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Line-shape description for Mossbauer conversion-electron and transmission geometries
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We derive an approximate integral line-shape expression for conversion-electron Mossbauer spectros-
copy and for the single-foil microfoil internal conversion-electron detector, which includes asymmetry
(interference) effects, finite thickness of foils, and the presence of resonance absorption in the source ma-

terial. We then give an analytical expansion that is equivalent to this integral expression and which is
usable for computer least-squares fitting. We also give the exact integral line-shape expression for
Mossbauer transmission experiments using finite thickness absorbers, which includes asymmetry effects
and source resonance self-absorption, along with its convergent analytic expansion. The inclusion of
hyperfine interactions and the practical approach to using the line-shape analysis to minimize the corre-
lation of parameters is discussed.

I. INTRODUCTION
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FIG. 1. Geometry of a MICE detector.

The line shape found using conversion-electron
Mossbauer spectroscopy (CEMS) represents the intensity
of electrons emitted from the face of a resonantly absorb-
ing material as a function of a Doppler velocity (of source
or absorber). In general only the backscattered electrons
are measured, and the line shape in this case is described
by C (x}, where x represents the Doppler velocity and
C (x) the number of counts associated with x (counts
per channel).

In standard conversion spectroscopy thick foils are
used to achieve sufBcient y-ray absorption. But these
thicker foils result in loss of electron detection since elec-
trons emitted deep within the foil tend to be reabsorbed,
or their energy greatly diminished, before they can reach
the surface. An alternate method is to use a microfoil
internal conversion-electron (MICE) detector. ' The
MICE detector, shown in Fig. 1, uses multiple very thin
foils placed in tandem in the y-ray beam, with collection
wires placed between the foils, which allows the emitted
electrons to escape the foil while retaining appreciable
absorption, since the multiple foils can have an apprecia-

ble total thickness. In the case of a single-foil MICE
detector, the line shape of the backscattered electrons,
C (x), as well as that of the forward scattered electrons,
C+(x}, can be measured. As mentioned in Ref. l, the
MICE detector also offers significantly increased percent
effect for certain favorable cases over that attained by
transmission Mossbauer experiments.

In both conversion and transmission experiments the
use of incorrect line-shape analysis, such as Lorentzians
which fail to correctly take into account finite absorber
thickness, results in an incorrect determination of line-
shape parameters. This includes inaccuracies in com-
monly measured parameters such as line width, as well as
the Mossbauer asymmetry parameter, P, which arises
from interference effects between resonant nuclear and
nonresonant inner shell electron processes. Another
source of error is due to the presence of significant source
resonance self-absorption (SRSA), which may affect the
returned best-fit parameters adversely if not accounted
for correctly. Our line-shape expression for conversion
and single-foi1 MICE detectors is an approximation
which includes SRSA and the effect of finite absorber
(electron source) thickness. We also give the theoretical
expression, including SRSA, for finite thickness absorber
transmission experiments. The transmission case was
originally worked out in Ref. 7, but that presentation has
since been found to contain an error when SRSA is
present. This error was not in the functional form, but in
some of the constants that appear in the final expression.
We accordingly give the corrected expression here. Since
the mathematical details involved in solving for the in-
tegrals that appear in both the transmission and conver-
sion cases are rather involved, and since they have been
well explained in Ref. 7, we have not repeated them here.
Both the conversion and transmission line shapes below

0163-1829/94/49(18)/12425(6)/$06. 00 49 12 425 1994 The American Physical Society



12 426 R. A. %'AGONER AND J. G. MULLEN 49

are for single line source and absorber systems, although
the integral forms can be modified to include hyperfine
interactions as we discuss in Sec. V.

II. CONVERSION LINE SHAPE

t„(1—4Px')
t, (x')= +t„,,1+4x' (2)

where the source Mossbauer (resonant) thickness number
is given by

fsoCTonsos

and f„is the source recoilless fraction, n, is the total
mass per area of all types of atoms in the source material,
a, is the fraction of n, that are of the Mossbauer type,
and 0, is the maximum resonant y-ray-absorption cross
section. The total nonresonant attenuation thickness
number t„,is given by a„,n„where o.„,is the non-
resonant absorption cross section for the source material.
We solve for C, by choosing a normalization in which
w, (y) integrated over all energy space is equal to the in-
tensity of the resonant y rays per unit energy (i.e., per
channel) in the beam incident on the absorber, given by
f,C„where C, is the total counts of y rays (resonant and
nonresonant) per channel in the incident beam, and f, is
that fraction which are resonant. From this we have

C, (1—e "'Hrp

f w, (y)dy = =f,C, , —
oo 2tns

(4)

from which

The distribution of resonant y rays emitted from a
source when SRSA is present is given by

—t (x')
1 —e

w, (x') =C,
t, (x')[1+4x' ]

where x'=(E E, )/—I, E the y-ray energy and E, the
transition energy as measured in the rest frame of the lab,
I is the Heisenberg level width, A/~, and

where the resonant absorption cross section with interfer-
ence is

cr„,(x') = X(2x'),I

na

and the Mossbauer thickness number for the entire width
1S

t =f,o,a, n, , (10)

with f, the recoilless fraction of the absorber ME nuclei.
The resonance behavior of the y-ray cross section, in-
cluding interference effects, is given by the term

X(x')=(1—2Px')/(1+x' ) .

The nonresonant y-ray absorption cross section for the
absorber material is given by o.„„wherethe nonresonant
thickness number for the entire width is t„,=O.„,n, .

We consider the electrons emitted (at all angles) in the
forward (+) direction, that is, the face the y-ray beam

work [Eq. (29)], by the factor shown in the denominator
of Eq. (8). The two expressions are the same in the limit
where t is small, a condition that usually holds in good
line-shape experiments, where there is little source reso-
nance self-absorption.

The source is Doppler shifted relative to the conver-
sion detector at a velocity U, the y-ray distribution in-
cident on the conversion detector is w, (X), where
X =x' —x, x =(E, E„—)/I, and E„represents the
difference between the transition energy of the source
Mossbauer efFect (ME) nuclei and the absorber ME nuclei
in the conversion detector. A schematic of the conver-
sion y-ray absorber and electron source is shown in Fig.
2, which we assume has a total mass per area of all types
of atoms given by n„ofwhich a fraction a, are
Mossbauer absorbing atoms. The resonant y-ray intensi-
ty reaching the slice dn, is given by

I (x,x') =w, (X)exp[ —(o.„(x')+o„,)n],

2t„,f,C,
C, =

(1—exp[ —t»])mp

where

(2k)!rkt"
4k(k t)2

(6)

t„,( —1)" - ( —t„,)"
(1 IIs)k~ 0 n!(k +n +1)

The fraction f, is less than the recoilless fraction of reso-
nant y rays, f„,produced in the source, since some y
rays are resonantly absorbed (SRSA) before they can exit
the source. The two fractions are related by
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The expression given in Eq. (8) diff'ers from our earlier
FIG. 2. Diagram of an absorber used in conversion spectros-

copp.



49 LINE-SHAPE DESCRIPTION FOR MOSSBAUER CONVERSION-. . . 12 427

exits (see Fig. 2). The number of both internal conversion
and photoelectrons emitted in the forward direction from
the slice dn is given by I(x,x')[o, +. (x')+o +]dn, where

o, +(x') is the cross section for conversion electrons to be
scattered in the forward direction, and o + is the similar
cross section for photoelectric emission. We can write
these scattering cross sections in terms of t and t„,by as-
suming that the photoelectric scattering is proportional
to the nonresonant absorption, and that internal conver-
sion electron emission is proportional to resonant absorp-
tion, so that

r, +tX(2x ')
cr, +(x') =r, +o „(x')=

(12)
r, +

&p+ = rp+4 na
na

where rp+ and r, + are the fractions relating the scatter-
ing to the corresponding absorption cross sections. These
scattered electrons must then pass through (n, n) m—a-
terial before they can emerge from the forward face and
contribute to the measured signal. The absorption of
charged particles which undergo multiple scattering is
rather complex, but we assume that the attenuation of

I

these electrons, totaled over the whole forward hemi-
sphere, is approximately exponential, ' so that the at-
tenuation is given by exp[ —t, (n, n—)/n, ], where t, is
the thickness number for electron absorption (averaged
over all forward angles) for the entire width of the ab-
sorbing material (corresponding to n, }. The probability
for electron emission from the forward face due to reso-
nant y rays corresponding to Doppler shift x, is then

P+ (x,x') = w, (X)[r,+tX(2x')+ r~+t„,]e

Pl

X n exp —t 2x'
0

+r„, r, )n/—n, ] . (13)

This expression can be easily integrated, and it and an ex-
pression obtained in a similar manner for electrons eject-
ed from the backward (—) direction, and the two line-
shape expressions written as a single mathematical equa-
tion. The total signal (electrons counted) due to resonant

y rays in either the forward (+) or backward (
—

) direc-
tions, is then given by integrating over all y-rays energies
x' yielding

2a+C,f,t„, „1—exp[ —t, (X)] [r,+tX(2x')+rzzt„,]R+(x)= ', I l —exp[ (tX(2x')+—T+)]Jdx' .
~ (1 e '») —~ t, (X)[l+4X ] ~ 2x +~y (14)

where R+(x) gives the electrons emitted as a function of
x in the forward direction, and R (x } gives the same in
the backward direction, using the following definitions:

Tg =t„,Wt, ,

a+ =exp[ t, ], —

a =1.

The number of nonresonant y rays per channel in-
cident on the absorber is given by (1 f, )C„and th—e
number of electrons ejected in the forward (+) or back-
ward (

—
) direction due to these nonresonant photons is

given by

(1 f, )C,r ~t„,a~-
N~ = [1—exp[ —T+]I .

+
(16)

The total intensity of electrons emitted from the absorb-
ing material out either face is therefore

C~(x}=N~+Rg(x},
where again C+(x) describes the total number of elec-
trons emitted in the forward position, and C (x) de-
scribes the total backscattered electrons. Throughout
this analysis we neglect background from general sources
and downscatter from higher-energy source radioactivity.
This is a good description if a monochromating filter is
used, as in most of our 46.5-keV tungsten work. Because

of the lack of energy discrimination in CEMS and MICE
measurements, such a filter is highly desirable to enhance
the signal to continuum counts. If this is not done anoth-
er term is needed to account for this additional back-
ground, which is not described by N+ or N . In most
CEMS detectors, only C (x) is measured and large
thicknesses are used such that t, ~~. When applied to
the MICE detector, this line-shape describes only the first
MICE foil, the description for subsequent foils requires
modification due to the fact that the y-ray distribution
incident on them has been altered by the resonant and
nonresonant absorption that takes place in the preceding
foils.

It should be noted that the use of Eq. (12) in the line-
shape derivation, where 0.,+ is considered proportional to
cr„,is incorrect. The value of P in w, (y) and in o„is
that for resonance absorption, and is due to interference
between the total nuclear resonance and Rayleigh scatter-
ing, and interferenee between the total internal conver-
sion and photoelectric scattering. The p value calculated
in Refs. 5 and 6 corresponds to this absorption interfer-
ence value. Specifically, the interference parameter for a
given multipole transition' is p = [a/( 1+a ) ]p,
+ [1/( 1+a }]pz, where a is the internal conversion
coefficient, pc arises from conversion and photoelectric
interference integrated over all angles, and pR is a similar
term arising from interference between Rayleigh and nu-
clear resonance scattering. The interference value in o.,+
is related to pc, since it too arises solely from interference
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between internal conversion and photolectric scattering,
but is averaged only over the forward or backward hemi-
sphere. So while the symmetric part of 0.,+ is propor-
tional to o„,the asymmetric (interference) part is not.
However, this assumption of equality will generally be
good if the Rayleigh contribution to p is negligible, as is
often the case, and/or the internal conversion coefficient
is such that a/(1+ a ) = 1, so that P~P~, and the conver-
sion interference values averaged over the forward and
backward hemisphere are approximately equal to each
other and hence to P. One can also measure the forward
and backward signal simultaneously [C+(x)+C (x)] so
that the asymmetry of the two sides are averaged over,
decreasing any error due to the difference between the
forward and backward conversion interference effects.
Although these considerations may cause problems as to
the correct physical interpretation of P returned from a
least-squares fit, the use of P in such fits will correctly ac-

count for the asymmetry in the data, hence ensuring that
the other line-shape parameters are not distorted. This is
particularly important in measurements of line position
U„where failure to take line-shape asymmetry into con-
sideration can lead to significant errors in the returned
line-position values.

III. ANALYTIC EXPANSION
FOR CONVERSION LINE SHAPE

The integral expression for R z(x) can be solved using
numerical integration techniques such as Gaussian-
Legendre methods. We also give here an analytical ex-
pansion based on the Fourier convolution theorem. This
method was given in Ref. 7 in detail for the transmission
case and here only the results for the conversion case are
given. Specifically

(1 f, )rp~t-„,
C+(x)=C,a~ (1—exp[ —?'+ ])

+

fsrc+ k rp+tna @m+ g g gr t t A, O', — D„, (x)fS j, P! IFl +i,j,Pl (18)

where

( —Tg)"
=(m+1) g

n =0

( —1) +j2j '(2m —j—1)!
4 m!(m —1)!(m —j)!(j—1)!

(19)

(20)

p = 1, and only k =0 contributes to the expansion
(r, =1), as can be seen directly from Eq. (7) above. The
values of Dk j (x) must be solved for each k value, the
values up to k =3 are given in Table I, which we find
sufficient for t„&1, as is usually the case. The values of
2 (x) and cP, (x) can be found recursively by

When T+ ~0, a condition which often holds when using
a single-foil MICE detector, the term in Eq. (18) enclosed
in square brackets approaches 1, and the resulting expres-
sion for R +(x) has the same functional form and is a mir-
ror image of that found in the transmission case [see Eq.
23)]. The k index in this expansion represents the contri-
bution of SRSA via t„,when SRSA is negligible, t„=0,

1
Sz(x) =

1 +x
and

2 x
cP2(x) =-

(1+x ) (1+x )

2,(x)=8,(x)=0 .

Si(x)= z, 8,(x)=2 x
1+x 1+x

(21)

TABLE I. The Dk; (x ) terms, where 2, =2, (x ), and 8, =8,(x ).

Dk, (x)

2j —4mP[(j —1)cPj,+8j }
+2m (m —1)P [(j—1)(j 2)Jj z+2(j ——1)2j,+Jj }

—,
' [8,—cPj+, }+2PP,+,

+2mP[( j—1)Zj-,+ (2 j)d"j—8j+,}—
[3~j 3~ +I+~j+2} p[+j+2 ~j+1}

+ —'mP[3(j —1)d'j, +3(2—j)cPj+(j —4)8j+, +8j+,}

—', [15'—15'+,+6Sj+2—Sj+,}
—

—,
' p[3+j+2—3+j+i—+j+3}

+—„mp[15(J—1)cPj,+15(2—j)cPj+(6j 21)Pj+,+(7 J)d—,+, d'j+3}— —
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8 (x)= (1—j)
1+x

2(x)+S &(x)

~(x)+dj, (x)

(22)

In general, no more than 25 m terms (and so 25 j
terms) are needed in the expansion to give correct results.
The experimenter should of course vary these values
themselves to ensure suScient convergence in any partic-
ular case.

IV. TRANSMISSION LINE SHAPE

S nSC(x)=C, 1 f,+-
np(1 —e "'}

X w, X exp —t 2x' x' ', (23)

where w, (y) is given by Eq. (1). Unlike the conversion
line-shape expression, this expression involves no approx-
imations, the absorption of y rays is clearly known to be
exponential and the P value has a clear theoretical inter-
pretation in the transmission case. ' The analytic expan-
sion for this line shape is

C(x)=C 1—

(24)

V. HYPERFINE INTERACTIONS
AND PARAME1KR CORRELATIONS

In this paper we have shown how to express the convo-
lution integral for the line shape for both transmission
and conversion-electron ME experiments, and we have
given a method for expanding the convolution integral as
an analytic convergent series. The results of our analysis
are summarized in Eqs. (14} through (20) for the
conversion-electron case and Eqs. (23} and (24) for the
case of transmission geometry.

In Mossbauer transmission experiments what is de-
scribed by the line shape C(x) is the y-ray intensity that
passes through the absorber as a function of the Doppler
shifted energy E,vlc This. geometry involves a y-ray
source, a resonant absorber, and a y-ray detector that
measures the y rays that successfully pass through the
detector. The source and absorber are Doppler shifted
relative to each other by velocity v. Since resonant ab-
sorption is maximum at resonance, the transmission is a
minimum at resonance and maximum at ofF resonance. If
the intensity of y rays per channel incident on the y-ray
detector is given by C„then the number of them that are
nonresonant is just f,C„where again f, is the efFective
source fraction of the beam and not the true source
recoilless fraction [see Eq. (8)]. The recoilless part is
again given by an integral expression, and the complete
line shape for transmission, including SRSA, is

Modern high-speed computing techniques have made
the need for an analytic expansion more of a source of in-
sight and a reducer of computer time than a necessity. It
is possible to vary the line-shape parameters directly
within the convolution integral using acceptable times on
super and minisuper computers commonly available. A
very direct illustration of this direct evaluation of the
convolution for a rather complicated case is given in a re-
cent paper by Wagoner, Mullen, and Schupp. "

Although the analysis which we have given here is for
unsplit and unpolarized ME photon beams, it is possible
to generalize the analysis to include hyperfine splittings in
the line-shape description.

For an unsplit and unpolarized source with a hyperfine
split absorber, configured i.n transmission geometry, the
transmission integral given in Eq. (23) will require
modification of the argument of the exponential term in-
side of the integral. It is at this location that the
mathematics must be modified to accommodate the addi-
tion of hyperfine interaction physics. For example, sup-
pose that the absorber was polycrystalline and known to
have a quadrupole doublet. We would have to modify
the generalized Lorentzian term by replacing the single
term with two terms. For random orientations in the ab-
sence of any asymmetry to the recoilless fraction, we
would replace

X(x ')~ ,'X [(2x'+—e)+X(2x' e)], — (25)

where e is the quadrupole splitting in the dimensions of
the level line width.

This modification in Eq. (23) leads to some complica-
tions in making an analytic expansion as new cross terms
arise. With current computer capabilities the best way to
deal with these complications is to vary the line-shape pa-
rameters directly within the convolution integral, and
avoid the mathematically tiresome process of expanding
into an analytic series.

In the above special case, if the two lines were not of
equal intensity, either because of a nonrandom distribu-
tion of crystallites or due to an anisotropy in f, then the
two Lorentzian terms in Eq. (25) could be assigned
coefficients c1 and c2, whose sum is unity and whose rela-
tive values are varied to optimize the agreement between
the transmission integral expression (23) and the experi-
mental data. Seeking this additional data, of course, re-
quires adding one additional parameter to the line-shape
fitting program.

For magnetically split spectra such as could arise with
the 14.4-keV or 46.5-keV ME transitions of Fe or ' W,
either resolvable or not resolvable six-line hyperfine pat-
terns are expected. This case would require a six-term re-
placement in the exponential instead of two as shown in
Eq. (25). If the direction of the field is known then the
coef5cients of the six terms can be directly put inta the
transmission integral. For example, if the B field is in the
plane of an ME foil, then the coef6cients are in propor-
tion to 3,4, 1,1,4,3, with a factor of 16 in the denominator
to normalize the coefficients to unity. With a random
orientation of fields, only the relative intensity coefficients
will change. Unless some constraints on the intrinsic in-
tensities are imposed for these cases the number of pa-
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rameters quickly becomes excessive, but this is also true
when data are fitted with simple though incorrect
Lorentzian functions.

Even in the absence of hyperfine interactions the appli-
cation of these equations to the fitting of experimental
data requires care because of the very high correlation of
certain of the line-shape parameters. For example, t„,t,
and I all strongly correlate when fitting experimental
data, a point that we discussed in detail in an earlier pa-
per. ' To reduce these correlations it is usually advisable
to keep t„small compared to unity or to carry out an in-
dependent measurement to find t„.The other correla-
tions can be greatly reduced by fitting simultaneously two
or more sets of data, taken with absorbers having
differing thicknesses, or simultaneously fitting data for
several temperatures with known constraints.

In principle, all of the parameters describing an unsplit
line, viz. , t„,f„,t, I', P, C„andv„canall be extracted
from sulciently precise data. In some cases even the
internal conversion coelcient can be found, as was done
for the 46.5-keV line of ' W by Bullard, Mullen, and
Schupp' (see Sec. 5 of this reference). Since the wave-
lengths of most ME transitions are well known, this
means that the cross section can be found for some cases
from the line-shape parameters.

It should be mentioned that the six line-shape parame-
ters used in the fitting of a complicated spectrum can
often be fixed from earlier experiments. Thus, the width
of the ' W 46.5-keV line is now well known from our
earlier work, as well as the interference parameter.
Hence, these parameters can be inserted into fits and do
not need to be varied as they are invariant for differing

materials.
In the conversion-electron measurements the analysis

given here requires an additional assumption compared
to the transmission case, viz. , that the effective likelihood
of an internally converted electron registering as a count
falls off exponentially with the distance from the surface
of the foil to the place where the resonance absorption
occurs. This assumption cannot be strictly true, but ap-
pears to be a reasonable approximation that leads to a
tractable mathematical analysis and result. Careful line-
shape studies would be most interesting for conversion-
electron detectors and would directly test the exponential
falloff assumption used in this analysis.

One interesting result of this analysis that was men-
tioned in one of our earlier papers' is that the
conversion-electron ME line is a mirror image of the
transmission line only to a first-order approximation.
Since there is a passion in the ME field to fit all data to
Lorentzian functions, using the width as an experimental
parameter, this difference may appear academic, but as
we have already noted, ' the Lorentzian fit to data gives
all of the parameters of interest, such as recoilless frac-
tion and interference, seriously in error. These effects are
much greater than is generally appreciated by workers in
the field.
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