(1) = 16, which yields b(N) = 16~.

An analogous recursion formula can be found express-
ing the number of forbidden configurations a(N+1) in the
chain of 2(N + 1) sites through the number a(N) in the

IV. CONSTRAINED QUANTUM
FOUR-STATE CLOCK MODEL

In this section we shall consider the constrained model,
defined by the Hamiltonian

-0- —~ 0 ~— -0- —~

not allowed allowed not allowed

0 0
Htot 04 + Hkin 1 + Hconstr (16)

FIG. 2. 1D model chain of cages with constraint on each
other link.
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chain of 2N sites .To do so, we notice that a configuration
of the chain of 2(N+ 1) sites is forbidden when either the
two additional sites are in their single forbidden configu-
ration while the original 2N sites are in any of the total
of their b(N) configurations, or when the additional sites
are in any of their 15 allowed configurations, but the orig-
inal 2N sites are in one of their a(N) forbidden configura-
tions. The sequence a(N) therefore satisfies the recursion
formula a(N + 1) = 15a(N) + b(N) with boundary con-
dition a(1) = 1. The explicit expression for a(N) is thus
a(N) = 16+ '+15 x16~ +. +15~ x16+15

We are interested in the ratio s&(&)) and its limit as

N -+ oo. Using the above expressions for a(N) and b(N)
we find that sI~I

——1 —(is) m 1, as N -+ oo, which

means that in the thermodynamic limit the conatraint
eliminates "all" the configurations, except for a set of
zero measure. More precisely, the ratio of dimensionality
of the constrained Hilbert space to that of the uncon-
strained one goes to zero in the thermodynamic limit,
which means that the constrained space is orthogonal to
the original one.

To start with, we shall investigate the properties of
the constrained quantum four-state clock model for the
specially simple case J = 0. In this limit, it is very
easily checked that the ground state of the unconstrained
system (U = 0) is nondegenerate, and is described by a
wave function 4, which is just a constant. This state
can be seen as the product of N separate identical wave
functions for each cell, each corresponding to the j = 0
angular momentum state of that cell. The corresponding
many-body first excited state is infinitely degenerate. If
we choose to label the wave functions by a wave vector
k, we have for each k two independent states, described
respectively by the wave functions (unnormalized)

@,„„(k,zi, . . . , z„)=) e'" *Rez;4,

@o„„(k,z„.. . , z„)= ) e'" *Im z;0,',
where R; is the ordinary (real) vector defining the posi-
tion of site i In the .absence of the constraint, i.e., for

U = 0, the first excited state is separated kom the ground
state by an energy gap 2t (in the rest of this section we

shall always set t = 1).
What about the U = oo constrained model'? Guided

by having solved first the two-site problem, we try as
an ansatz for the ground state wave function of the
constrained system the following (Jastrow-like) product
state:

which contains no free parameters. This wave function
vanishes identically when the bond on site i points to-
wards site j and the bond on site j points towards site i.
It is quite close to an exact solution for two sites only.

We shall also assume that the first excited state of the
constrained system corresponds to k = Q and can be ob-
tained as the analytic continuation of the corresponding
state (17) from U = 0 to U = oo. In this way we arrive
at the wave function

4',„,i(k = O, zi, . . . , z„) = ) Rez;@ (zi, . . . , z ),

(20)

and analogously for the degenerate state 4,„,2.
To test these guessed wave functions in the real 2D

case, defined by the constrained Hamiltonian (16), we
have performed a diagonalization for a 2 x 2 and a 3 x 3
system with periodic boundary conditions (Lanczos di-
agonalization). In Table I we show the overlap of trial
states (19) and (20) with the exact wave functions, and
compare the corresponding ground state and excitation
energies. It turns out that (19) is an excellent approxi-
mation for the ground state of these small systems, and
the same is true for the excited state ansatz (20). We feel
therefore encouraged to adopt (19) and (20) as reasonable
approximations for larger systems, where diagonalization
is impossible.

In order to extract properties, such as average energy
and ground state correlations, and the excitation gap of
the system in the thermodynamic limit, we still need to

TABLE I. Properties of the ansatz wave functions (19), (20) as compared to exact wave func-
tions for small systems, 2 x 2 and 3 x 3.

3x3
@exact

9 -5.831 -12.607

(0, fH f@P)

(c,exact
I
tp cc

)

-5.827

0.9997

-12.508

0.986

exact
exc -4.903 -11.906

(P.=.iI~1@...t)
I&@:.":"I@..")I'+ I&@:-":"I@....)I'
(@exct'

I @exct)

-4.866

0.995

-11.818
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calculate averages on states (19) and (20). For a 3 x 3 sys-
tem with periodic boundary conditions the constrained
Hilbert space contains 57376 states; however, for a 4 x 4
system this number is 284465 424, and regular sums over
the configurations are no longer feasible in a straightfor-
ward way. We have thus adopted a Monte Carlo sam-
pling procedure for this purpose. Energy, for example, is
evaluated as the average local energy Ei,(j),

8
8

(@ I

H"'"'
I

il )

FIG. 4. Finite-size scaling to the variational ground state
energy EP (L) for J = 0, U = oo. Note the clear exponential
behavior, compatible with a gap, as in the Fig. 3.

1.0 J

O. 8 P V =
e

0.6 —~~OO

0.4
I

0.2—

0 'l 0

I

~, J= 0

I I I

20 50

FIG. 3. Size dependence of the variational energy gap AE
for J = 0, U = oo, between ground state (19) and excited
state (20).

where j labels the configurations of the whole system
(and we recall that we are still discussing the case J = 0).

We have calculated the average energies of states (19)
and (20) for several system sizes up to 30 x 30. The rel-
evant inforxnation obtained from this calculation is sum-
marized in Figs. 3 and 4. In Fig. 3 we have plotted
the energy gap AE versus system size L, which shows
that the gap tends to a value close to 2 as L ~ oo and
U ~ oo. Comparison with the unconstrained gap value
4E = 2 (for U = J = 0) shows that the constraint acts
to increase the tendency to ferroelectricity quite strongly.

In Fig. 4 we show a plot of ground state energy per
site as a function of L, and we see that the finite-size en-

ergy corrections scale exponentially with L. This agrees
well with the existence of an excitation gap. The correla-
tion length obtained from energy corrections is ( 0.72,
which agrees with absence of long-range order. To clarify
this point, we calculated the correlation function (z,'z~)
in the ground state, and found that it falls off very
quickly with distance. It was not possible to investigate
accurately its large distance behavior, because the cor-
responding values were close to zero and swered &om
large statistical error. For illustration, we present in Ta-
ble II some data for the 10 x 10 system. This behavior of
the correlation function supports the conjecture drawn
&om finite-size scaling of the ground state energy, and

leaves us with very little doubt that ansatz (19) for the
J = 0, U = oo state is disordered.

Unfortunately, we have not been able to construct sim-
ple variational states, yielding a similar semianalytical
understanding of the constrained quantum model for a
general J g 0. A simple correlated Jastrow form would
necessarily overemphasize the disordered phase, similarly
to the case of liquid 4He, where such simple wave func-
tions strongly overestimate the crystallization pressure.
Zero temperature ordering in d dimensions in presence
of quantum fluctuations actually corresponds to a classi-
cal ordering in d + 1 dimensions in presence of thermal
fluctuations. In a 3D system, long-range order sets on
at much lotoer value of short-range order than in a 2D
system. A possible way out might perhaps be a wave
function analogous to shadow wave functions, commonly
used for 4He, which take better account of many-body
correlations.

In order to get at least a crude prediction for the crit-
ical value Jq/t, we have done a slave-boson mean-field
calculation, which is presented in the Appendix. Ac-
cording to this approximate theory, there is already for
J = 0, U = oo, a ferroelectric state which is degenerate
in energy with the paraelectric one. This would suggest
a critical value Jq/t = 0, which is not compatible with
the above result obtained Rom the ansatz (19). In the
following sections, we shall resolve this issue by means of
a numerical path-integral Monte Carlo simulation. Be-
fore doing so, we present a simple argument which sug-
gests that Jq/t should be finite also for the constrained
2D quantum four-state clock model. As can be easily
shown, the dielectric susceptibility of a single four-state
rotor at zero temperature is yp = 1/2t = 1/AE, where
AE is the energy gap. Since each rotor has four nearest
neighbors, a simple standard mean-field scheme would
suggest a para-ferro transition at 4 yo Jq ——1. For a sim-
ple, unconstrained model this yields a critical value of
J /t = 1/2, to be compared with the true value 0.66.
Since in the constrained case the gap is smaller roughly
by a factor of 4, the predicted critical value correspond-
ingly becomes equal to Jq/t = 1/8 = 0.125. As we shall
see later, this value is again reasonably accurate. The
basic fact that Jq/t remains finite, in spite of the con-
straint, will be confirmed. Hence, exact degeneracy of
the ferro and para state at J = 0 is an artifact of the
slave boson approximation.
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TABLE II. Correlation function (z,'z~) of the ground state ansatz wave function (19) for a
10 x 10 system.

(1,1)
(1,1)
(1,1)

2
(1,2)
(1,3)
(1,4)

(»* zi )
0.149
3. x10
(7.2 6 2.5) x 10 '

V. QUANTUM MONTE CARLO TECHNIQUE

P= (1 —P)= P;
(ij)

(22)

which projects out the forbidden states. The partition
function of (16) in the limit U ~ oo then can be written
as

g Tr P —PPHP (23)

where we again denote by H the unconstrained Hamilto-
nian (11),

In this section we shall describe the path-integral quan-
tum Monte Carlo algorithm implemented for the simula-

tion of the constrained model (16). The first problem to
be resolved is the choice of a convenient decomposition
of the Hamiltonian in order to apply the Trotter formula.

Since we are interested in the U ~ oo limit of the
Hamiltonian (16), we need to be especially careful. Split-
ting naively H into the sum of a kinetic and potential
energy yields in the limit U —+ oo a very poor conver-

gence of the Trotter expansion, because the commutator
of the kinetic energy operator and the unbounded poten-
tial energy operator is also unbounded. The error de-
creases slowly, as I/m, with the number of Trotter slices

m, analogously to that of Ref. 34. In order to avoid this
problem, we have to get rid of the unbounded term in the
Hamiltonian. For this purpose it is useful to introduce a
projector P,

II4 + ~kin 1 ) (II4 + ~kin 1) )

a=) II,, = ) a,, + ) a,,
i2 (i+j) odd (i+j ) even

) x;, + ) a;, ,

(i+j) odd (i+j ) even

(25)

where A;~ is just a renaming of H;~ for the (i + j) odd
sublattice, and B;j that for the even sublattice. Since
both H and P contain only nearest-neighbor interactions,
we have

PA jP PA' j P PBj'P PB' j~P = 0 (26)

which provides us with a useful decomposition of the
Hamiltonian for application of the Trotter formula. The
whole lattice is decomposed into two interpenetrating
sublattices A and B, each sublattice consisting of sites
which do not interact with each other and are subject to
an external field determined by the configuration of the
other sublattice. This scheme is actually a version of the
well-known checkerboard decomposition.

To proceed, we write the partition function of the sys-
tem as

(24)

It is now convenient to use both rom and column indices
i, j to label the sites of the square lattice, and write the
Hamiltonian as

Z T p pPHP
(
—

lp
—&(p, PA;~P+p, PB,~P)

where m is an integer, and lz;~) are eigenstates of the complex coordinates z,~ (1).
We define the mth approximant to the partition function by

g ) ( lp
——Q,. PA~P f Q, PB~P

l

)—

(z'i)

= ) ." ) (»,', Ipe =~' "" lz.', &(»,', lpe =~" " I»,', )
1 ) ( Qm)

(z m lip
——g., ;&

l
~)( lp (26)

where we have inserted a complete set of intermediate states between each two exponentials. Due to (26), the matrjx
elements between the intermediate states in the last expression. factorize, and we get
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'zk+ zk+ zk+ . zk+ z"+Z = ) . ) (z,- „,z, , „z ...z, , „z,, IPe - ' Iz. .., z, ,+„z. .., z, ,- „z, )
{z..} {z~, }k, (i+j) odd

k k k k k —;,k+ + k+1 k+ k
X (Zi+1 jizi j+1&Zi—1 j&Zi j—1&Zi jIP I i+1 j& ij+1~ i 1—j& i j—l~ i j ) ~

~ 1 ~ I

k, (i+j) even

where ~z,
".

+1 . , z,".+l, z," 1 -, z,". . 1, z,".
) = ~z;+1 .)~z,". .+1)~z,".

1
.)~z,". . 1)~z,". ). It is easily seen that the matrix elements

in the last equation are diagonal in the quantum numbers zz+& j z j+& z
& j zz j &7 and can therefore be writ n

+1j ',j+1'' —1 j ',j—1 ',jI I +1j ' '', j+1 ' —1 j',j—1'

This diagonality imposes a conservation rule on the (2+1)-dimensional classical system on which our 2D quantum
system maps. The mapping now follows &om

z =~
(z~~}k (i+j) odd

k k k k k k+1)C(Zi+1 j, Zi j+1& i 1 j& i j 11 i j& i j )

~ h ~ ~

k, (i+j) even

C( i+1,j& i,j+1& i l,j&—i,j—1& i j& i,j ) & (31)

and each term in the above product can be interpreted
as a Boltzmann factor of a parallelepiped with corners in
the points (i+1,j, k), (i, j+1,k), (i —1,j, k), (i,j—1, k),
(i+1,j, k+1), (i, j+1,k+1), (i—1,j, k+1), (i,j—1, k+1)
of the (2+1)-dimensional lattice (Fig. 5). There is a four-
state clock rotor in each of its corner points, as well as in
the centers (i, j, k), (i, j,k+1) ofboth its horizontal faces.
The corresponding classical system can thus be seen as
a (2+1)-dimensional lattice of such parallelepipeds. The
conservation rule restricts both rotors in the upper and the
lotver corners of the vertical edges of each parallelepiped
to be in the same state. The Boltzmann weight (30) of
each parallelepiped then depends on the state of a11 four

I

rotors in its vertical edges, as well as on the state of both
rotors in the centers of its horizontal faces. The mutual
state of these latter rotors, sitting in the centers of the
horizontal faces, is 71ot restricted in any way (Fig. 5).

The calculation of the matrix elements C(z,"+1 . ,

z," +l, z,". l, z," l, z,",z,"+
) is straightforward. It re-

quires just diagonalization of the 4 x 4 on-site problem of
a four-state clock rotor H,"'"~ in an external 6eld, repre-
sented by H; and the projector P. In our simulation we
performed this diagonalization numerically. All the ma-
trix elements turned out to be non-negative, and there-
fore no sign problem was present.

We proceed to identify the estimators for the thermo-
dynamic quantities. For convenience we write the parti-
tion function approximant Z symbolically as

z =) ) 'c (32)

B
where P . means a product over such k, i, j that k and

k, i,j
(i+j) have the same parity. The internal energy per site
of the system then reads

A 1 1 OZ

where

FIG. 5. The (2+1)-dimensional classical system. The
imaginary time (Trotter) direction is vertical. Vertical dark
lines connect sites, which must be Hipped together; springs
connect independent sites.

1 I 1 OCk;j
N ~- Ci„.j Bp

7 73

(34)

is the corresponding estimator. For the speci6c heat per
site c we obtain
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1 28E
Caaaaa

2

(Ci'~ a9 jk, ag

and we see that it is not just equal to the fluctuation of the internal energy, as in the classical case. The Hamiltonian
of our e8'ective classical system is itself temperature dependent.

In order to calculate the order parameter, which in our case is the polarization of the system, and the corresponding
susceptibility, we have to consider an external field F applied on the system. If we choose this to point, e.g. , along
the x axis, the matrix elements C(z,"+i,z,". +i, z," i, z," i, z,".

, z,". +
) in (31) are replaced by

k A; k le k Ic+1 s+i
C(zi+i ja zi j+ia zi isa —zi. j—i & zi j, zi j ) ~ C(zi+i ja zi g+ia zi —i ja zi j ia —za j & za

& ) exp
I

P Re zi j

and we obtain, for the equilibrium polarization per site
P

1 BZ
Pem p~Z gP

= (Pe~est) a

where

1 &IP „t—— ) Rez,

The static dielectric susceptibility y then turns out
to be

Xe& aaa = p~ = &N (Peara est) (Peaaa est) (39)

The last two quantities are suitable to study the system
either in the paraelectric phase, where (P „t) = 0, or
in the ferroelectric phase not very close to the transition,
when the order parameter does not undergo the finite-
size flipping among the four possible orientations, and
(P „t) remains a well-defined quantity during the sim-
ulation time. For the behavior of the system right across
the phase transition, it is convenient to monitor the mod-
ulus rather than the components of the order parameter.
We have

(40)

and the corresponding susceptibility is given by

= &N (P -t) —(P -t) (41)

Finally, we have sampled a "short-range order param-
eter" (cos(P; —4az)) (we again denote a site of the 2D
lattice by just one index i), where i, j are nearest neigh-
bors. This can be calculated as

cos

) ' Re(z,". z,"+„)+ Re(z," z,"+„)2Nm
Ic,i

Our (2+1)-dimensional classical system is simulated
in a standard way using the Metropolis algorithm. The
trace operation requires periodic boundary conditions
along the imaginary time direction. We have used pe-

riodic boundary conditions for both space directions as
well. In order to satisfy the conservation rule, we must
always move the pairs of rotors on both sides of the ver-

tical edges of the parallelepipeds simultaneously. It is
therefore convenient to consider the vertical edges as be-
ing a kind of "rigid rods" and take these as new variables,
which now can be moved independently (Fig. 5). One
randomly chosen rod was moved at a time, without any
kind of collective moves. Unlike in simulation of the clas-
sical four-state clock model, s we did not restrict the Hips

of the rods and allowed these to flip &om the present po-
sition to each of the remaining three.

We carried out almost all calculations by fixing the
value of the ferroelectric coupling J and of the number of
Trotter slices m, and then running a series of simulations
for difFerent temperatures. The final configuration of a
simulation at a given temperature was used as the initial
configuration for a run at the next higher temperature,
always heating the system. As the initial configuration
at the lowest temperature, we always took the ferroelec-
tric state, completely ordered both in space and in the
imaginary time directions. (The only exception is the
data shown on Fig. 12, where the corresponding runs
were carried out at constant temperature, decreasing the
value of J.) We typically used 1—2x104 MC steps/site
to equilibrate the system and 2—4x10 MC steps/site for
calculating averages. The CPU time needed to perform
1 MC step/site was about 14 ps using an HP720 RISC
machine.

In order to estimate the statistical accuracy of our re-
sults we measured the MC correlation time of the chain
of values generated for various quantities in course of the
simulation. We did this by using the standard method of
dividing the chain in blocks of variable size described in
Refs. 37, 38.

To end this section, we would like to comment briefly
on the convergence of the averaged quantities as a func-
tion of the number of Trotter slices m. It is well known
that the error in the average value of an operator due
to the Trotter decomposition is an even function of m
and therefore the results of a QMC simulation can, in
principle, be extrapolated to m m oo in the form

a b
A =A +,+,+-".

m m
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This kind of extrapolation, to be meaningful, would re-
quire very high accuracy simulation for at least two values
of m (to determine a), or three values of m (to determine

b), etc. For most data presented in this paper (the only
exception being the dielectric susceptibility curve of the
unconstrained model for J = 0.5) such a procedure was
not performed. Except at the lowest temperatures, it was

generally sufficient to inspect the data for m = 5, m = 10
or m = 10, m = 20 (at the lowest temperatures investi-
gated, we have sometimes used also m = 40) to see that
further increasing of m would not change the value of the
quantity under consideration within our statistical accu-
racy. We shall come back to this point in more detail
when presenting the actual results of the simulation.

VI. TEST OF THE PIMC SCHEME:
THE UNCONSTRAINED

QUANTUM FOUR-STATE CLOCK MODEL

3.0—
I I

I

I I
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0 0 I I
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L=2
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In order to test the QMC scheme described in the last
section, we chose to perform a simulation of a limited ex-
tent for the simple unconstrained model, which is equiva-
lent to the quantum Ising model, as discussed in Sec. III.
Here we describe some of these results, since they will also
be of interest for comparison with those obtained for the
constrained model in the next section.

As an initial test, we did a numerical diagonalization
of a 2 x 2 system with J = 0.5, and compared the ex-
act canonical results for internal energy and specific heat
with those of the PIMC simulation. In order to obtain a
good statistical accuracy, we used 1 x 10s MC steps/site
for the simulation, and found excellent agreement (Fig.
6).

Next, we carried out simulations for three different val-
ues of J = 1.0, 0.75, 0.5 (t = 1). The first value J = 1.0
was found to correspond to the nearly classical regime
of the system, which is not of our interest, and we shall
not describe the results for this case in detail. Since in
Sec. III we found that Jo/t 0.66, each of the latter
two values of J is expected to correspond to a different
regime of the system. The results can be described as
follows.

For J = 0.75, the simulation was done for three dif-
ferent lattice sizes L = 6, 10,20 and the corresponding
results are shown in Fig. 7. The zero temperature value
of ~P~ is about 0.65, which reveals the effect of quantum
Huctuations. The ferroelectric-paraelectric transition is
seen as a drop of ~P~ and as a sharp critical peak of the
dielectric susceptibility curve near a T, 0.5.

In order to extrapolate the infinite-size critical temper-
ature, we have analyzed our data using the phenomeno-
logical renormalization method, which treats properly
the large Bnite-size corrections. The analysis of the sus-
ceptibility (Fig. 8) agrees with a critical temperature of
T 0.5 and a ratio of critical exponents ~ close to the
2D Ising value of —.Since the classical transition temper-
ature for J = 0.75 is T, = 0.851, the eÃect of quantum
Huctuations has been to reduce T, quite considerably. An
interesting feature is the behavior of the specific heat. It
has a rather Bat maximum at temperatures almost twice
as high as the transition temperature, with no strong evi-

—8.0—

—9.0
0.0

I I I I I I I I I

0.2 0.4 0.6 0.8 1.0

FIG. 6. Test of the PIMC method: specific heat c„(a)and
internal energy E (b) for a 2 x 2 unconstrained system with
J = 0.5, as obtained from the simulation, to be compared
with the exact result obtained from the diagonalization.

dence of critical behavior at T, itself, for the system sizes
we studied. This is again a sign that the system is in
a quantum regime, and one would have to go to larger
sizes to observe the expected crossover from quantum
to classical critical behavior, sufficiently close to T, .

For J = 0.5, we ran the simulation for only one lat-
tice size, namely, L = 10. The results are in Figs. 9
and 10. Ferroelectricity seems altogether absent, all the
way down to T = 0 (Fig. 9). To clarify further this
case, we also performed an extrapolation of the dielec-
tric susceptibility to m ~ oo and found it to saturate
at low temperatures. This means that the paraelectric
state persists down to the lowest temperatures and we
therefore conclude that for this value of J the system is
at low temperatures in the quantum paraelectric regime.

Apart from the usual long-range order parameter ~P~,
we can also demonstrate the temperature dependence
of the nearest-neighbor "short-range order parameter"
(cos(P; —P~)) (Fig. 10). Since the system is now para-
electric for all temperatures, ~P~ must scale to zero with
increasing system size L. Its behavior for a finite L
reflects that of the correlation length g. The polariza-
tion ~P~ is seen to pass through a moderate maximum at
temperature T* 0.6, where the same kind of behav-
ior is clearly visible also on the nearest-neighbor order
(cos(P; —P~ )) curve. The correlation length ( of a system
in the quantum paraelectric regime thus has a maximum
at a finite T*. This kind of efFect, in the different con-
text of granular superconductors, was found by Fazekas
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FIG. 7. Polarization ~P~ (s), dielectric susceptibility y (b),
and specific heat c„(c)for J = 0.75, U = 0. There is evidence
of a ferro-para transition near T, 0.5. The singularity of c
is severely depressed by quantum efFects.

FIG. 9. Dielectric susceptibility y (a) snd specific heat
c„(b) for J = 0.5, U = 0. Long-range ferroelectricity is
absent. On cooling, the system evolves from classical para-
electric to /PE.
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et al. in Ref. 39, where a continuous XY model was
investigated. Their conclusion as to the existence of a
broad maximum of short-range order at T' J remains
therefore valid also in the case of our discrete four-state
clock model. Qualitatively, the interpretation of this ef-
fect is the following. At zero temperature, the rotors are
predominantly in their totally symmetric ground state
(0) + ~z/2) + (z.) +

~

—z/2), corresponding to the angu-
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FIG. 8. Finite-size scaling determination of T, and
&om the phenomenological renormalization method (Ref. 13).
On the vertical axis is

in [a(L~, T)/x(L2, T)]
ln(Lg/Lz)

All the curves should intersect at the point (T„+).Our best
estimate for T is 0.5, for J = 0.75, U = 0.
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FIG. 10. Nearest-neighbor "short-range order parameter"
(cos(P, —P~)) (a) and polarization ~P~ (b) for J = 0.5, U = 0.
Note a mild peak of the short-range order at T ~ 0.6.
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lar momentum j = 0, which does not possess a dipole
moment. Increasing the temperature from T = 0, ro-
tor states with nonzero dipole moment become thermally
excited, and the system starts to develop some amount
of short-range order due to the coupling J. This order
reaches a maximum at finite temperature, and is then
eventually disrupted by thermal fluctuations as temper-
ature increases further.
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VII. SIMULATION OF THE CONSTRAINED
QUANTUM FOUR-STATE CLOCK MODEL 0.0 0.10 0.20 0.30 0.40

I

0.50

As a test of the code, we simulated first a 2 x 2 system,
for J = 0.5, using again 1 x 10 MC steps/site, and
compared the results with the exact canonical averages
calculated &om the numerical diagonalization. We found
a very satisfactory agreement (Fig. 11). In the rest of
this section, all the quantities were averaged over 4 x 10
MC steps/site, after discarding the initial 2 x 104 MC
steps/site necessary for equilibration.

In Fig. 12, we plot the calculated dielectric suscepti-
bility y versus coupling constant J at low temperatures,
T = 0 1 and T = 0 2, for system size L = 10. We see a
sharp peak, signaling a transition, roughly at J, 0.17
for T = 0.2 and at J, 0.15 for T = 0.1. The limiting
quantum critical value may thus be estimated to be close
to Jq/t = 0.15, a factor of about 4 smaller than that for
the unconstrained model.
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FIG. 12. Constrained model dielectric susceptibility y as
a function of coupling J, for T = 0.1 (a) and T = 0.2 (b),
U = oo. A ferro-para transition is evident, near Jq/t 0.15.
Error bars represent one standard deviation from the mean.
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FIG. 11. Test of the PIMC method: dielectric susceptibil-
ity y (a) and internal energy E (b) for a 2 x 2 constrained
system with J = 0.5, U = oo, as obtained from the simula-
tion, to be compared with the exact result obtained from the
diagonalization.

At this point, we have to recall the limitations of the
method used. It is intuitively clear that already in the
classical case, the presence of the constraint acts to re-
duce considerably the acceptance ratio of our simple un-

biased MC moves. Moreover, in the quantum case, the
constraint increases the systematic error due to Trotter
decomposition, and a larger number of Trotter slices is
needed to approach the true quantum averages, particu-
larly at low temperatures. This, in turn, further reduces
the acceptance ratio, and problems with loss of ergodic-
ity of the system might appear. For illustration, in the
worst of the cases we studied, T = 0.2, J = 0.2, m = 40
(right at the phase transition), the correlation time of
the chain of values generated for the polarization was

2000 MC steps/site, resulting in the statistical error
(one standard deviation) of the dielectric susceptibility
of the order of 10%. As can be seen in Fig. 12, this sta-
tistical error is already of the same order of magnitude of
the Trotter error, and further increasing of m would be
useless. The values of m we used were always chosen in
order to achieve a compromise between the requirement
of convergence and that of keeping a reasonable accep-
tance ratio. Typically, we used m = 10 Trotter slices in
the temperature interval &oxn 0.1 ( T ( 1. In the low-

temperature range (T ( 0.4) we also used m = 20 and
m = 40 Trotter slices.

These problems do not permit a simple satisfactory
Bnite-size scaling analysis of the results. Therefore,
apart from the initial test, all the results in this section
refer to a single system size, L = 10.
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FIG. 13. Polarization ~P~ (a), dielectric susceptibility y
(b), and specific heat c„(c) for J = 0.3, U = oo. There is a
clear ferro-para transition near T, 0.35.
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PIG. 14. Dielectric susceptibility X (a) and specific heat
c„(b) for J = 0.05, U = oo. The low-temperature state is a
/PE.

In Fig. 13 we plot the order parameter ~P~, the di-
electric susceptibility y, and the specific heat c versus
temperature for J = 0.3. The system is clearly ferroelec-
tric at low temperatures. However, the saturation value
of the order parameter ~P~ is 0.5, indicating a strong
quantum fluctuation reduction. The susceptibility y has
a peak at T 0.35, for this value of J. At the same
temperature, however, the specific heat c does not show
any apparent singularity for this small size. As also found
in the previous section, milder specific-heat singularities
are, however, quite typical for quantum transitions. '

Figures 14 and 15 present plots of the quantities y
c„, and ~P~, plus in addition the temperature depen-
dence of the nearest-neighbor short-range order param-
eter (cos(P; —P~)), for J = 0.05. For this value of the
coupling constant, which is lower than J~/t, the system
should be in the quantum paraelectric regime at low T.
Actually, were it not for the J dependence of y (Fig. 12),
it would be difBcult to draw this conclusion just by in-
spection of the T dependence of y . In fact, even at the
lowest temperatures investigated, y ~ does not seem to
saturate, and continues to grow with decreasing T. Fur-
ther simulation for even lower temperatures in this deeply
quantum regime is at the moment not feasible, with the
present algorithm, for the reasons discussed above.

Similarly to the unconstrained case, the polarization
~P~ is seen to pass through a moderate maximum at
temperature T' 0.3, and the same behavior is now
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FIG. 15. Nearest-neighbor "short-range order parameter"
(cos(P, —P~)) (a) and polarization ~P~ (b) for J = 0.05, U =
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FIG. 16. Phase diagram of both unconstrained and con-
strained models in the (J/t, T/t) plane. Note the shift of the
phase boundary towards lower J/t due to the constraint.

just barely visible also on the nearest-neighbor order
(cos(P; —P~)). We note that the specific heat c„ is
smooth, with the same broad maximum near T 0.8
present also for the ferroelectric case J = 0.3. Finally, in
Fig. 16, we show a sketch of phase diagrams for both the
unconstrained and the constrained models, as resulting
from our simulations.

The two phase diagrams are qualitatively similar.
There are only two phases, the ferro and the para. The
T = 0 /PE phase is nondegenerate, and has a gap. It will
transform into a classical paraelectric with temperature,
with just a smooth crossover and no phase transition.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the physics of the
simplest models of /PE systems. The selection of
a meaningful Harniltonian is particularly delicate, and
we have been able to make only some tentative steps
towards modeling the real perovskite quantum para-
electrics SrTi03 and KTa03. Several main points have
emerged in this selection process.

The first is that (unfortunately) only models capable
of describing order-disorder Buctuations should be con-
sidered really adequate, since experimentally quantum
perovskites appear to crossover into an order-disorder
regime, before entering a sort of quantum central peak
state at low temperatures. An alternative displacive,
mean-field picture would be inadequate to describe this
situation. We have therefore preferred discrete lattice
models, and chosen techniques which can describe ade-
quately Buctuations, quantum as well as classical. The
basic element in our discrete lattice models is the Ti-0
dipole, also called a "bond. "

A second point which has emerged is that we might
expect in a perovskite quantum ferroelectric at least two
diferent quantum tunneling processes. The Grst is bond
tunneling between the n equivalent positions inside the
octahedral cage (n = 4 in tetragonal SrTiOs, n = 6 in
cubic KTaOs). The second is bond tunneling between
one cage and the next. This second process will occur
whenever an oxygen which is bonded to one Ti hops to
bond the other Ti, as in Fig. 1(b). In. this first study,
however, we have included only the first processes.

A third point is that there are two strong constraints
which restrict both classical and quantum-mechanical
motion, if the model is to make physical sense for real
perovskites. A first constraint, probably valid at low tem-
peratures, is that there should not be more than one bond
per cell. In other words, as long as we are in the order-
disorder regime, and the Ti atoms are instantaneously ofF

center, each can engage at most one of the surrounding
oxygens. The second, more interesting constraint is that
two neighboring cages must not simultaneously possess
bonds which point towards one another. This constraint
comes from the physical impossibility of an oxygen to be
engaged in two bonds simultaneously, and constitutes a
kind of ice rule. The necessity of an effective ice rule
in displacive perovskite ferroelectrics (or, for that mat-
ter, in cuprate high-T, superconductors) does not seem
to have been noted and made use of before, and might
have far-reaching consequences.

Guided by these considerations, we have selected a
short-range, 2D lattice quantum four-state clock model,
as the simplest toy model of /PE perovskites. Of the in-

gredients mentioned above, two in particular pose some
difficulty, namely, the inter-cell bond tunneling and the
ice-rule constraint. Our strategy has been therefore to
start oE first without these two ingredients, with the sim-

ple quantum four-state clock model, and then to add the
complications only gradually and successively. Since han-
dling of bond hopping is very dependent from the pres-
ence of the ice constraint, it was necessary to include the
latter first. Thus, the second discrete model considered in
this paper is an ice-rule-constrained quantum four-state
clock model. This still leaves out bond hopping, whose
inclusion is now being actively considered, and will hope-
fully form the subject of the subsequent paper.

The main method adopted for the present study of the
unconstrained and constrained 2D quantum four-state
clock models is the pat¹integral Monte Carlo method
(plus finite-size scaling when possible). For the un-

constrained case this calculation is meant to reproduce
known results, since, as we show, the model maps onto
two uncoupled quantum Ising models (Ising model in a
transverse field), well studied and characterized in the
1970s. The ice-rule-constrained model is instead new

and nontrivial. A new simulation strategy has been de-
vised, in order to eliminate a pathologically slow 1/m
convergence with the number of imaginary time slices

m, to recover even for the constrained model the usual,
more comfortable 1/m convergence. Although we can-
not push finite-size scaling to produce critical exponents
for this case, we have obtained a reasonably accurate
phase diagram.

There are, both in the constrained and in the uncon-
strained models, only two phases, the ferroelectric and
the paraelectric states. However, the ice-rule constraint
greatly reduces the number of excited configurations, and
this in turn reinforces ferroelectricity. As a result, the
extrapolated T = 0 critical ratio of potential to kinetic
coupling parameters is J~/t 0.15, a factor of about
4 smaller than that J /t 0.66 of the unconstrained
model. The classical critical temperature will also be
raised with respect to the unconstrained case, although
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we did not pursue this aspect in detail. We would not
be surprised if a future closer analysis of both classical
and quantum critical behavior should reveal difFerent uni-
versality classes, for the unconstrained and the ice-rule-
constrained 2D clock models.

What have we learned about the nature of the QPE
state in the constrained and unconstrained quantum
four-state clock models? We have found that the state
is fully symmetric, and has an excitation gap in both
cases. However, the gap AE is very severely reduced
by the ice-rule constraint, this reduction being about a
factor of 4 at J = 0. As long as the ground state is non-
degenerate with an excitation gap, transformation from
the classical paraelectric state at high temperatures to
the QPE state at low temperatures is predicted to be a
smooth crossover, not a phase transition. The finding
is in line with traditional views on QPE's. It does not
explain, however, the phase transition phenomena found

by Muller et a/. in pure, tetragonal SrTi03.
To put things in the right perspective, we should how-

ever remember that the basic assumption behind our lat-
tice model is, as stressed in Sec. II, that the dipoles, i.e.,

stronger Ti-0 or Ta-0 bonds, should exist at all tem-
peratures. In reality, this is not the case. As mentioned
in Sec. II, in KTa03 the ofF-center displacement of Ta
ions sets up rather abruptly below T* 40 K, and a
very similar picture is probably valid also for SrTi03.
In other words, crossover &om the high-temperature dis-
placive regime, with a soft mode and no distortion, to the
order-disorder regime occurs suddenly, and very close to
the extrapolated displacive Curie temperature T'. The
individual dipoles of our discrete model first appear as
such at this abrupt crossover temperature. The model
itself, therefore, makes sense only for T ( T'. What
should turn the expected sharp crossover into a genuine
phase transition in SrTios remains at this stage unclear.

We are presently pursuing further the physics of these
interesting phenomena, by including next the bond-
hopping term, and hope to report relevant results in the
near future.

) btb;~=1, (A1)

e, .e;j + P, . ,P;j;
6, bj =p, . ,pj;

+ I;~ ~J;q j + d. .d;j —1)

+dtd;.
(A2)

(A3)

Now we express our Hamiltonian (16) by means of the
new operators. First, the constraint term (10) is now
easily written as

H"""'= ll U) dt d;; .
U-moo

(~j)

(A4)

occupancy of a single site. This analogy suggests that
we Inay try to use the method of introducing auxiliary,
slave-boson fields, commonly used in the Hubbard model
studies. 4~

For this purpose it is convenient to work in the occupa-
tion number representation. First of all, for each pair of
nearest-neighbor sites i, j we introduce two Bose opera-
tors 6,. -, 6 -, The operator 6, . creates a bond of the central

ion on site i, pointing towards site j, and similarly b, cre-
ates a bond of the central ion on site j pointing towards
site i. We notice that obviously bt g 6,. Between the
central sites i, j, there is a "bridging" oxygen ion, which
can be unambiguously labeled by the pair of site labels
i,j or j,i. This oxygen ion, depending on the states of
central ions on sites i, j, can in fact be in four different
states. In order to describe these states, we introduce
new Bose operators e, . , p. . ..p,. . . , d, , with the following

meaning. The oxygen is in the state et ~0), if none of

the central ions is bonded to it. It is in the state p, ; ~0),
if the ion on site i is bonded to it, and analogously for

pt~ ~0). Finally, in the state dt. ~0), both central ious on
sites i, j are bonded to it. These oxygen operators repre-
sent our auxiliary fields, or slave bosons. In our case they
do correspond to real physical states of the oxygen ion,
and from this point of view, they are in fact real bosons.
Prom the way we introduced all the operators it is clear
that these satisfy the following constraints:
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APPENDIX: SLAYE-BOSON MEAN-FIELD
THEORY

In this appendix we present a mean-field theory for the
ground state of the constrained model, at J = 0. Prom
this, we also get indirectly an estimate for the critical
value J~/t. The main problem is to deal with the rigid
constraint which prevents the oxygens &om being doubly
bonded. This feature of our model is very similar to
that which applies to electrons in the infinite U Hubbard
model, where the repulsion energy also eliminates double

The potential energy term (2) is straightforwardly writ-
ten as

H = —J) ) Re(r;I, r'&) b, &b;I,b &b~~,. .

(jj) Al

~kin 1 = —t ) ) d (d'. .&-- -+ &'. ' )
jj'

(A6)

where j,j are both nearest neighbors of i and such that
j is the next-nearest neighbor of j.

where r,.j = rj —r;, r; being the complex number defining
the 2D position of site i. The hopping term (4) is slightly
more involved. We work in an enlarged Hilbert space and
the hopping of the central ion is accompanied by a change
of state of the surrounding oxygens. The corresponding
expression reads
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Next, we shall treat the oxygen operators in the mean-
field approximation, replacing them by c numbers. Be-
fore passing to the actual constrained case U = oo, we
consider the trivial case of U = 0, J = 0. The corre-
sponding operator averages are obviously equal for all
oxygens and we denote them as

) (bt, b;, ) = 1,

6+2@+8 —1)

(bf, b;, ) = p +d . (A10)

Since for U = 0 the sites are independent, the numerical
values of the above averages follow just from the statis-
tical distribution of possible mutual orientations of clock
variables on neighboring sites. It is easily found that in

Our mean-field Hamiltonian then becomes a sum of on-
site terms,

MF t) ) btb (All)

where t = tpz(d + e)2 = zest. We see that in order to
recover the original t we have to renormalize the mean
field t by a factor of 3 .

We can now pass to U = oo, J = 0. Obviously,
the presence of the constraint H' "'t' amounts to setting
d = 0. We shall first search for an unbroken symmetry,
paraelectric ground state. Following the same line of ar-
guments as above, we have p = 4, e = 2, and we get a
renormalized t = 3t. This corresponds to a ground state
energy per site equal to Eg/N = 2t = —st =——1.333t,
which compares very well with the result —1.3668t ob-
tained from our ground state wave function ansatz (19)
(Fig. 4).

(A7)

(A8)

(A9)

where Eq. (A8) expresses the fact that we assume an un-
broken symmetry case. The constraints (Al) —(A3) then
read

Now we show that for U = oo, J = 0 there is also a
broken symmetry, ferroelectric mean-Geld ground state,
whose energy is degenerate with the paraelectric state
found above. First of all we notice that the oxygens actu-
ally form two interpenetrating square sublattices —one
formed by oxygens lying on horizontal links and other
formed by those on vertical links. If we want to search
for a broken symmetry solution, we have to allow for
different oxygen operator averages on these two sublat-
tices, and also the p defining Eq. (A8) may not be true
anymore. Let us assume that the symmetry is broken
along the horizontal axis. Then we shall have nonzero
averages ev,pv, defined by (A7), (A8) for oxygens on

links i, j = i + y, and e~ ——(e, ), pH+ ——(p, ,), and

pH = (p, ) fori,j =i+x, where x, y are unit lattice
vectors. As a consequence, the mean-field constraints
(A10) will also be correspondingly generalized. Instead
of (All) we have now

a ' = —) t, (bt,„b;;,„+t!,„b, ; „)

+t, (bt, „b;;+„+bt, „b;; „)+ H c.
(A12)

where tq ——t p~ e~ eH pH+, t2 ——t py eg eH pH . We can
now prove that ev ——eH ——pH+ ——~, py ——» pH ——0,1 1

is a self-consistent ground state solution of (A12). We get
renormalized hopping parameters tt —— s t/4~2, t2 ——0,
and the corresponding normalized ground state of (A12)
ls

2

The self-consistency condition is easily found to be satis-
fied, and the solution is clearly ferroelectric. The corre-
sponding energy per site is Es/N = —~2tt —— st, and-
therefore this state is exactly degenerate with the para-
electric state already found. Our mean-field theory thus
predicts a critical value of Jq/t = 0, since the slightest
positive J will make the system ferroelectric.
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