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We have investigated the structural properties of five difFerent crystalline forms of Si02 using a first-

principles approach. An ultrasoft Vanderbilt pseudopotential is generated for oxygen which enables us

to use a small plane-wave cutofF of 25 Ry. The relative stability, the equation of state, and pressure-
dependent structural parameters of all five polymorphs have been calculated and found to be in very

good agreement with available experimental results.

I. INTRODUCTION

The complex structure and the presence of oxygen
atoms conspire to make a first-principles theoretical
study of Si02 especially difficult. Recently, with the help
of newly developed fast iterative algorithms for solving
the one-electron Schrodinger equation, several structural
forms of crystalline Si02 have been successfully studied
using pseudopotential density-functional plane-wave
methods. ' However, the use of conventional norm-
conserving oxygen pseudopotentials ' in these studies re-
quires a relatively large plane-wave cutoff, rendering this
approach problematic for more studies on complex sys-
tems involving defects, surfaces, and disorder. A more
efficient approach has recently been developed which
combines the use of an ultrasoft separable pseudopoten-
tial by Vanderbilt with a Car-Parrinello (CP) -type algo-
rithm. This method has successfully been applied to
study applications as diverse as phase transitions of ice
under high pressure, the structure of liquid copper, and
ferroelectricity in barium titanate. ' In this paper we
present an application of this method to study five
different structural forms of SiOz (tz, P-quartz, a, P-
cristobalite, and stishovite). An ultrasoft pseudopotential
has been generated for oxygen to correctly predict the en-
ergetics and the structural properties for all five forms of
silica with a plane-wave cutoff of only 25 Ry.

SiOz has been one of the most extensively studied ma-
terials due to its application potential in ceramic and
glass industries as well as in optical fibers, microelectron-
ics, and catalysis. On the other hand, it is also one of the
most difficult materials to study. The first difBculty arises
from its structural complexity. Silica can assume many
different structural forms. "' Among them the most
common ones are quartz, cristobalite, coesite, and stisha-
vite. The common prominent feature in most of these
structures are corner-sharing tetrahedral units of silicon
with four nearest-neighbor oxygen atoms. One exception
is stishovite in which silicon is sixfold coordinated with
oxygens arranged in a distorted octahedron. These struc-
tures also have subtle differences in energy since they
difFer from each other mainly in the way in which the

tetrahedral units are connected. The second difBculty is
due to the presence of oxygen atoms. It is well known
that the first row nonmetal elements (e.g., oxygen) and
the first row transition-metal elements are problematic
species in the conventional norm-conserving pseudopo-
tential scheme. Due to the lack of corresponding core
states for cancellation, the tightly bound 2p or 3d valence
wave functions of these elements are sharply peaked. As
a result, a relatively hard pseudopotential has to be gen-
erated to describe them and a relatively large number of
plane-wave basis functions are required in solid-state cal-
culations. Because of these difficulties only a few crystal-
line structures of Si02 have been investigated with first-
principles techniques, although the complex bonding sit-
uation in silica with a mixture of ionic and covalent in-
teractions speaks to the necessity for a treatment on an
ab initio microscopic level.

The motivation of the present work is to apply one of
the most efficient first-principles techniques to date to
systematically study the various systems of crystalline
SiOi. Of the five systems we study, we note that certain
aspects of most structures have previously been studied
by ab initio pseudopotential methods. For example, Al-
lan and Teter' determined the structural parameters at
ambient conditions for a-quartz, a-cristobalite, and
stishovite. Chelikowsky and co-workers ' investigated
the structural properties and their pressure dependence
for a-quartz and stishovite. Also, we have recently
demonstrated a plausible structural model for P-
cristobalite. ' In the present study, we carried out an ex-
tensive study to calculate the ground-state energetics and
structural parameters at ambient conditions for all five

systems. We also calculated the equations of state and
the pressure dependence of structural parameters for
three low-temperature phases (a-quartz, a-cristobalite,
and stishovite). We believe the current work will be of in-
terest for several reasons. First, we treat a larger range of
silica structures than has been treated in any previous
theory. The fact that we use a uniform theoretical treat-
ment facilitates systematic comparisons and
identifications of trends between these five crystal struc-
tures. Second, no previous theory on the ab initio level
has appeared for structural determination of P-quartz.
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Third, we give some additional details of our calculation
on P-cristobalite which did not appear in our previous
published paper. ' Finally, we demonstrate that the use
of ultrasoft pseudopotentials makes it possible to obtain
accurate results, in good agreement with experiment and
previous theories, using a plane-wave cutoff of only 25
Ry. Since the best that has previously been achieved
with norm-conserving oxygen pseudopotentials is 40 Ry, '

the present method shows great promise of future appli-
cations.

The article is organized as follows. In Sec. II, we will
give a brief review of the theoretical method and the gen-
eration of silicon and oxygen pseudopotentials. The re-
sults are presented and discussed in Sec. III. Section IV
presents a summary and conclusion.

II. THEORETICAL METHOD

Our computational method can be described as a com-
bination of the ultrasoft pseudopotential scheme with
the preconditioned conjugate gradient algorithm. '

Most previous ab initio studies on silica have been done
with the conventional norm-conserving pseudopotential
scheme. As shown by Hamann, Schliiter, and Chiang,
the merit of this scheme is that the norm-conserving con-
dition ensures that the energy derivative of the all-
electron (AE} and pseudo-wave-function logarithmic
derivatives are identical at the construction energy so
that the pseudoatom can correctly reflect the scattering
properties of the AE atom in the energy range of valence
electrons. On the other hand, in the case of a nodeless
oxygen 2p valence wave function the pseudo-wave-
function has to be restricted to satisfy the norm-
conserving condition, which results in a hard pseudopo-
tential. Many attempts have been made to improve the
softness and smoothness of the conventional norm-
conserving pseudopotentials, ' ' but the norm-
conserving condition still imposes a severe limit on the
improvement.

An ultrasoft pseudopotential scheme has recently been
introduced by Vanderbilt. In this scheme, the correct
scattering properties are obtained by matching the energy
derivative of pseudo-wave-function logarithmic deriva-
tive to the AE one at the construction energy without im-
posing the norm-conservation constraint. Thus, much
more flexibility is allowed, and the pseudo wave function
can be made as smooth as possible, leading to an "ul-
trasoft" potential. In practice, we have adopted a variant
of the optimization scheme of Rappe et al. ' to construct
a pseudo wave function that converges at a target plane-
wave cutoff. Due to the relaxation of norm conservation,
a localized core-region charge augmentation function
Q;J(r) is introduced. ' As a result, the dual condition
(E, '"'=4E, ) between the energy cutoff of charge densi-
ty (E'd'"') and wave function (E~) is no longer
guaranteed, since the augmentation function usually re-
quires higher cutoff. The pseudization of Q,.J(r) will
reduce the charge cutoff E,', but, in some cases, a
separate high cutoff is still needed. In many other cases,
such as for silicon and oxygen as studied here, the dual
condition can be restored by optimally pseudizing Q,J(r).

We have used an optimization scheme similar to that
used by Rappe et a/. ' for the wave function combined
with the refinement of use of L-dependent cutofF r;„„„.'
Besides the ultrasoftness, the Vanderbilt pseudopotential
also has the advantage of better transferability. The
scattering properties are correctly reflected over a wide
energy range because the AE and pseudoatom logarith-
mic derivatives are matched by construction at more
than one energy for each angular momentum channel.
This ingredient also makes it possible to choose valence
states with difFerent principle quantum numbers, n, but
same angular momentum quantum number, 1, which is
incompatible with the conventional schemes. '

We have used neutral 2s 2p as the reference state to
construct the oxygen potential. Both s and p channels
were treated as nonlocal components for the pseudopo-
tential and two construction energies (s and p eigenval-
ues) were used for each channel to improve the transfera-
bility. As discussed in the case of the oxygen dimer, the
convergence of the pseudopotential can be improved by
increasing the cutoff radius ~, . However, for r, too large,
the transferability may sufFer when the interatomic spac-
ing is small. Also, increasing ~, may increase the hard-
ness of the charge augmentation function Q,"(r) which
would invalidate the dual condition (E,'"=4E," ) when

r, is too large. In the silica system the nearest-neighbor
distance between Si and 0 is about 3.0 a.u. We used a
cutoff radius r, of 1.3 a.u. for both s and p valence wave
functions and 1.0 a.u. for the local potential. The L
dependent r;„„„for pseudizing Q,"(r) are 0.7, 0.8, and 0.9
a.u. for L =0, 1, and 2, respectively.

The silicon pseudopotential was generated from the
ionized 3s 3p' reference configuration. Nonlocal projec-
tors in s and p channels were introduced with one con-
struction energy for each channel. The cutofF radius for
both s and p valence functions and for the local potential
were taken to be 1.4 and 1.0 a.u. , respectively. The cutoff
r;„„„wsachosen to be 0.8 (L =0},0.9 (L =1},and 1.0
a.u. (L =2). This potential gives rise to a lattice constant
of 10.16 a.u. for bulk diamond silicon which is about
0.9% too small when compared to the experimental
value.

In the solid-state calculation of all five structures, the
total-energy and force calculations have been carried out
within the local density approximation (LDA}. The
Ceperley-Alder form of the exchange correlation poten-
tial was adopted. The electronic solution was obtained
via a preconditioned conjugate gradient minimization
scheme' ' and the optimal structural parameters for
each structure were determined. We have found that a
plane-wave cutoff of 20 Ry is sufhcient for the conver-
gence of lattice constants and internal coordinates of all
structures, but we opted to use a larger cutoff of 25 Ry to
ensure the accuracy in energetics for comparing the sxnall
energy differences among the different structures and in
the elastic properties. The total energy changes by less
than 0.003 eV/atom on increasing the cutoff from 25 to
40 Ry in all structures. Detailed information on unit cell,
crystal symmetry, and k-point sampling for each indivi-
dual structure wi11 be given in the next section. We have
tried to use equivalent k-point sampling as much as possi-
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ble for different structures to make parallel comparison in
energies, in addition to making sure of the k-point sam-
pling convergence. In most cases, k-point sampling has
converged at about 0.002 eV/atom on going to the next
higher k-point set.

III. RESULTS AND DISCUSSIONS

A. Energetics and equation of state

We have calculated the binding energy of each struc-
ture as a function of atomic volume. At a given volume,
the optimal lattice parameters and internal atomic coor-
dinates are determined based on minimization of the total
energy using calculated forces. The binding energy was
obtained in reference to isolated atom energies including
the spin-polarization corrections. A Murnaghan equa-
tion of state was then fit to a few calculated points to
determine the equilibrium volume, the cohesive energy,
the bulk modulus (Bo), and the pressure derivative of the
bulk modulus (Bo ). In Fig. 1 we show the binding ener-

gy of a-quartz, P-quartz, a-cristobalite, P-cristobalite,
ideal P-cristobalite, and stishovite, as a function of
volume. The resultant cohesive energies are presented in
Table I in comparison with experimental results which
were obtained by adding the formation enthalpy of the
low temperature (a) phases at room temperature or the
high temperature (P) phases at the appropriate transition
temperatures ' with the cohesive energy of bulk silicon
and the dissociation energy of the oxygen dimer. It is
well known that LDA normally overestimates the
cohesive energy. Our calculated cohesive energies for all
five structures are consistently higher than the experi-
mental ones by about 15—20%. The relative stability of
different phases is correctly predicted and a-quartz is the
most stable structure. As we expected, the error in ener-

gy difFerences is much smaller than that in absolute ener-
gies. The calculated energy differences between u-quartz
and a-cristobalite (0.03 eV/molecular unit) and between
P-quartz and P-cristobalite (0.0 eV/molecular unit) agree

TABLE I. Cohesive energies (eV/molecular unit).

Q =quartz; C=cristobalite.

Structure

a-Q
P Q-
a-C
P-C

stisho vite

'References 21-23.

Theory

22.42
22.38
22.39
22.38
22.35

Experiment'

19.23
19.18
19.20
19.18
18.71

perfectly with experiment, while the calculated energy
differences between a-phase and P-phase for both quartz
and cristobalite are slightly smaller than the experimental
data. We believe the agreement would be slightly im-
proved with the inclusion of the temperature effect miss-
ing in the calculation. However, the calculated energy
difference between a-quartz and stishovite of 0.07 eV per
molecular unit is a few times lower than the experimental
value, although it agrees well with the previous first-
principles calculation of 0.1 eV per molecular unit. The
reason for this discrepancy is not completely clear. We
note that stishovite has a totally different structural to-
pology from the other four tetrahedral-network struc-
tures. In general, the energy differences among different
phases are very small. This is understandable for a-,P-
quartz and a-,P-cristobalite, since all these structures are
composed of Si04 tetrahedral units that are connected in
slightly different ways. But it is a little bit surprising for
stishovite, which has a totally different structural topolo-
gy. One would also expect that the stability of quartz
and cristobalite over stishovite will be further enhanced
at finite temperature due to the larger entropy contribu-
tion from the more open structures.

From the Murnaghan fit of binding energy curves in
Fig. 1, we have constructed the equations of state. In
Fig. 2 we plot the calculated volume vs pressure curve for
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FIG. 1. Binding energies as a function of volume for a-, P-
quartz (Q), a-P-cristobalite (C), ideal (I) P-cristobalite (C), and
stishovite (St). The symbols are calculated data points and the
lines are Murnaghan fits to the calculated points.

FIG. 2. Equations of state (curves) for a-quartz (Q), a-
cristobalite (C), and stishovite (St) derived from Murnaghan fits

as in Fig. 1. The volume has been normalized to ambient
volume ( Vo). The symbols are experimental data from Refs. 25
(circle), 26 (square), and 27 (triangle) for a quartz, Ref. 33 for
a-cristobalite, and Refs. 37 (circle) and 38 (square) for stishovite.
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a-quartz, a-cristobalite, and stishovite in comparison
with available experimental data. The agreement is fairly
good. From the slope of the curve, we can see that a-
cristobalite is most compressible, indicating a most open
structure. In contrast, stishovite is most closely packed.

0.4 — = ~El

Si(u)
= 0 (x)

0..6 I
I

I I I I I
I 1 I I

I
~

B. Structural parameters and their pressure dependence

The optimal lattice parameters and internal atomic
coordinates of each structure were determined based on
total energy and forces calculations at a few selected
volumes. The final set of structural parameters at the
equilibrium volume shown in Tables II-VI is based on an
interpolation of all the calculated points. Also shown in
the tables are the bulk modulus (Bo}, and the derivative
of bulk modulus (Bo), obtained from the Murnaghan fit.
Our calculated results are compared with selected experi-
mental results which are considered to be the most recent
and reliable ones and with some previous first-principles
calculations.

1. a-quartz

a-quartz has a hexagonal P3221 space-group symme-
try. The primitive unit cell contains 9 atoms. At a given
volume, six parameters have to be determined to specify
the structure, namely, lattice parameters a and c (or c/a),
and internal parameters (u, x,y, z). We will use (u, U, w) to
denote internal coordinates for silicon and (x,y, z) for ox-
ygen throughout. The calculation was conducted at three
special k points ( —'„0,—,'}, ( —,', 0, —,'), and ( —,', —,', —,'). The re-
sults are presented in Table II. The volume (or pressure)
dependence of lattice constants and internal parameters is
plotted in Figs. 3 and 4, respectively. The crystal struc-
ture of a-quartz at room temperature and ambient pres-
sure has been studied many times experimentally. In
Table II we have chosen the recent refinement by Levien,
Prewitt, and Weidner for our comparison. The depen-
dence of the structural properties on pressure has also
been studied by several difFerent experimental
groups which were included in Figs. 3 and 4. The
agreement between present theory and experiments is ex-
cellent for both structural parameters and their pressure

1 I I I I I i s ~ ~ I s0
30 35 40

Volume ()( /molecule)

FIG. 3. Lattice constant as a function of volume for a-
quartz. Solid dots are calculated points and lines are polynomi-
al fits to the calculated points as a guide to the eye. Circles,
squares, and triangles are experimental data from Refs. 25, 26,
and 27, respectively. Solid squares are pseudopotential calcula-
tions from Ref. 2.

dependence. Lattice constants a and c (see Fig. 3} de-
crease monotonically as volume decreases (or pressure in-

creases) with a slightly faster change in a, indicating a
small increase in c/a ratio. All internal atomic coordi-
nates (see Fig. 4) change almost linearly with increasing
pressure. Note that we also included in Figs. 3 and 4 a
recent pseudopotential calculation by Chelikowsky
et al. The general agreement between the two theories
is very good, except that their calculated value of c is a
little bit larger at ambient pressure, and decreases slightly
faster with increasing pressure.

2. P-quartz

P-quartz is believed to have an overall hexagonal P6222
space-group symmetry, but whether atoms are actually
located at the high symmetrical positions or dynamically
jump between two lower-symmetry (a-quartz} twin
configurations leading to an averaged high symmetry is

TABLE II. Structural parameters of a-quartz (P3221).
5.5 C

Parameter

a (A)
c(A)
si (u)
0 (x)
O (y)
o (z)

Bo (Mbar)
B()

Experiment

4.9160'
5.4054'
0.4697'
0.4135'
0.2669'
0.1191'

-0.34-0.37'
-5—6'

This
work

4.8756
5.4052
0.4654
0.4125
0.2745
0.1143
0.37
4.3

Error (%)

—0.82
—0.004
—0.92
—0.24

2.84
—4.03

Other
theory

4 9134
5.4052
0.4638
0.408 lb

0.2758b
0.1215
0.38
39

C$

5
O

O

4.5

30 35 40

'Reference 25.
Reference 1.

'References 25-27.
Reference 2.

Volume (}t /molecule)

FIG. 4. Internal parameters as a function of volume for a-
quartz. Notation is the same as in Fig. 3.
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TABLE III. Structural parameters of P-quartz (P6z22).

Parameter

a (A)
c(A)
0 (x)

'Reference 30.

Experiment'

4.9977
5.4601
0.4144

This work

5.0526
5.5488
0.4178

Error (%)

1.10
1.62
0.82

C

still a controversial subject. ' In our calculation, we
have constrained nine atoms in the unit cell into the hex-
agonal P6222 space group. The k-point sampling of the
calculation is chosen to be the same as for a-quartz.
Three parameters (a, c,x =2y ) have been determined to
specify the structure which is shown in Table III. Also
included in the table are the experimental results by
Wright and Lehmann. The fact that the calculated
cohesive energy (see Table I) as well as structural parame-
ters for P-quartz agree very well with experiments indi-
cates the plausibility of a structure with well-defined
atom positions, although we cannot rule out the dynamic
picture based on our calculation. A more thorough first-
principles calculation is needed to further resolve the
problem.

3. a-cristobalite

The structure of a-cristobalite is well established with
a tetragonal P4, 2&1 space-group symmetry. The primi-
tive unit cell contains twelve atoms. At a given volume,
six parameters have to be determined to specify the struc-
ture, namely, lattice parameters a and c (or c/a), and
internal parameters (u, x,y, z). The calculation was con-
ducted at two special k points '

( —,', 0, —,'), and ( —,', —,', —,').
The results are presented in Table IV. The pressure (or
volume) dependence of lattice constant and internal pa-
rameters is plotted in Figs. 5 and 6, respectively. Unlike
a-quartz, little experimental information on a-
cristobalite is available. Pluth and Smith have deter-
mined its crystal structure from time-of-Sight neutron-
powder-de'raction data at low temperature up to 10 K
(see Table IV). The pressure dependence of the structure
has been very recently studied by Parise et al. up 1.2
GPa. At 1.2 GPa they observed a phase transition to a

4
40

Volume ()I /molecule)

45

FIG. 5. Lattice constant as a function of volume for a-
cristobalite. Solid dots are calculated points and lines are poly-
nomial fits to the calculated points as a guide to the eye. Circles
are experimental data from Ref. 33.

4. P cristobalite-

The determination of the structure for P-cristobalite
has a long and controversial history. It has an overall
I'd 3m symmetry and involves orientational disorder. Re-
cently, we have demonstrated the plausibility of a struc-
ture for P-cristobalite consisting of domains of I42d sym-
metry, and provided strong evidence against other pro-
posed models, based on first-principles total energy and

,4» l
& s0.

lower symmetry phase. Our calculation agrees very well
with their results as shown in Figs. 5 and 6 for the change
of structural parameters and in Table IV for the bulk
modulus. Both lattice constants a and c (see Fig. S) de-
crease monotonically with increasing pressure. But un-
like a-quartz, the c lattice constant changes faster than a,
resulting in a decrease in c/a ratio on going to high pres-
sure. All internal atomic coordinates (see Fig. 5) change
almost linearly with increasing pressure.

TABLE IV. Structural parameters of a-cristobalite (P4&2&2).

0.03
0.25

—0.62
0.08

—1.44
—0.55
—1.33

4.9570'
6.8903'
0.3047'
0.2381'
0 1109'
0.1826'
0. 150'

'Reference 32.
Reference 1.

'Reference 33.

Parameter Experiment This work Error (%) Other theory

a (A) 4.9586 4.9590
c(A) 6.9074 6.9060b

Si (u) 0.3028 0.3030
0 (x) 0.2383 0.2380
0 (y) 0.1093 0.1112
O (i) 0.1816 0.1825

Bo (Mbar) 0.148
Bo 2.41

0.3

C4
O.2—

Si(u)-

— =eel- O (x)-

o (z)-

0.1 o (y)-

I I I I I I I I I I I I I0
35 40 45

Volume ()I /molecule)

FIG. 6. Internal parameters as a function of volume for a-
cristobalite. Notation is the same as in Fig. 5.
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TABLE V. Structural parameters of P-cristobalite (F4d 2).

Parameter Experiment' This work Error (%)

a (A)
c(A)
0 (x)

'Reference 34.

7.131
0.125
0.079

7.147
(in Fd3m position)

0.081

0.22

2.53
0
D
Q
V

~ A

af C

lattice dynamics calculations. The details of the study
can be found in Ref. 13. In the present study, we have re-
peated part of the calculations using a primitive tetrago-
nal cell containing twelve atoms constrainted to I42d
symmetry. Two special k points were used, as for a-
cristobalite. The original calculation was conducted with
a larger conventional cubic cell with 24 atoms in F4d2
symmetry. Virtually identical structural parameters have
been obtained which are shown in Table V, together with
a comparison with experimental results of Wright and
Leadbetter.

20 22 24

Volume (fl /molecule)

FIG. 7. Lattice constant as a function of volume for stisho-
vite. Solid dots are calculated points and lines are polynomial
fits to the calculated points as a guide to the eye. Circles,
squares, and triangles are experimental data from Refs. 37, 38,
and 39, respectively.

5. Stishovite

TABLE VI. Structural parameters of stishovite (P42/mnm).

Parameter Experimental
This
work

Error (%) Other
theory

a (A)
c(A)
0 (x)

Bo (Mbar)
Bo

4.1773'
2.6655'
0.30614'

—3.06-3.13'
—1.7-6.0'

4.1612
2.6671
0.30552
2.82
5.60

—0.39
0.06

—0.20

4.2550
2.6040
0.3082
2.92'
5.86'

'Reference 36.
Reference 1.

'References 37-39.
Reference 3.

In Table VI we present the structural parameters for
stishovite. Stishovite belongs to space group P42/mnm
There are six atoms in the tetragonal unit cell with three
independent parameters (a, c,x) at a given volume. Six
special k points have been used in the calculation:

Similar to the case of a-quartz, there is a vast quantity of
experimental results available for stishovite. For the
comparison of structural parameters in Table VI, we
have chosen recent x-ray single crystal and powder-
diffraction experiments of Spackman, Hill, and Gibbs.
In Fig. 7 we plot the calculated lattice constants a and c
as a function of volume (pressure). The experimental re-
sults presented in Fig. 7 are from Liu, Bassett, and
Takahashi, Bassett and Barnett, and Tsuchida and
Yagi. We found that lattice constants a and c decrease
almost linearly with increasing pressure with a slight in-
crease in c/a ratio similar to a-quartz.

From Tables II-VI and Figs. 3-7, we can see that the
calculated structural parameters and their pressure
dependence for all studied structures agree very well with
available experimental results and other first-principles

studies. The errors are generally within 2%%uo. The agree-
ment for the bulk modulus and its pressure derivatives is
also reasonably good but less accurate. Part of the error
is due to the fact that these quantities are found to be
more sensitive to the Murnaghan fit to the calculated
data.

IV. CONCLUSION

In summary, we have carried out an extensive study of
the energetics and the structural properties of five crys-
talline forms of silica based on first-principles total ener-

gy and force calculations. The relative stability of
difFerent phases has been correctly predicted, with de-
creasing stability from quartz to cristobalite and from
cristobalite to stishovite. The energy differences between
different structures have been found to be very small (less
than 0.05 eV per molecular unit in most cases) as one
would expect from the small differences in structural to-
pology. The calculated structural parameters at ambient
conditions agree very well with experiments. Also, the
calculated equations of state and the pressure dependence
of structural parameters are in good agreement with ex-
periments. We found that the c/a ratio increases with
increasing pressure for both a-quartz and stishovite but
decreases for a-cristobalite.

The ultrasoft pseudopotential scheme allowed us to
achieve the same degree of accuracy as previous pseudo-
potential theories but with a much smaller plane-wave
cutoff (25 Ry vs 40 Ry), and the preconditioned conjugate
gradient algorithm increased the convergence rate of the
calculation considerably over the usual steepest decent al-
gorithm (about 10 times for the current problem). We be-
lieve that the combination of these two techniques makes
our approach uniquely suited for efficient first-principles
calculations on complex systems like silica. This is partly
demonstrated by the fact that all the calculations done
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here have been carried out on an IBM RISC/6000
workstation. We think the present study provides reason
for optimism regarding the possibility of future investiga-
tions on more complex systems involving defects, sur-
faces, and disorder.
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