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Mass of a vortex line in superfluid 4He: Effects of gauge-symmetry breaking
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In previous works the mass of a vortex line in super6uid He was argued to arise from the tiny
core of the vortex. We show that due to gauge-symmetry breaking, the condensate compressibility
contributes to a vortex mass that far exceeds the core mass. This large vortex mass should play an
important role in some problems of vortex dynamics.

A quantized vortex is a topological object that gener-
ally exists in a variety of materials called quantum liquids
and solids, including the Bose superfluid 4He, ~'2 type-II
superconductors, and the Fermi superfluid He. A vor-
tex consists of a normal core region of the size of the
coherence length (, and an outside region of circulating
supercurrent. The rectilinear vortex lines form Abrikosov
lattices inside superfluid He and superconductors. Dur-
ing the last two or three decades the vortex dynamics of
this lattice was closely studied in rotating superfluid 4He

(Ref. 5) both theoretically and experimentally. Differ-
ent kinds of collective modes of the vortex lattice have
been studied, including the "inertial-wave" mode due to
a finite vortex mass (e.g. , Refs. 6 and 5), the interest-
ing "Tkachenko mode, " and so on. While in supercon-
ductors, vortex dynamics is of both theoretical interest
and practical importance: the eventual industrial use
of superconductors in energy transport is restricted by
the critical currents of the superconductors, which is in
turn determined. by the interaction between vortex lines
and thermal quasiparticles. Ever since the discovery of
the layered high-transition-temperature cuprate super-
conductors, the study of vortex dynamics has become a
rapidly expanding field. A short review can be found in
Ref. 8.

The dynamics of an object is dictated by Newton's
second law, F = may„a, namely, the total force F acted
upon the object equals the dynamic mass may„ times the
acceleration a. One can see that mQyn is the most impor-
tant intrinsic property of an object in its dynamics. In
the case of a vortex line F usually includes interactions
due to other vortex lines, viscous force, and the Magnus
force. Regarding the dynamic mass, the conventional wis-

dom is that may~ is identical to the inertial mass m;„„t
determined from the kinetic energy m; „iv2/2 of the ob-
ject with velocity v, which is usually correct. The in-
ertial mass of a flux line in a type-II superconductor is
well studied. Corresponding to diferent origins of the
kinetic energy, various inertial masses have been identi-

fied, such as the core mass, the electromagnetic field

mass s (see discussions in Ref. 11),and the strain field

inertial mass. ' However, no consideration on the dy-

namic mass has been reported so far.
In contrast, the discussion on the vortex mass in su-

perfluid He is particularly poor and did not go beyond
a classical fluid model, so that the only obvious contri-
bution is from the normal core ' ' with m, „=~p(

per unit length of the vortex line, where density p = mN
with m the mass of a 4He atom and N the bulk num-

ber density of 4He fiuid. f is extremely small and only
of the order of 1 A.. This small vortex mass is usu-

ally discarded in vortex dynamics except in the "iner-
tial wave" mode. ' In this paper, we show that due to
gauge-symmetry breaking and the topology of a vortex,
the condensate compressibility contributes to a vortex
mass which is much larger than the core mass. We calcu-
late both the inertial and the dynamic masses, they turn
out to be the same (as expected), and diverge logarith-
mically with the system size. We start by noting that the
superfluid He is compressible, as manifested by the ex-
istence of the hydrodynamic density sound (first sound).
A superfluid system possesses an order parameter with
its phase S(r, t) describing the motion of the condensate.
The superfluid velocity is defined as

For a slowly varying nonuniform condensate the order pa-
rameter P(r, t) can be written as (see Ref. 18, Chap. 10),

P(r, t) = e' ~" i[1+A(r, t)je '"' ~nq (2)

Here no is the uniform condensate number density
which depends on temperature. In this paper we con-
sider the zero temperature limit where no ——N. p,o is
the chemical potential for the static uniform condensate.
The square of the amplitude of P equals the conden-
sate density, so that A describes the superfluid density
change. For a small deviation &om the equilibrium state,
the changes of the chemical potential and the superfluid
density are related to A by bp(r, t) = (ms2/N)h p(r, t)
2ms2A(r, t) with s the characteristic sound velocity. The
dynamic equation for the condensate is

BS 1+ —mv, = —bp.
Ot 2

We note that if the first term (MS/Ot) is absent,
Eq. (3) is just the Bernoulli equation for classical fiuids.
The first term makes all the difference between a super-
fluid and a classical fluid, and there is a direct physical
origin to this term: due to gauge-symmetry breaking, su-
perfluid number density and the order parameter phase
are a pair of conjugate variables. The rate of the phase
change (hBS/Bt) corresponds to the superfluid density
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change.
To see the implications of Eq. (3) in vortex dynam-

ics, we consider, for simplicity, a static rectilinear vor-
tex line at the origin of an infinitely large superfluid
system. Remember that a vortex is a topological ob-
ject with a 27r phase change around it, determined by
the single valuedness of the many-body wave function.
We choose the vortex line pointing along e„with a
supercurrent circulating counterclockwise. In polar co-
ordinates (r, 8) at point r the supercurrent velocity is
v, (r) = (5/m)VS(r) = (h/mr)es with es the unit vec-
tor along the 0 angle. Now give the vortex an instant
velocity v = ve with respect to the superfluid back-
ground, and the superfluid velocity is still zero at in-
finity. In common with previous works, we use the
adiabatic phase assumption, that is, the vortex motion
is slow enough such that the phase will adjust and is

only determined by the relative position of any point
with respect to the center of the vortex. In other words,

S(r, t) = S(r —vt), and we consider the t -+ 0 limit.
Note that an acceleration a of the vortex can also be in-

cluded, but it does not play any role in the t ~ 0 limit.

By definition v, (r, t m 0) = v, (r), and it is clear from

Eq. (3) that the only change of the chemical potential
is due to hBS/Bt = —hv VS. This leads to a global
density change (for r ) () caused by the moving vortex

Nhv sin8
b'p r

S T

We can estimate the relative change of the density by
noting that the coherence length f = (h/ms) due to
the Heisenberg indeterminism since m8 is the character-
istic momentum scale for the superfluid system. Tak-
ing s 2 x 102 m/s (Ref. 18) we estimate ( 1 A. ,
which is indeed the correct magnitude. The order of
magnitude of the relative change outside the core region
lbp(r)/pl ((/r)(v/s) (( 1 for slow motion (v/s (( 1).
So the superfluid density of the whole system is perturbed
by a moving vortex line. This density change is linearly
proportional to the velocity v, and decays slowly as the
inverse of the distance &om the vortex center. The den-
sity change possesses a dipolelike distribution and satis-
fies the global superfluid continuity equation, where the
maximum density change lies along the line perpendicu-
lar to the vortex velocity. To the best of our knowledge
the density change in Eq. (4) has not been discussed be-
fore in the context of superfluid He. In the following we
calculate the changes in energy, momentum, and angular
momentum separately due to this density distribution.

First let us consider the energy change for a unit length
of the vortex line. Computed to second order in the den-
sity fluctuation, the energy change is

where u is the energy density and 82u/Bp2 = py/pp =
ives /N. One can see that E is proportional to v since
&p(r) is linear in lvl. This energy can be defined as the
kinetic energy m;„„tv /2 of the vortex line. After the
areal integration we get the inertial mass

P= drbprv, r

leads to P = md„„v, with the dynamic mass given by

L
mdyn = mcore ln minert ~ (8)

which is expected.
Third we consider the change of the angular momen-

tum of the superfluid. This can serve as a self-consistency
check, since, by definition, a quantized vortex forbids any
continuous change in the angular momentum. The dipo-
lar distribution in Eq. (4) does not change the total
angular momentum and f d2rhp(r)r x v, (r) = 0. So a
quantized vortex remains well defined.

With the above results on vortex mass, let us discuss
some theoretical as well as experimental consequences.
The most direct manifestation of the vortex mass is the
so-called "inertial wave" mode, whose existence is purely
due to a nonzero mass of a vortex. ' A direct calculation

by Baym and Chandler shows that the mode frequency is

approximately inversely proportional to the vortex mass
[see Eqs. (83)—(85) in Ref. 6]. The core mass m, „was
used, and the result of the inertial mode &equency is
suKciently high that Baym and Chandler began to ques-
tion the validity of their calculation on the basis of hy-

drodynamics. We point out that they missed the more
important contribution to the mass from the outside of
the vortex core. Using our result [Eq. (6)] one can easily
reduce their calculated inertial mode &equency by one
order of magnitude.

Previous theoretical works on the vortex dynamics in

(ti) L L
m;„„i ——7rNm

l l
ln —= m, „ln —,

(ms)

where L is the sample size. For a practical superfluid sys-
tem ln(L/() 20—30, so the m;„„t is much larger than
the core mass m, , In terms of the vortex static energy
E'p which is also logarithmically divergent as the sample
size (e.g. , Ref. 18), we have m; „t = eo/s, in agreement
with the general dimensional arguments. ' Note that
the density fluctuation energy, which in our case is pro-
portional to f (BS/Bt)2, is actually the origin of the time
variation term j [BA/Btl2 (with 6 the order parameter)
in the time-dependent Ginzburg-Landau theories for a
Fermi superfluid near T = 0.

Second we consider the total momentum P of the
system outside the vortex core. Newton's second law
F = dP/dt implies that the dynamic mass can be ob-
tained &om P. Note that if there were no density change
the net momentum of the superfluid would be zero, since
the superfluid velocity v, (r) = (h/mr)es has perfect ro-
tational symmetry. We look at the system &om the z
axis. With a counterclockwise circulating supercurrent,
the density decrease in the half space (sin8 ) 0) con-
tributes to a momentum along the z axis (i.e., parallel
to v), while the density increase in another half-space
(sine ( 0) also contributes a momentum along v. Hence
the total momentum P is nonzero. A direct simple inte-
gration of
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superHuid He are based on the equation F = ma, and
the right-hand side of the equation is set to zero due to
the smallness of the core mass. 5 So the dynamic equation
for a vortex is that the summation of the forces equals
zero. A large mass in Eq. (6) should not be arbitrarily
ignored. Based on dimensional grounds, the right-hand
side of the equation for vortex oscillations (i.e., the ma
term) should contribute a term of (u/s) to the disper-
sion of the collective oscillations, with u the correspond-
ing &equency.

In an inBuential paper, Muirhead, Vinen, and Don-
nelly used the core mass m, „as the vortex mass to
calculate the quantum nucleation rate of a vortex ring.
Since the vortex mass may inBuence the quantum nucle-
ation rate exponentially, one must be careful to use the
correct vortex mass. We estimate that in addition to the
m, „,one should include a dynamic mass of the order
ms„„= m, „ln(R/g), where R is the radius of the vor-
tex ring. For any reasonable size of R (R » (), ms„still
dominates over m, „.Note that the radius R replaces
the sample size L in Eq. (6). This is an example showing
that the total mass of an assembly of vortices is not the
simple addition of the masses belonging to each individ-
ual vortex —one should take into account the effect due
to interference of the phase of the order parameter.

In a recent paper, Niu, Ao, and Thouless strongly
argued that the vortex mass cannot be greater than the
core mass unless, e.g. , a heavy ion is trapped inside the
vortex core. In view of our equations (6) and (8), their
argument is incorrect. A large vortex mass makes their
suggestions of quantized Landau Levels for a vortex less

appealing.
Finally, without giving any details, we mention our

calculations for the dynamic mass of a vortex inside a
bulk superconductor or a thin superconducting film. In
a superconductor the screening for a charge density and
a current density are described by the Debye shield-
ing length and the London penetration depth separately.
The charge density distribution corresponding to Eq. (4)
is greatly reduced due to the Debye screening. The in-
ertial mass based on energy considerations of the charge
density deviations is the previously called "electromag-
netic mass" mEM (see results and discussions in Ref. 11).
Now we calculate the total momentum of the system due
to the density change. Using the expressions for the
charge density and the formulations in Ref. 11, we find
that the results for dynamic masses are identical to the
corresponding inertial masses given in Ref. 11.

I recently became aware of the work by Popov. By
mapping the vortices and phonons into charged particles
and photons in relativistic electrodynamics, he reached
the conclusion that the vortex inertial mass equals the
vortex static energy divided by the square of sound ve-
locity.
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