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Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential

theory (GPT) together with molecular-dynamics (MD) simulation, a detailed study of melting and relat-

ed high-temperature solid and liquid properties in molybdenum has been performed. The energetics in

such bcc transition metals are dominated by d-state interactions that give rise to both many-body angu-

lar forces and enhanced electron-thermal contributions. The angular forces are accounted for in the
GPT through explicit three- and four-ion potentials, v3 and U4, which in the present work are applied in

analytic model-GPT (MGPT) form. With the MGPT potentials, ion-thermal melting in Mo has been in-

vestigated both mechanically, by cycling up and down through the observed MD melting point at con-

stant volume, and thermodynamically, by calculating solid and liquid free energies. In the former ap-

proach, parallel MD simulations have also been done with a corresponding effective-pair potential U z in

which the angular dependence of v3 and v4 has been averaged. The multi-ion angular forces, which are
essential to an accurate description of the bcc solid, are found to lower the dynamically observed melting

point by about 1000 K. Above the melting transition, however, v z gives a reasonbly good account of the
structure and thermal energy of the liquid and the accuracy of this description improves with increasing
temperature. Both the multi-ion and effective pair potentials also permit a large amount of supercooling
of the liquid before the onset of freezing. With U2 a bcc structure is nucleated at freezing, while with the
multi-ion potentials an amorphous glasslike structure is obtained, which appears to be related to the en-

ergetically competitive A 15 structure. In our second approach to melting, the multi-ion potentials have

been used to obtain accurate solid and liquid free energies from quasiharmonic lattice dynamics and MD
calculations of thermal energies and pressures. The resulting ion-thermal melting curve exactly overlaps
the dynamically observed melting point, indicating that no superheating of the solid occurred in our MD
simulations. To obtain a full melting curve, electron-thermal contributions to the solid and liquid free
energies are added in terms of the density of electronic states at the Fermi level, p(EF ). Here the density
of states for the solid has been calculated with the linear-muffin-tin-orbital method, while for the liquid
tight-binding calculations have been used to justify a simple model. In the liquid p(EF) is increased
dramatically over the bcc solid, and the net effect of the electron-thermal contributions is to lower the
calculated melting temperatures by about a factor of 2. A full melting curve to 2 Mbar has thereby been
obtained and the calculated melting properties near zero pressure are in generally good agreement with
experiment.

I. INTRODUCTION

This paper concerns the high-temperature structural,
thermodynamic, and melting properties of the bcc
transition-metal molybdenum (Mo). There are three
motivating factors behind this work. First, the high-
pressure phase diagram of Mo is a problem of current ex-
perimental' and theoretical' interest. In this regard,
there is now evidence that the bcc structure is destabi-
lized at high pressure through one or more solid-solid
phase transitions. Experimentally, a transition to an un-
known structure has been observed at 2.1 Mbar and 4000
K from dynamic acoustic-velocity measurements. '

Theoretically, a transition to an hcp structure has been
predicted at 4.2 Mbar and 0 K from first-principles total-
energy calculations. In this paper, we focus on the
high-temperature portion of the Mo phase diagram and
the melting transition out of the bcc phase below about 2
Mbar.

A second motivating factor here is the related issue of
metastability and the possible occurrence of one or more

metastable solid phases at low pressure which are also
relevant at high pressure. In the group-VB and -VIB bcc
transition metals there is in fact one well-known metasta-
ble phase, namely, the low-symmetry 215 structure.
This structure occurs quite frequently in the binary-alloy
phase diagrams of these elements, e.g., in Mo3Si and in
Mo-Re and Mo-Os alloys. This phase has also been ob-
tained in elemental tungsten (W) by the hydrogen reduc-
tion of WO3 and is alternately known as the P-W struc-
ture. In addition, there is very recent experimental evi-
dence in tantalum (Ta) that the 315 phase can be
solidified from the supercooled liquid. Theoretically,
first-principles total-energy calculations have verified
the competitive nature of the A 15 structure with bcc in
Ta, W ' andMo

The third motivating factor in this work is the chal-
lenge of doing a realistic microscopic melting calculation
on a complex d-band material. In this regard, the melt-
ing properties of central transition metals are complicat-
ed by two important factors not present in simple sys-
tems. First, there is the presence of angular forces arising
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from d-state interactions and abundantly evident in the
solid structural and vibrational properties of these ma-
terials. We take such forces into account here through
explicit three- and four-ion interatomic potentials, U3 and
U4. These potentials arise from a first-principles, multi-
ion expansion of the cohesive-energy functional for the
bulk metal of the order-N-scaling form

E„h(R, . RN ) =E„„(Q)+ g'v (ij )
1

2N,

+ g 'v3(l jk )
i,j,k

+ g 'v4(ijkl),
i,j,k, l

where fL is the atomic volume, the sums are over all N
ion positions, and the prime on each summation excludes
those contributions where two site indices are equal.
This expansion has been derived for transition metals via
generalized pseudopotential theory (GPT), ' starting
from fundamental quantum mechanics in the local-
density approximation (LDA)." The leading volume
term E„& includes all one-ion intra-atomic contributions
to the cohesive energy, while the interatomic potentials
U 2 v 3 and v 4 are expressible in terms of weak pseudopo-
tential and d-state tight-binding and hybridization matrix
elements coupling different sites. These interatomic po-
tentials are volume dependent but structure independent
and thus rigorously transferable at a given volume to all
bulk structures, including the liquid. In this work, we
utilize the expansion (1) in the simplified model —GPT
(MGPT) form, ' where v3 and v4 have been reduced to
entirely analytic expressions. This allows us to do direct
molecular-dynamics (MD) simulation of both the high-
temperature solid and the liquid, which heretofore has
not been possible. To expose the role of the angular
forces explicitly, we have also done parallel calculations
with an effective-pair potential U2, in which v3 and U4 are
averaged and combined with v2.

The other complicating factor in transition-metal melt-
ing is the presence of a very large electron-thermal com-
ponent to the liquid free energy. This arises from the
large d-state electronic density of states (DOS) at the Fer-
mi level EF, as evidenced by the high measured specific
heats c" in liquid transition metals. In simple metals,
one typically observes c"q in the range of 3—4 k~,
whereas in group-VB and -VIB metals c" is measured in
the range of 4—9 k&. ' ' In the group-VIB metals such
as Mo, the impact of the density of states on melting is
particularly large because, in contrast to the liquid, EF
for the solid sits in the middle of a deep valley of the cor-
responding bcc DOS. Thus there is a big increase in the
DOS upon melting and a big decrease in the free energy.
As we shall demonstrate in this paper, this effect lowers
the calculated melting temperatures of Mo by about a
factor of 2. Nonetheless, one still has the usual condition
k~T«EF near melting, so that ion- and electron-
thermal contributions to the free energy may be con-
sidered separately. In this work, we incorporate
electron-thermal contributions through appropriate cal-

culations of the solid and liquid DOS for Mo. In the bcc
solid we perform direct self-consistent linear-muSn-tin-
orbital' ' (LMTO) calculations. In the liquid, on the
other hand, we use canonical-d-band, tight-binding calcu-
lations to justify a simple, but realistic model DOS.

The outline of this paper is as follows. In Sec. II we
first discuss the refined and specialized MGPT interatom-
ic potentials which have been developed for Mo in con-
nection with the present study. Next in Sec. III we
present the results of our rather extensive MD studies of
the high-temperature solid and liquid using these poten-
tials, including dynamically observed melting and freez-
ing and the calculation of free energies and the ion-
thermal melting curve in the absence of electron-thermal
contributions. In Sec. IV we then consider the electronic
DOS for bcc and liquid Mo and the calculation of the full
melting curve and associated melting properties. We
conclude in Sec. V.

II. MGPT INTERATOMIC POTENTIALS

and

V3(ijk )=v3(R,, Rjk—, Rk, ,0)

v4(ijk! ) =v4(R;J, RJk R&I—,R», Rk; Rlj,'0) . (4)

In the full GPT, however, U2, U3, and U4 are all nonana-
lytic functions, so that the multidimensional potentials U3

and v4 cannot be readily tabulated for application pur-
poses. This is the major problem overcome in the
MGPT, where U3 and U4 are approximated by analytic
forms, based on canonical d bands, that retain the dom-
inant physics of the fu11 theory.

As discussed in Ref. 12, the approximations used in the
MGPT are explicitly tailored for central transition metals
such as Mo, where the emphasis is on direct, short-range
d-d interactions between ions and indirect, long-range
sp-d hybridization interactions between ions play a secon-
dary role. In particular, the MGPT contributions to U3

and v4 arise entirely for such short-range d-state interac-
tions, and it is appropriate to treat the corresponding
contribution to U2 on the same footing. The total two-ion
pair potential is thereby reduced to the form

The derivation of the simplified MGPT version of Eq.
(1) from the first-principles theory is discussed at length
in Ref. 12. In this section we briefiy review some of the
salient features of this approach and discuss the specific
interatomic potentials we have developed for the present
study on Mo. The formal character of the potentials vz,
U 3 and U4 is the same in the MGPT as in the full GPT.
At constant volume Q, the central-force pair potential U2

is a one-dimensional function of the ion-ion separation
distance R;, = ~ R; —RJ ~:

v~(ij )=v2(R,,;0),
while the angular-force triplet potential v3 and quadrup-
let potential U4 are, respectively, the three- and six-
dimensional functions



49 ANGULAR FORCES AND MELTING IN bcc TRANSITION. . . 12 433

uz(r ) =vz (r )+vz'(r )+uz(r ), (5)

where

=v, (rp/r) r V6(rp/r—) I',

f( r ) = (r0 /r }"—

is a characteristic radial function, with ro —= 1.SRws. The
quantities u, and ub are material parameters which de-

pend primarily on d-band Slling and width. From gen-

where uz(r }—=vz(r;0), etc. at constant volume Q. Here
both the simple-metal component v &~, which derives from
s- and p-electron interactions, and the hard-core corn-
ponent uz', which derives from d-state nonorthogonality,
are retained directly from the first-principles theory. An
analytic form for the remaining d-state component vz is
developed by first approximating the direct tight-
binding-like matrix elements between d states as

hdd'(R J ) =a (Rws/R 1 )

where the coeScients a have the 6:—4:1 ratio of canon-
ical d bands for m =0, 1, and 2; Rws is the Wigner-Seitz
radius; and p is a material-dependent constant. For pure
canonical d bands, p =21+ 1=5 with I =2, but the choice
p =4 is closer to the first principles OPT for the Mo and
is retained as a desirable improvement. Using Eq. (6),
one derives

vz(r) =v. [f(r)]'—v6[f(r)]'

eral theoretical considerations, one expects that for the
central transition metals v, &0 and vb &0 with ub »v„
so that vz is an entirely attractive potential in the physi-
cal region of interest. In addition, vz dominates vz~ and
uz' over this regime, so that vz is also attractive at all
near-neighbor distances.

Analytic expressions for v3 and v4 are also derived
starting from Eq. (6). For v3 one obtains the result

v3 (ri, rz, r3 ) =u,f ( ri )f(rz )f( r3 )L ( 8i 82 83 )

+vd[[f(ri)f(rz)] P(83)

+[f(rz)f(r3)] P(8i)

+[f(r3)f(ri ))'P(82)], (9)

where 8„8z, and 83 are the angles subtended by ri, rz,
and r3, as shown in Fig. 4 of Ref. 12. Both L and P are
universal angular functions which depend only on d sym-
metry and apply to all transition metals. Their analytic
forms are given by Eqs. (50) and (51), respectively, of Ref.
12. The coefficients v, and vd in Eq. (9) are additional
material parameters that again mostly re6ect d-band
filling and width. For almost half-filled d bands, v, is
near zero while vd is positive, so that vz » ~v, ~

and v3 is
an entirely repulsive potential, which tends to balance the
attractive vz in the region of near-neighbor interactions.

For v4, on the other hand, one obtains the oscillatory
potential

V4(ri, rz, r3, r4, r5, r6)=u, [f(ri )f(rz)f(r4)f(r5)M(8i, 82, 83 84 85 86)

+f(r3)f(rz)f(r6)f(r5)~(87 88 89 810 85 812)

+f(ri)f(r6)f(r4)f(r3)M(8ii 812 85 86 83 84}) (10)

where M is a third universal angular function which de-
pends only upon d symmetry and u, is an additional ma-
terial parameter. The full analytic result for M is given in
Appendix B of Ref. 12, while the precise definitions of the
six distances r, r6 and 12 angles 8, 8,z associated
with four-ion geometry are given in Fig. 6 of that paper.
The angular dependence of v4 is highly cominensurate
with the bcc structure, and for nearly half-Slled d bands
with v, &0, this potential makes a large contribution to
bcc stability.

In this work, we also wish to consider to what extent
the MGPT three- and four-ion potentials, Eqs. (9) and
(10), can be folded down into an effective pair potential to
eliminate any explicit angular dependence in the
cohesive-energy functional. Such an effective-pair poten-
tial can be obtained by averaging over the multi-ion po-
tentials:

u', =u, +&v, &+&V4& .

The oscillatory nature of v4 makes its net contribution to
v& negligibly small. For the case of a nearly half-filled

v6'(r 0/r )'~, — (12)

where v,*=v„but vb &&vb since the repulsive nature of
v 3 has now been folded back into vb' .

In actually applying the interatomic potentials of the
MGPT to the calculation of physical properties, we in-
clude a smooth Gaussian cutoff of the functions f(r ) and
v&9(r) at larger. For f(r}we take

(rplr) r (Rp
f(r)= '

(rp/r) exP[ —a(r/Rp —1} ] r &Rp, (13)

where Ro=2. 15R~s and a &&1. This ensures that direct
interactions between ions are highly damped beyond the
second-nearest-neighbor distance in the bcc structure.
We also assume that vz is damped at long range in the

d-band metals such as Mo, one can also neglect the
three-ion contribution involving v, . The remaining con-
tributions from &u3& produce terms proportional to
f (r ), as already appear in vz, so that one obtains a form

vz (r ) =vz (r )+v z'(r)+ v, (rp/r )



12 434 JOHN A. MORIARTY 49

same manner as v2, so that for r )Ro, v2(r) is replaced
by v2(r)exp[ —2a(r/Ro —1) ]. The latter replacement
has negligible effect on v2' but has the physically correct
effect of suppressing the weak Friedel oscillations con-
tained in vz~. The same damping scheme is also applied
to v", .

The material parameters v„vb, v„vd, and v, appear-
ing in the MGPT multi-ion potentials can be determined
in a variety of ways using a combination of rigorous
theoretical constraints, first-principles GPT and LMTO
calculational results, and experimental data. All schemes
examined in Ref. 12 for Mo yield potentials which are
qualitatively similar to each other as well as those of the
first-principles GPT. In this work we follow scheme 1 of
Ref. 12, but with several important modifications and
refinements.

(i) The magnitude of the dimensionless damping pa-
rameter a in Eq. (13) has been increased from 25 to 125.
This renders direct third-neighbor bcc and second-
neighbor fcc or hcp interactions completely negligible
and reduces the number of neighbors a given ion interacts
with via v3 and v4 to 64 for the bcc structure. This re-

duced range is essential for tractable MD simulations,
but it comes at the expense of worsening some calculated
properties which are sensitive to long-range d-state in-

teractions such as the hcp-fcc energy difference and the
zone-boundary [100]phonons.

(ii) The first-principles volume term E„„(Q)used in

Ref. 12 has been modified to be more consistent with the
actual fitted potential coefficients v (a=a, b, c, d, or e ).
Specifically, E„,&(Q) is now constrained so that, for a

given cohesion curve E„h(Q), each coefficient v will

maintain an approximate linear variation with d-band

width, Wd cc (Q) ~~, under either compression or expan-

sion. This behavior is expected on theoretical grounds,
and the resulting calculated volume dependence of
structural energies, elastic constants, and phonons is

thereby significantly improved.
(iii) The numerical accuracy of the second-derivative,

multi-ion radial force-constant functions KI"' [Eq. (78) of
Ref. 12] used to calculate elastic constants and phonons
has been improved for n &3. The major impact of this
refinement is that one generally requires a larger value of
U, /v„ to reproduce a given elastic constant or phonon
frequency. The larger v, /vd in turn increases the calcu-
lated bcc-fcc energy difference and brings it into better
agreement with first-principles results.

A summary of calculated properties for bcc Mo ob-
tained with the present modified scheme 1 is given in
Table I and compared with both experiment ' and
LDA band-theory results. ' ' In addition to the irn-

proved bcc-fcc energy difference, there is also noteworthy
improvement in the pressure derivatives of the elastic
constants. On the other hand, our overestimate of the
longitudinal zone-boundary [100]phonon frequency leads
to an 8% overestimate of the Debye temperature and a
corresponding underestimate of the Gruneisen parame-
ter. In the present context, this ultimately means that we
will overestimate the melting temperature of the bcc solid
somewhat, but otherwise these quantitative shortcomings

U
eff
2 U2 V3, V4 Experiment Band

theory

Ecoh

Q,q

B
aB/M'

—0.614
105.2

2.64'
4.42

Cohesion

—0.664
105.2

2.64'
4.42

—0.501'
105.1

2.64'
4.44'

—0.455
105.2

2.64
4.42

Evac

Q„„/Qo
0.28
0.68

Vacancy formation

0.23'
0.67

0.23g

bcc-fcc
hcp-fcc

Structural phase stability
—7.7 —30.4

0.0 0.05

—30.0
2.0

Cl2
C'

BC» /BP
ac„/ap
BC, /BP
aC'/ap

2.66
2.38
2.63
0.02
4.46
2.46
4.41
0.02

Elastic constants

4.66'
1 10'
1.63
1.51
6.22
1.22
3.53
1.34

4.66'
1 ~ 10
1.63
1.52
6.41'
1.40
3.45
1.48

4.40"
1 ~ 39
1.62
1 ~ 39

L [goo]'
L [100]
L [110]
Tl[110]
T2[110]

7.93
9.51

10.03
0.57
6.91
4.63

Phonon frequencies
9.34
9.20
8.11
6.13
4.02
6.32

7.61'
5.52
8.14
5.73
4.56
6.16

5.0'

5 8k

4 0k

6.1'

eD
3 G

Phonon averages
395.0' 395.0 367.0'

1.46 1.44 1.55'

'Fixed or fitted quantity
In L[$00), g= —,'; in L[gS], /= —', .

'Reference 21.
"Parallel LMTO results, as described in Ref. 12.
'Room-temperature data of Ref. 22.
Room-temperature data of Ref. 23.
gAverage value from the data of Refs. 24—26.
"Reference 28.
'Room-temperature data of Ref. 27.
'Reference 29.
"Reference 30.

TABLE I. Physical properties of bulk bcc Mo. Quantities
and units: cohesive energy E„h and vacancy-formation energy

E„„in Ry; equilibrium atomic volume Q,q and vacancy volume

Q„„ in a.u. ; bulk modulus B and elastic constants (C», C44,

C&2, and C') in Mbar; structural energies is mRy; longitudinal

(L) and transverse ( T& and T2) phonon frequencies in THz; De-

bye temperature eD in K; and dimensionless Gruneisen param-
eter y G. Phonon frequencies are Brillouin-zone-boundary
values except as indicated. All of the present theoretical quanti-
ties except Q,q

are evaluated at the observed equilibrium atomic
volume Qo= 105.1 a.u.
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eff
Vg Vg) V3) Vg Experiment

Mo[t&O]

M

I
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II) 4

hsa

2

Normalized wave number

FIG. 1. Phonon frequencies in bcc Mo along the [110]direc-

tion. Left panel: as calculated from the effective-pair potential

v2,' central panel: as calculated from the multi-ion potentials
v p v 3 and v 4, right panel: as measured experimentally from
Ref. 27.

will not adversely affect our study.
To emphasize the importance of the angular forces

contained in v3 and v4 to the solid structural properties
of Mo, we have calculated the same quantities with the
effective-pair potential v z . These results are also listed in
Table I. Here we have used the same modified volume
term as discussed above and have constrained the poten-
tial parameters v,' and ub' in Eq. (12) to yield the same
cohesion curve and Debye temperature as with v2, v3,
and v4. While the efFective-pair-potential model readily
accommodates such average properties of the solid, it will
inevitably yield a poor description of structural energies,
elastic constants, and phonons, as shown in Table I. In
this regard, the bcc-fcc energy difference is underestimat-
ed by a factor of 4 with v 2, while the elastic constants
and phonons display behavior that is more typical of a
simple metal than a central transition metal. The latter is
most apparent by examining the phonons in the [110]
direction, as illustrated in Fig. 1. With v2 one obtains a
very soft transverse T, branch, lying far below the T2
branch, and a correspondingly small C' shear elastic con-
stant (C44 »C'), whereas with vz, v3, and v4 one proper-
ly obtains a stiff T, branch, lying above the T2 branch,
and a large C' constant (C' & C44 ).

III. MOLECULAR-DYNAMICS SIMULATION
OF ION- THERMAL PROPERTIES

In calculating the thermodynamic properties of metals,
it is convenient to separate zero-temperature, ion-
thermal, and electron-thermal components. For example,
the total internal energy and pressure as a function of
volume Q and temperature T can be written

and

E(Q, T)=Eo(Q}+E;„(Q,T)+E,)(Q, T) (14)

P(Q, T) =Pc(Q)+P; „(Q,T)+P,i(Q, T),
respectively. In the present context, the zero-

and

BV3(ijk )

aRj,k V

BV4(ijkl )

aRj,k, l V

(17)

(18)

Thus even for v3 and v4 only a single radial derivative of
the potential must be calculated to express a contribution
to the force. Moreover, because v3 and v4 are analytic
functions in the MGPT, these derivatives can be comput-
ed very accurately. The derivation of Eqs. (17) and (18) is
discussed in the Appendix together with additional de-
tails on how one can exploit these results to obtain an
eScient MD calculational scheme. Heretofore, the only
computer simulation using MGPT potentials ' has been
performed with a Monte-Carlo method, which requires
just the cohesive-energy functional (1).

Once the forces are specified, standard methods can be
used to perform the MD simulations. In the present
study, we have generally treated 250 ions in a constant-Q,
constant-T ensemble. Constant volume 0 is maintained
by performing each simulation in a cubic box of length
10.1549 Rws with periodic boundary conditions applied
to the sides of the box. Constant temperature T is main-
tained with a Gaussian thermostat, which is intro-

temperature energy and pressure may be defined as the
static contributions Eo=E„„and Po= d—E„hldQ ob-
tained from Eq. (1) for the bcc structure. The ion
thermal components E;,„and P;,„are then the excess en-

ergy and pressure derived from Eq. (1) at finite tempera-
ture T, and it is to these components we address ourselves
in this section. The additional electron-thermal com-
ponents E,&

and P,&, arising from the thermal excitation
of electrons above the Fermi level, will be considered in
Sec. IV.

Our primary computational tool for investigating the
high-temperature ion-thermal properties of Mo is
molecular-dynamics simulation. In this regard, the major
complication in using MGPT multi-ion potentials for
MD calculations comes in the specification of the
position-dependent force F; on each ion i, and it is essen-
tial to exploit the inherent symmetries of the potentials
v3 v3 and v4 to obtain an efficient scheme. As is well

known, the pair component of the force at constant
volume, F'; ', can be expressed in term of the single radial
derivative of v2.

BV2(ij) BV2(ij ) BR,"
aR, ~j aRj aR,

BV2(ij) R;, (16)
j tJ

where R; is the unit vector (R; —Rj)/R, j. What is

perhaps less obvious, however, is that this result can be
generalized to the multi-ion potentials v3 and u4. Using
only the fact that u3(ij k ) and v4(ijkl ) are symmetric with
respect to the interchange of any two indices, one can
derive the corresponding results
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R; =F;/m —gR;,
where

P. =F'. '+F'. '+F'. '
l l

(19)

(20)

is the total force on ion i and the effective friction
coefficient g is given by

duced through a friction term in modified Newtonian
equations of motion for the ions:

of 1500 K until the vicinity of melting, where the incre-
ment has been reduced to 250 K and much longer runs
performed. Figure 2 illustrates the behavior of the
angular-correlation function b(8) at 500, 3500, and 6500
K in the bcc solid. At 500 K there are six well defined
bond angles near 54.7, 70.5, 90, 109.5, 125.3, and 180 de-

Heated bcc Mo

g= gR (F /m)/gR R
1 J

(21) (I) 5500 K

We have solved the coupled equations of motion (19) with
a standard velocity-Verlet algorithm using a time step
of approximately 2X10 ' sec (2 femtoseconds}. This
scheme has been chosen here for its basic simplicity and
its reliability in producing highly stable results over wide
ranges of volume and temperature. The same scheme has
also been applied in the e6'ective-pair-potential case,
where, of course, the total force is just F'; ' given by Eq.
(16}with vz replaced by v 2 .

In a typical simulation, we begin with positions and
scaled velocities for the ions from a previously equilibrat-
ed run at the same volume and a nearby temperature.
We then run 4000—8000 time steps to establish a good
thermodynamic equilibrium and an additional 8000 time
steps to gather statistics for the calculation of various
thermodynamic and structural properties. The most im-

portant thermodynamic quantities we obtain are the ion-
thermal energy and pressure introduced above:

2-
(1) 3500 K

5 I L ~ ~ k I k0 .
w % I ~ \ 0 w I

I ~ a

and

E;,„(Q,T)= (E„„) E,,„—
P;,„(Q,T ) = ( dE„„/d—Q ) +dE „h /d Q,

(22)

(23)

l5

0
Ch

where ( ) denotes a thermal average over the 250-ion
ensemble. The most important structural quantities we
obtain are the standard pair-correlation function g(r }
and an angular-correlation function b(8) The latter . is
taken to be the number of bond angles a given ion makes
with its near neighbors. Specifically, a bond angle 8 for
ion i with neighbors j and k is here defined as

I R E k0

4-
(a) 500 K

O=cos '[R;J R;k/(R; R;, )], (24)
3

where both R; and R," are required to be less than some
given radius R,„. %e choose R,„=2.3 R~s, so that
both first- and second-neighbor bond angles are included
for the bcc structure. The quantity b(0) is an especially
useful tool for investigating the local atomic structure
about an ion.

2-

A. Dynamic melting and cooling at constant volume
50 100 &50

The investigation of melting in Mo has been ap-
proached in two closely related ways. In the first ap-
proach, we have cycled up and down through the dynam-
ically observed melting point at a constant volume
Q =Go, doing parallel calculations with the multi-ion po-
tentials and with the effective-pair potential. Beginning
at 500 K, the temperature has been raised in increments

Bond angle 8 (dog)

FIG. 2. Angular-correlation function b(0) for bcc Mo heated
to three temperatures at 0=Qo, as obtained with the multi-ion

potentials v2, v3, and v4 (solid curves) and with the effective-pair
potential v & (dot-dashed curves). (a) 500 K; (b) 3500 K; (c) 6500
K.
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increasing temperature. This convergence is also
reflected in calculated thermodynamic properties, and in
particular, above 15 500 K the two respective ion-thermal
energies become almost indistinguishable. The latter fact
can be used to considerable advantage in calculating
liquid free energies, as will be discussed below. With re-
gards to the angular-correlation function b(8), a prom-
inent two-peaked structure is retained in the liquid.
Again only small differences are seen between the multi-
ion-potential and eff'ective-pair-potential b(8), indicating
that the local atomic structure of the liquid is well de-
scribed by vz . The two peaks in b(8) begin to coalesce
into a single peak at higher temperature, but at 50000 K,
the upper temperature limit of our calculations,
separate peaks can still be distinguished.

Two of the most interesting findings in our MD simula-
tions are the large degree to which liquid Mo can be un-
dercooled or supercooled below the ion-thermal melting
point and the very contrasting behavior obtained between
the multi-ion and effective-pair potentials near freezing.
Figure 4 shows our calculated results for b(8) obtained
from sequentially cooling the liquid from 9500 K to 6500,
3500, and 500 K. At 6500 K the metal is clearly still very
liquid like in both cases, and the onset of freezing only
occurs below about 4000 K. In the efFective-pair-
potential case, a bcc structure is nucleated from the
liquid below this point, as is evident by comparing Fig. 4
with Fig. 2 at 3500 and 500 K. Interestingly, the shape
and size of the computational cell appear to play no
direct role in this outcome, as the nucleated bcc structure
is oriented at an arbitrary angle with respect to the cubic
axes of the cell. Also in this regard, close inspection of
Fig. 4(c}clearly reveals that a perfect bcc structure is not
recovered, although the detailed nature of its defects
remains to be investigated. In the multi-ion-potential
case, on the other hand, the liquid freezes into an amor-
phous glasslike structure which appears to contain at
least one important feature in common with the A 15 lat-
tice. Specifically, the peak in b(8) which develops near
150 degrees, while totally absent for the bcc structure, is
present in the form of a double peak for the pure A 15
structure, as illustrated in Fig. 5. This latter result was
obtained from a 216-ion cubic-cell simulation at 500 K
with the ion positions initialized on the A 15 lattice.

The contrasting freezing behavior of the multi-ion and
effective-pair potentials is consistent with the static
structural energetics exhibited by these potentials. In the
efFective-pair-potential case, there are no apparent solid
phases which are both energetically competitive with bcc
and mechanically stable. The A 15 structure in this case
has a considerably higher energy than bcc over a wide
volume range and is almost certainly mechanically unsta-
ble. In the multi-ion-potential case, on the other hand,
the A15 structure is found to be both mechanically
stable, as indicated in Fig. 5, and almost degenerate in en-
ergy with bcc over the same volume range, with the A 15
phase actually slightly favored over bcc near Qo and at
larger volumes. Again this is a situation where the angu-
lar dependence of v4 is highly favorable for the A15
structure with U, )0. The actual ordering obtained be-
tween the bcc and A 15 phases is a rather sensitive ar-

3

L7 A)5 Mo; 500 K

C
O

0 f-

50 300
I

150

Sand angle (5I (deg)

FIG. 5. Angular-correlation function b(8) for Mo in the A 15
structure at 500 K and 0=00, as obtained with the multi-ion
potentials v2, u3, and v4.

tifact of the multi-ion-potential details and in the future it
may be useful to impose the correct ordering as a con-
straint on the potentials. Regardless, the competitive na-
ture of the A15 and bcc structures exhibited by the
present potentials is physically correct and has en-
couraged us to explore further the question of whether or
not either of these structures could be nucleated from the
liquid. To do this we have examined the effect of both
the cooling schedule and the computational-cell size on
our MD simulations of freezing. With regard to cooling
schedule, we have performed two additional calculations
with both a faster and a slower cooling rate. In the first a
direct quench was done from 9500 to 500 K, while in the
second the liquid was cooled between these temperatures
at the rate of 1 K per time step or 5X10' Klsec. In
both calculations the same amorphous structure was ob-
tained, suggesting little sensitivity of the result to cooling
rate, at least for rates above 10' Klsec. Using the slower
cooling rate, we then proceeded to repeat the simulations
for 216- and 432-ion computational cells. (The 216-ion
cubic cell is commensurate with the A 15 structure, while
the 250- and 432-ion cells are commensurate with bcc.}

In both simulations, however, the same amorphous struc-
ture was again nucleated. It remains to be seen whether
further increases in cell size and/or reductions in cooling
rate will, in fact, alter this outcome.

B. Free energies and thermodynamic melting

A,",„'(Q, T)=Aq,"„(O,T)+A;.,"„(fl,T) . (25)

The former contribution can be expressed in terms of

In our second approach to melting in Mo, we have at-
tempted to calculate accurate solid and liquid ion-
thermal free-energy data over substantial ranges of
volume and temperature and then determine the corre-
sponding thermodynamic melting curve. The ion-
thermal free energy in the bcc solid can be conveniently
divided into quasiharmonic and anharmonic contribu-
tions:
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E'" (Q T)=E';„'(Q,T) 3ksT . — (28)

Our results for Mo are displayed in Fig. 6(a) in the form
E;,"„/3k' T. From this figure one can infer that
E;,"„(Q,T) is a negative and monotonically decreasing
function of both volume and temperature. Its tempera-
ture dependence may be adequately represented by a po-
lynomial expansion of the form

quasiharmonic phonon frequencies for the bcc lattice,
vi(q), by the standard thermodynamic result

A qh„(Q, T)=k~ T g in[2 sinh[h vi(q)/(2kii T)]], (26)
q, A,

where the sum is over all wave vectors q and phonon
branches A, in the first Brillouin zone. Here, the required
phonons have been calculated directly in terms of tangen-
tial and radial force-constant functions, as described in
Ref. 12. To evaluate the right-hand side of Eq (26.), pho-
non frequencies have been sampled at 1240 q points in
the irreducible wedge of the bcc Brillouin zone. In the
multi-ion-potential case, the bcc structure is found to be
mechanically stable at all volumes and Aq,"„(Q,T) has
been calculated in the range 68.8 & Q & 129.3 a.u.
(0.655 & Q/Qo& 1.230; Qo= 105.1) at increments of
60=6.05 a.u. for temperatures up to 17500 K. In the
effective-pair-potential case, on the other hand, the bcc
structure is mechanically unstable at both large and small
volumes and A;,"„can be evaluated only in a limited
range near 00. 86.95~0~117.2 a.u. Outside of this
range the soft T, [110] phonon modes (Fig. 1) become
imaginary. This makes the calculation of bcc free ener-
gies and melting with U2 problematic, so we focus first
on their calculation with the multi-ion potentials.

In the multi-ion-potential case, we have calculated the
corresponding anharmonic bcc free-energy component,
A;,"„(Q,T), entirely from MD thermal-energy data This.
is done by noting that in general

A;,"„(Q,T)= —TI [E;,"„(Q,T')/(T') ]dT', (27)
0

where E,',"„ is the anharmonic part of the solid ion-
thermal energy E,",„'. Since the quasiharmonic com-
ponent of E,';„' is just 3k' T in a classical MD simulation,
it follows that E,',"„may be extracted from the MD data
as simply
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interest here, A;,"„(Q,T))0, so that the net effect of
anharmonic contributions is to raise the free energy of
the bcc solid and consequently lower the calculated melt-
ing temperatures.

The corresponding anharmonic component of the ion-
thermal pressure, P,',"„, can be obtained either by
differentiating Eq. (30) with respect to volume or by
directly using the MD data on the solid ion-thermal pres-
sure, P~„', in a procedure similar to that just described.
%e have followed the latter course. First, P,',"„is extract-
ed from P;,„' in the form

Temperature (K)

FIG. 6. Anharmonic contributions to thermal energies and
pressures. in bcc Mo, as given by the present multi-ion-potential
MD data (solid points): (a) E;,"„/3k& T; (b) QI","„/3k& T.

E~p„(Q T)= A2T 2AiT 3A4T QP;,"„(Q, T ) =QP,",„' ( Q, T )—3k' Ty ( Q ), (31)
where A2, A3, and A4 are volume-dependent coeScients
with A2&0. Inserting Eq. (29) back in Eq. (27) then
yields

A'"(QT)=A T+A T+A T

In the present study, our ion-thermal MD data for E;',"„
has been generated at four equaIly spaced volumes 80.9
and 117.2 a.u. and five equally spaced temperatures be-
tween 500 and 6500 K. At each volume a least-squares fit
of this data has been done using Eq. (29). The resulting
coefficients A„(Q) are sufficiently smoothly varying func-
tions of volume that all needed values can be obtained by
interpolation. Thus for the volumes and temperatures of

where y is the high-temperature Gruneisen parameter
obtained from the quasiharmonic phonons. As can be
seen from Fig. 6(b), the volume and temperature depen-
dence of QP;',"„ is qualitatively similar to E,',"„. Thus its
temperature dependence can be represented by an expan-
sion analogous to Eq. (29),

QP0 (Q T)= BiT 2B3T 3B4T (32)

where the volume-dependent coefficients B„(Q) are cal-
culated in the same manner as the A„(Q) above.

In the liquid phase, the entire ion-thermal free energy
A,'-,'q can be obtained from the MD data, apart from an
additive constant. Specifically, Eq. (27) is replaced by
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E',",q (Q, T)=C, C, r—' 2C—,r' 3C— (34)

where r =—T/To and where C, , Cz, C3, and C4 are
volume-dependent coefficients with C, )0 and C2 &0.
Using this result in Eq. (33},one thus obtains

A,",q„(Q, T ) =Co r C, r 1nr+—C~ r( ~ 1)—
+C3r(r 1)+—C4r(r —1) . (35)

Ion-thermal MD data for E',~ has been accumulated on
the same volume mesh as for E,',"„at five equally spaced
temperatures between 3500 and 15 500 K. As with E;',"„,
a least-squares fit of this data has been done at each
volume, using Eq. (34). The resulting coefficients C„(Q)
are again reasonably smooth functions of 0 which can be
interpolated at all required values. Similarly, the temper-
ature dependence of QP',~„can be represented by the ex-
pansion

A,",q„(Q, T)/T=Co(Q)/To
—f [E",,q„(Q, T'}/(T') )dT', (33)

0

where T0 is a reference temperature and
Co(Q)= A,"q„(Q,To). Allowing for an additional term
linear in T, the temperature dependence of E,",~„can be
represented by a generalized expansion of the form

Ai;q(Q, T)—:Eo(Q}+A,",q„(Q, T) ~ Ai;q" (Q, T), (37)

with the volume-dependent coefficients D„(Q) deter-
mined from the MD data in the same manner as the
C„(Q).

The natural reference temperature of the liquid is
To = ~, where one reaches the ideal-gas limit and Co(Q)
is known exactly. This limit is impractical to consider
here, however, because E,",~„cannot be reliably calculated
above 50000 K, as previously indicated. Instead, we
have developed a special trick to obtain C0 within our
calculable temperature range. We recall that above
15500 K the ion-thermal energy E',q„(Q, T) for the
multi-ion-potential case is essentially the same as for the
efFective-pair-potential case. It follows from Eq. (33) that
A',q„(Q, T) is also the same for the two cases above that
temperature, and one can thus choose T0 =15500 K and
attempt to determine C0 from vz alone. This allows one
to introduce the powerful techniques of modern fiuid
theory for calculating free energies from pair potentials.
Specifically, we use variational perturbation theory
(VPT) based on an r ' reference system whose free ener-

gy and pair-correlation function are accurately known.
In VPT an upper bound on the liquid free energy A&; is
established by the rigorous Gibbs-Bogolyubov inequali-

ty
37

QP,"q„(Q,T)=D, r D,H 2D—,r' 3—D,r4, — (36) where

Ai, "*(Q,T)=E„,i(Q)+ A„f(z)+(2n/Q) f g„&(r;z)[vz (r;Q) —u„&(r;z))r dr .
0

Here A „f,g„f, and v„f are the free energy, pair-correlation function, and pair potential of the reference system with

v„f(r;z)=e(o lr)'

(38)

(39)

and z = (cr /&2Q)(e/ks T)'~ . At each volume and temperature of interest, the variational parameter z can be chosen
to minimize the right-hand side of Eq. (38), so that in practice A i,

""becomes a very close upper bound to the true liquid
free energy Ai; . A corresponding lower bound on the free energy can be established in the form

Ai; (Q, T)~ Ai, ""(Q,T),
where

Ai "(Q,T)=E„«(Q)+A„f(z)+(2n'/Q) f g(r)[u2 (r;Q) —v„,f(r;z)]r dr .

(40)

(41)

A (Q T)=—'[Ai, ""(Q,T)+ Ai;q'"(Q, T)] . (42)

In this work, we have applied the above VPT equations at
the volume Q=Q0 and temperature T=T0=15 500 K,
so that

Co(Qo) As (Qo~To) —Eo(Qo) (43)

with A„q(Qo, To) determined by Eq. (42). The volume

Here g(r ) is the true pair-correlation function for u~z and
is determined from our MD simulations. The variational
parameter z can now be chosen to maximize A ]&q

mak-
ing it a close lower bound to A&; . A very accurate value
of A „ is then calculated by taking the average

dependence of C0 has then been obtained by noting that

Co(Q) =Co(Qo) —f P;"q (Q, To )d Q0 0 & Ion & 0 (44)

and using Eq. (36) for P',q„. We have verified that the
final ion-thermal free energy (35) is insensitive to the
choice of temperature used in Eq. (42) by repeating the
VPT calculation at T=50000 K and then using Eq. (33)
to determine Co(Qo).

Finally, the components of the solid and liquid free en-
ergies can be reassembled and the ion-thermal melting
curve determined. We have for the bcc solid
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A, (Q, T)=ED(Q)

+k~T g lnI2sinh[hv~(q)l(2k' T)]]
q, A.

+A2T +A3T +A4T (45)

and for the liquid

A„q(Q, T)=ED(Q)+Car C,—~lnr+ Cz~(r 1)—

+C3gr —1)+C4~(r 1)—. (46)

Points along the ion-thermal melting curve have been
determined by making a common-tangent construction
between A &(Q, T) and A&;q(Q, T) at temperature incre-
ments of 500 K up to 17500 K. The resulting melting
curve below 1 Mbar is shown in Fig. 7 and is compared
with the single dynamic melting point obtained from our
constant-volume simulation at Q=Qo. It is seen that the
latter point lies exactly on the free-energy-based melting
curve. This indicates that, in contrast to the large
amount of supercooling of the liquid observed in our MD
simulations, no significant superheating of the solid has
occurred in the multi-ion-potential case.

In the effective-pair-potential case, we have attempted
to obtain anharmonic and liquid free energies from MD
data only at Q =Qo. While in the liquid this was entirely
successful, in the solid the marginal stability of the bcc
structure gave rise to substantial fiuctuations in thermal
energies and pressures, such that a meaningful anhar-
monic free-energy contribution could not be determined.
We have, however, been able to obtain reasonable anhar-
monic and liquid free-energy estimates from simpler ap-
proaches. In the solid, we have used a standard cell mod-
el to obtain bcc anharmonic contributions over the lim-
ited volume range where the bcc structure is stable. In
the liquid, we have used VPT with A„approximated by
A f~'", as given by Eq. (38). From these results, an ion-
thermal melting curve has been determined between
about 0.1 and 0.7 Mbar and this is plotted as the dashed
line in Fig. 7. In contrast to the multi-ion-potential case,

IV. ELECIRON-THERMAL CONTRIBUTIONS
AND THE FULL MELT CURVE

To complete the full melting calculation in the multi-
ion-potential case, we must finally renomalize the above
ion-thermal result by adding appropriate electron-
thermal free-energy contributions to A

&
and Ah~. We

here calculate the electron-thermal free energy from the
standard low-temperature expression valid for
kit T «Et. ,

A,i(Q, T)=— p(Et, )(ktt T) (47)

where p(EF) is the density of states at the Fermi level.
The corresponding electron-thermal energy and pressure
are just E,

&

= —A, &
and P,~

= —BA,~IBQ, respectively.
These equations are straightforward to apply in the case
of the solid, where the density of states can be obtained
directly from self-consistent electronic-structure calcula-
tions. We have applied the LMTO method to calculate
both the bcc and fcc DOS as a function of volume Q.
The results for Q=QO are plotted in Fig. 8. The bcc
DOS shows the expected deep valley in the vicinity of Et,
and p(EF) is found to vary slowly and smoothly with
volume, as shown in Fig. 9. This is in sharp contrast to
the fcc DOS which has a sharply peaked structure near
Ez and consequently a much larger value of p(E~) which
also varies more rapidly with volume.

it is seen that the corresponding dynamic melting point
lies about 1000 K higher in temperature than this curve,
suggesting that some superheating of the solid did occur
in the effective-pair-potential simulations. On the other
hand, the melting curve obtained from U2 is consequent-
ly in rather good agreement with the multi-ion-potential
result over the limited range where the former can be cal-
culated. Considering the more approximate nature of
the effective-pair-potential free energies, however, this
close agreement may be somewhat accidental.
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FIG. 7. Ion-thermal melting curves for Mo obtained from
multi-ion-potential and e8'ective-pair-potential free energies, as
discussed in the text. Also shown are corresponding dynamical
melting points obtained directly from the MD simulations at
Q=Qp.
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FIG. 8. Density of states for bcc and fcc Mo at Q =Qo, as ob-
tained from the present self-consistent LMTO electronic-
structure calculations.
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FIG. 10. Canonical-d-band density of states for bcc and
liquid Mo at 0=00 obtained from tight-binding calculations, as
discussed in the text.

In the liquid, on the other hand, we have no compara-
ble means at present of calculating a self-consistent densi-

ty of states, but we have been able to formulate a simple,
realistic model which can be quantitatively verified. In
this model we take the liquid DOS as a sum of a free-
electron sp component p, , and a Friedel-model ' d-

electron component pd. At the Fermi level in Mo one
has

p(E~)=p~p(EF)+p~(E~)= 3Z/EF+10—/Wq, (48)

where Z is the number of s and p electrons per atom and
Wd is the d-band width. The quantities Z, EF, and Wd
are all volume dependent but structure insensitive and
thus can be taken from our first-principles calculations on
the bcc phase. This leads to the liquid model result for
p(E+) plotted in Fig. 9. Note that the magnitude and
volume dependence of the liquid-model p(EF) is similar
to that for the close-packed fcc structure, which is physi-
cally quite reasonable.

To verify the quantitative adequacy of the dominant
d-band term in Eq. (48), we have also done a series of
canonical-d-band tight-binding calculations of both the
bcc and liquid DOS in Mo. In these calculations, the
liquid has been approximated as a simple cubic structure
with a basis of 250 ions whose coordinants are established
by our liquid MD simulations at 3500 K and Q=Qo.
This has been done for a total of ten (randomly chosen)
MD ion configurations and the resulting DOS's averaged.
The configuration-averaged liquid DOS so obtained is
plotted in Fig. 10 and compared with the corresponding
bcc result. The expected dramatic change in the density
of states in going from bcc to the liquid is clearly evident
in this figure. In particular, note the elimination of the
deep valley near Ez and the rise in p(EF ). In Fig. 11 the
same liquid DOS is compared with the Friedel model
used in Eq. (48). As desired, near E=E~ the Friedel
model does give a quantitatively accurate value of the
DOS.

With p(EF) established for the bcc solid from our
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TABLE II. Melting properties of Mo at zero pressure.
Quantities and units: melting temperature T in K; solid and

liquid volumes Q„& and Qhq in a.u. ; bQ=Q)tq Q ] latent heat
L in mRy/atom; entropy change hS in k&,' melting-curve slope
dP /dT in kbar/K; and liquid speci6c heat c," in k&.

Quantity

T
Q„)
Q&;q

EQ
L
hS/kg
dp /dT
c"q/kg

'Reference 14.
"Reference 15.

Present theory

3528
110.1
114.1

4.0
27.9

1.25
0.29
5.4

Experiment (Ref. 13)

2883
110.3
115.0

4.6
27.3

1.49
0.30

8.5; 7.1'; 4.2

LMTO calculations and for the liquid from Eq. (48), we
have calculated respective electron-thermal free-energy
contributions A'J' and A,"P using Eq. (47) and then added
these results to Eqs. (45) and (46) for A„, and A&; . A
full melting curve has then been calculated in the same
manner as described above for the ion-thermal result.
The respective melting curves with and without A, &

are
compared in Fig. 12. The large increase in p(EF) for the
liquid is directly reflected in a factor of 2 lowering of the
calculated melting temperatures with A, &

included. The
final melting temperatures are now reduced to the desired
range, but near zero pressure remain about 20% higher
than experiment. As demonstrated in Table II, however,
other calculated zero-pressure melting properties are in
quite good agreement with experiment. ' ' This is par-
ticularly so for the solid and liquid volumes, the latent
heat, and the initial slope of the melting curve. As ex-
pected, a large value of the liquid specific heat c"q is also
obtained due to the extra contribution from A,&. Our
calculated value of 5.4 kz is intermediate between those
of 4.2 and 8.5 ka measured from drop-calorimetry' and
in isobaric-expansion experiments, ' respectively.

V. CONCLUSIONS

The present study on Mo has shed considerable light
on the importance of angular forces and electron-thermal
contributions to the high-temperature properties of cen-
tral bcc transition metals. As we had expected from our
previous zero-temperature studies, ' angular forces play
a central and critical role in determining structural phase
stability in the solid at all temperatures, and these forces
are rather well described in Mo by MGPT multi-ion po-
tentials. The competitive nature of the metastable A 15
structure with bcc is a natural consequence of these
forces and, as our MD results demonstrate, they can con-
trol the qualitative freezing behavior af the liquid. Some-
what more surprising is the apparent minimal effect of
these forces above the melting transition, where the
effective-pair potential U2 yields a reasonably good
descriptian of bath the structural and thermodynamic
properties of the liquid. Moreover, this description im-

proves rapidly with increasing temperature and becomes
quantitatively accurate at high temperature. This would
seem to provide considerable justification for treating
liquid transition metals in the future with such pair po-
tentials. At the same time, the present effective-pair po-
tential does not lead to a satisfactory ion-thermal melting
curve, due in large part to unphysically soft T, [110]pho-
non modes it produces in the bcc solid. Refinements in
the potential might improve this situation, but the
present study suggests that reliable calculation of the vi-
brational and ion-thermal melting properties of bcc tran-
sition metals requires the angular forces.

The unusually big impact of electron-thermal contribu-
tions in lowering the melting temperature of Mo is a
direct consequence of the large and strongly phase-
dependent density of electronic states in such central
transition metals. We expect that this effect is probably
maximized in the bcc metals, especially the group-VIB
metals, where the positioning of the Fermi level of the
solid in the midst of a deep valley in the DOS ensures a
dramatic change upon melting. However, the possible
importance of electron-thermal effects on any high-
temperature phase transition in transition metals clearly
needs to be investigated on a case by case basis. In the
context of melting, one would ideally like to have compa-
rable methods of treating the solid and liquid DOS.
While our simple model DOS seems well justified in
liquid Mo, we do not expect this model to have general
validity in other transition metals. In the future it may
be possible to apply the self-consistent LMTO method to
the liquid in the same manner as we have done the
present tight-binding calculations, but this will require a
basis of far fewer than the 250 ions treated here.

Finally, we believe this work has amply demonstrated
the feasibility of doing comprehensive MD simulation
studies on central transition metals using MGPT multi-
ion potentials. The techniques developed here together
with the experience gained on Mo should be directly ap-
plicable to the phase diagrams of other similar materials.
One such application of great current interest is to the
high-pressure, high-temperature phase stability and melt-
ing in iron, and preliminary work on this problem has
been initiated. Beyond bulk structural and thermo-
dynamic properties and elemental phase diagrams, it
should also be possible to extend the present MD capabil-
ities to defects and surfaces in the context of a recently
developed extension of the 6PT, in which the
cohesive-energy functional (1) is transformed to an ap-
propriate local-environment representation involving a
modulated volume term and modulated bulk potentials.
In this regard, the present refined MGPT potentials have
been successfully tested on the free-surface energetics of
Mo in the same manner as discussed in Ref. 44 for the
scheme-1 potentials of Ref. 12.
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APPENDIX

In this appendix we discuss the derivations of Eqs. (17)
and (18}for the three- and four-ion forces F,' ' and F,' ',

respectively, together with a few details about the im-
plementation of these results in MD simulation. The
basic property of the GPT potentials that one requires in
these derivations is that u3(ijk) and v4(ijkl) are sym-
metric with respect to the interchange of any two indices.
This symmetry property first implies that difFerentiation
of u3 and v4 with respect to one ion coordinate is
equivalent to differentiation with respect to another when
all coordinates are summed. One can thus immediately
express the forces in the form

Bu3(ij k }
F',.3'= — —g '

u i(ij k )
BR; 6, 2 . BR;

(Al)

and

F', '= — g '
u4(ij kl )

i ijki

1 Bu„(ijk. . . }

(n —2)! .
k BR;

R;. . (A5)

In practice, it is also convenient to re-express the forces
as

F(n) ~ F(n)
l ~ lJ

J
(A6)

(A7)

and

Bu4(ijkl ) Bu4(ijkl )

k I ij k&1 ij

Since F'; ' is by far the most time consuming of the three
components to evaluate, the second form of Eq. (A9) re-
sults in an additional factor of 2 time savings when calcu-
lating the forces.

One can further note that the virial components of the
pressure, P„'";,', are readily expressed in terms of the F', ,

"'.

and exploit the additional symmetry property that
F',"'=—F';"'. This results in a factor of 2 computational-
time savings when accumulating the forces during a given
time step in an MD simulation. For n =2, 3, and 4, the
F';". ' are given by

Bv2(ij )

BR lJ

Bu3(ij k )
(A8)

k ij

Bv (ijkl)= ——X'
6 Jki BR;

(A2)
P( )—P 1 R F 1'R F'"'= .F(n)"'" =

6QX ~ '& "'J =
3QX. ~ '& "'j.

l,J l l(j
(A10)

One then notes from Eqs. (3) and (4) how v3 and v4 de-

pend on interatomic separations R;, etc., and uses the
chain rule, as in Eq. (16}, to express the derivative with

respect to R; in terms of derivatives with respect to the
separations R;j Rk, , and Rl, This yields and

P„,i = dE„,i /d Q— (A 1 1)

These components must be combined with the direct
volume components

8 ('jk) 8 (j'k }

2 BR " M
jl ki

(A3)
Bv„(ijk . .).

n!X BQi,j,k. . .

(A12)

and

Bu4(ij kl ) Bu4(ij kl )

j,k, l ji li

Bu4(ijkl )

a,
To arrive at the final result for F',- ', one used the facts
that R;k =R«and R,k

= —R«and then interchanges the
coordinates j and k in the second term in Eq. (A3). The
second term is thus equal to the first, since
u3(ikj )=u3(ijk) and Eq. (17) follows. For F,'', one can
show in the same manner that the second and third terms
in Eq. (A4) are equal to the first, so that Eq. (18) also fol-
lows immediately.

One can generalize the above results to any n ~ 2 in the

to calculate the total pressure. In an MD simulation, it is
most efficient to calculate the energy, pressure, and forces
at the same point during a time step. This necessitates
calculating the potentials un and their derivatives

Bv„/BR; and Bu„/BQ for a given ion configuration. The
pair-potential terms v z, Bvz /M, .J-, and Bv2/BQ present no
difficulty in this regard and can be evaluated by direct in-
terpolation from corresponding one-dimensional tables.
For the multi-ion-potential terms, however, the analytic
nature of v3 and v4 in the MGPT now becomes of cru-
cial importance. As can be inferred from Eqs. (9) and
(10), the explicit volume dependence of these potentials is
contained in a prefactor of each term. Thus the volume
derivative of each term is proportional to the term itself,
so that Bu3/BQ and Bu4/BQ can be evaluated directly
from the corresponding components of u3 and v4. The
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analytic forms of Bv3/t)R; and t)v4/BR;l, on the other
hand, are much more complicated due to the complex na-
ture of the angular functions L, P, and M. It is more
efficient in this case to calculate these derivatives numeri-
cally. Because the multi-ion potentials themselves are an-
alytic, this can be done very accurately by evaluating U3

and U4 at a second ion configuration only infinitesimally
displaced from the first. Thus all multi-ion terms can be
evaluated by calculating v3 and v4 exactly twice at each
time step.

The inclusion of three- and four-ion angular forces in
the MGPT necessarily means that our multi-ion MD
simulations are much more time consuming than ones
which include radial forces alone, such as those with v2 .
Nevertheless, the above scheme is quite tractable, espe-

cially if implemented on a state-of-the-art workstation or
via parallel processing. Depending on the computing en-
vironment and the specific application, one can expect
running times in the range of 0.02 to 0.2 seconds per time
step per ion with this scheme. In this regard, all of the
multi-ion MD calculations presented in this paper have
been performed on an IBM RISC/6000 model-320
workstation, which is at least a factor of 2 slower than
state-of-the-art models, with an average running time of
about 0.18 seconds per time step per ion. %e also believe
that multi-ion MD simulations can probably be made
considerably faster in the future by finding an optimized
representation of the four-ion angular function M, the
evaluation of which is the single most time-consuming
operation during each time step.
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