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Low-field diamagnetic response of granular superconductors at finite temperatures
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We study the low-field diamagnetic response of granular superconductors at finite temperatures by
means of a simple two-dimensional Josephson-junction array. The temperature e8ects are taken into ac-
count by inserting white-noise current sources in parallel to the resistivcly shunted junction circuit mod-
els of the Josephson junctions of the network. By this analysis we argue that a simplified one-
dimensional description of the equivalent circuit, proposed by the authors for cylindrical granular super-
conductors, is still valid even in the presence of thermally activated flux jumps. A flux-creep picture for
intergranular flux motion follows.

The diamagnetic response of granular superconductors
can be described by means of Josephson-junction (JJ) ar-
ray models. ' In particular, Majhofer, Wolf, and Dieter-
ich, taking into account shielding-current effects, have
studied the stationary magnetic states of a two-
dimensional (2D) network of JJ's coupled by inductances.
They found that the field distributions inside these junc-
tion networks is quite similar to those obtained analyti-
cally using a critical-state picture. When one considers
cylindrically symmetric samples in the presence of an axi-
al external magnetic field, a 1D circuit model can be
adopted under the assumption of strong enough grain
coupling. This simplified picture consists of concentric
superconducting rings interrupted by JJ's. In this model,
the structural inhomogeneity of the granular sample is
taken into account by averaging the coupling parameters
and the size of the integranular regions over an annulus
of width of the order of the grain radius.

In granular superconductors we make a distinction be-
tween intrinsic and extrinsic temperature dependence of
the magnetic variables. %'e denote as intrinsic the tem-
perature dependence of the superconducting variables as,
for example, the maximum Josephson current between
two adjacent grains. On the other hand, we denote as ex-
trinsic the additional T dependence coming from thermal
fluctuation effects, which are relevant due to the presence
of weak links among the grains. In order to analyze the
finite-temperature problem, in the present work we gen-
eralize the analytical and numerical study done in a pre-
vious work at T=O K on a simple 2D system consisting
of three concentric granular rings, each one containing X
grains (Fig. l). This generalization is straightforward,
since it consists in simply extending the resistively shunt-
ed junction (RSJ) model for each weak link by adding a
white-noise current source which simulates thermal fluc-
tuation efFects. Finally, we adopt the 1D model to derive
a flux-creep picture for intergranular flux motion in
granular superconductors.

In the system of Fig. l, the coupling Josephson energy
among the grains is taken to vary according to a Gauss-

ian distribution about the mean value
(Ej ) = ( Ijp )@pl2m', where ( IJp ) is the average max-
imum Josephson current at zero Geld. Two concentric
levels of intergranular regions of area So enclosing an
inner normal region of area S& are present. The physical
grains are placed at each node of the equivalent network
of JJ's and inductances, so that each pair of nodes is
separated by a JJ, whose phase difference is denoted by
pk;, where k is a radial index ranging from l to 5 and i
denotes the angular position of the JJ and ranges from 1

to 1V. The dynamic equations, neglecting capacitive
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FIG. 1. Simplified 2D network of Josephson junctions and
inductanccs. One rectangle contains an inductance I. and a JJ,
schematized through the RSJ model, as shown in the inset. The
currents I ' circulating in each integranular loop of area So and
the inner loop current I, are also shown.
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effects, can be written, following the same steps in previ-
ous work, as follows:
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where the index i ranges from 1 to N. The normalized
currents i/, '(t) (j =1,2) represent the contribution of the
white-noise current sources. In Eqs. (1) we use the nor-
malized quantities i J =I 1'/(IJp) and i, =I, /(Ijp),
which represent, respectively, the currents circulating in
the outer intergranular loops and that circulating in the
innermost loop of area S&. These currents are linked to
an appropriate linear combination of the phase
differences qk, via fluxoid quantization. The quantity

ak, ( T)=IJ
~ k, ~( T) /(IJp ) is the normalized maximum

Josephson current of the junction labeled with the index
pair (k, i) The cu.rrents IJ(t, ) have been taken to be field

independent for simplicity. The white-noise term i/, "(t),
by definition, is realized by the following conditions:

the normalized external flux V,„,=ppHSp/4p and let the
system evolve for a certain time tf, after which we record
the flux distribution inside the sample, which we take as
the starting point for the next step, as before.

We first solved Eqs. (1) for the T =0 K case by means
of an adaptive multistep Runge-Kutta-Merson algorithm
and by a standard Runge-Kutta (RK) method with prac-
tically the same results. In order to simulate the same sto-
chastic equations for TAO K, a discrete approximation
based upon a standard fourth-order RK method was
adopted. The stochastic part of the forcing term in Eqs.
(1) was taken to be a white-noise Gaussian sequence with
zero average value and with variance equal to cr ht,
where o is the amplitude of the variance given in Eq. (3),
and At is the adopted integration step. The following
choice of parameters was made: Pp=Lp(IJp)/@p=3. 0;
z =Sz/So=20. 0. The results are shown in terms of the
following normalized quantities: O';J' = 4&';J'/C&p and

4, =4, /4p, where 4';~' is the flux linked to the ith loop
in the jth row, and 4, is the flux linked to the innermost
loop.

One run was done at T=O K, and two were done as-
suming the system to be immersed in a finite-temperature
thermal bath. The first run ( T =0 K) was performed for
a system in which the values of the coefficients ak; are
taken to have a Gaussian distribution about the unitary
mean and to be randomly spread over the network. The
second two runs ( TAO K) were performed, respectively,
for a completely uniform system [ak, (0)=1] and for a
system in which the values of the coeScients ak; are tak-
en as in the first case. The value of the temperature was
chosen in such a way as to give 0.=0.05. In the second
two runs the following normalized integration-time value
was used: rf =2nR„tf/Lp =1001p where rp=27TLp/R»
The resulting curves for the flux numbers %z k versus
the applied flux are shown in Figs. 2, 3(a), and 3(b) for
T =0 K and for T &0 K. At T =0 K we reported the
presence of cylindrically symmetric stationary (CSS)

(i/!'(t)), =0; i =I, . . . , N; j =1,2, (2)

i, m =1, . . . , N; j,n =1,2, (3)

where the symbol ( . ), stands for time average and ks
is the Boltzmann constant.

We recall that in Ref. 4 the stationary solutions of this
system were obtained by starting from a stationary state
under zero-field-cooled conditions. After each small
enough increment of the external normalized flux, the
system was allowed to evolve to a new stationary state.
For the TWO K case, on the other hand, there do not ex-
ist stationary states for a single history of the system,
since the metastable magnetic states are expected to de-
cay with time. Therefore, the particular magnetic state
realized must depend on the total elapsed integration
time tf . In this case, then, our numerical analysis
proceeds as follows: we give a small enough increment to

FIG. 2. Normalized flux 4';" in the external row of inter-

granular loops of area So versus the normalized applied flux

The i label represents the angular position of the elemen-

tary intergranular loops. The system has been assumed to be

completely uniform [ak; = 1 for any pair (k, i)] and immersed in

a finite-temperature bath.
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FIG. 3. Normalized flux 4';" in the external row of inter-
granular loops of area So versus the normalized applied flux

The i label represents the angular position of the elementa-

ry intergranular loops. The ak; coupling coeKcients between
adjacent grains of the system are taken to be randomly spread
over the network and to have a Gaussian distribution about the
unitary mean. (a) and (b) are the results of two runs, one at
T =0 K and the other at TAO K.

states only for a completely uniform system, since the
JJ's are perfectly identical and the flux quanta penetrate
simultaneously in the external loops. One cylindrically
asymmetric stationary (CAS) state appears in Fig. 3(a) be-
cause of thermal noise, even in the homogeneous case. In
Fig. 2, where we report the stationary magnetic states at
T=O K in the presence of inhomogeneity, we notice a
greater number of CAS states, which link two ranges of
filed values in which only CSS states are present. The
magnetic states realized in the presence of thermal fluc-
tuations in the inhomogeneous case represented in Fig.
3(b) are similar to those of Fig. 2 except for a few states
near the transitions, in which some junctions tend to al-
low Aux quanta into the system at lower values of the
external flux.

From the above numerical results it can be argued
that, for increasing temperature, the value of the external
flux at which the system irreversibly admits flux quanta
decreases. At a constant temperature value one expects
that a similar effect could be detected with increasing in-
tegration times tf. We also expect a smoothing of the un-

(4)

We take this expression as the rate of jump of flux quanta
for any loop of infinitesimal thickness dr at a distance r
from the center of the sample containing n (r) JJ's. One
can suppose that this region is contained between two
loops of the circuit model adopted, one located at r, the
other at r+dr. The time rate of change of the flux in
that annulus is proportional to the difference between the
incoming and the outcoming rate of flux quanta, so that

dh (r) @0
2m.r dr

dt
n (r +dr)

po r(h(r +dr), J„T)
n(r) l

r(h (r),J„T)
where we assume that the penetration of flux quanta
proceeds inward in the sample. In order to obtain the to-
tal rate of change of the flux in the sample, we can in-
tegrate Eq. (5) with respect to the radial variable, obtain-
ing the following:

realistic steps of Fig. 3(a) due to thermal fluctuations. In
fact, in order to obtain statistically significant informa-
tion, we should average over a sufficiently high number of
histories of the type obtained for single values of T and
tf. When this average is performed, on the basis of the
results shown in Figs. 3(a) and 3(b), we expect that the in-
determinacy of the value at which flux transitions occur
will lead to a smoothing of the O'N k vs 0,„,curves.

We now see that the concentric-ring model can be
adopted for the study of the diamagnetic response of su-

perconducting granular systems even at finite tempera-
tures. In fact, the sequence of states realized in the pres-
ence of thermal fluctuations in the inhomogeneous case
presents the same CSS states as the completely symmetric
model. The only difference between these two cases is an
upward shift with increasing temperature of the flux
values at a fixed value of the external field H. This shift is
a consequence of the decrease with temperature of the
external flux values at which the system irreversibly ad-
mits flux quanta. Therefore, in order to take account of
the increase of the flux variables with increasing T for a
fixed value of H, one can opportunely readjust the
characteristic parameters of the model, that is, one can
introduce an extrinsic temperature dependence in the sys-
tem.

Let us now analytically study the phenomenon of
thermally activated flux jumps between adjacent inter-
granular sites by the concentric-ring model. Defining the
activation energy for flux motion E~ as the energy
difference between a relative minimum and the successive
maximum in the Gibbs potential, we may write, in gen-
eral, Es =Es(h, dh /dr, T). If some of the local states of
the system are located in the irreversible diamagnetic re-
gion of the H vs T diagram, the field distribution inside
the sample can be derived by some appropriate critical-
state model. '

We can start our analysis by writing the equation for
the relaxation time v for flux jumps as follows:

r(h T) Ea(h, T)
=exp
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where ( h ) is the average field in the sample of radius R,
and (1/p) is the ratio of the effective normal-region area
to the total area n R . From Eq. (6) and from the expres-
sion of the characteristic time r given in Eq. (4), we find
the logarithmic time rate of change of the field in the
sample,

N4, 1

din(tire) p~R 2p, o 1n[r(H, J„T)lro j

N@o kz T
(7)

p~R po Ett(H, J„T)jro
A similar result can be obtained for hollow cylinders.
Equation (7) is formally similar to the result of Kim,
Hempstead, and Strnad, despite the fact that we are con-
sidering a superconducting system of different nature.
We therefore argue that the problem of time decay of the
diamagnetic properties of granular systems seen as arrays

of Josephson junctions' " is formally similar to that of
type-II classical superconductors.

In summary, by taking account of finite-temperature
effects, we study the low-field diamagnetic response of a
simple two-dimensional Josephson-junction array.
Thermal effects are introduced by adding white-noise
current sources in parallel to the RSJ circuit models of
the Josephson junctions of the network. By this analysis
we argue that a simplified one-dimensional description of
the equivalent circuit, proposed by us for cylindrical
granular superconductors, is still valid even in the pres-
ence of thermally activated Aux jumps. The overall effect
of thermal noise on this 1D system consists in modifying
the characteristic intrinsically defined parameters of the
model in such a way that an additional extrinsic T depen-
dence coming from thermal fluctuations is added to their
intrinsic temperature dependence. It is finally shown that,
from the concentric-ring model, a Aux-creep picture for
intergranular fiux motion follows. This picture is found
to be formally identical to the classical Anderson-Kim
Aux-creep model. '
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