
PHYSICAL REVIEW B VOLUME 49, NUMBER 17 1 MAY 1994-I

Ground state of a low-density aggregate of deuterons in a uniform magnetic field
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Working in second quantization, the ground-state energy and eigenfunction of an interacting aggre-

gate of N spin-1 deuterons confined to a volume 0 in a charge-neutralizing background and immersed in

a uniform magnetic field B is estimated. The analysis is appropriate to the low-density limit in which

magnetic-field energy is large compared to particle-particle and spin-spin interaction energies. The re-

sulting ground-state energy is given by EG =NAcu, /2+ N(N —1)(e b, /0 ')I +N4 —p&BN
yfis2o—[N(N —1)/2], where cv, is deuteron cyclotron frequency, b, is a characteristic magnetic-field

length, 4 is background potential, p& is the deuteron magnetic moment, I represents a nondimensional

interaction integral and the constants f,y model spin-spin correlation and deuteron-deuteron overlap,
respectively. The coordinate component of the ground-state wave function is a product of Gaussian
forms whereas the spin component is the product of single-particle spin functions corresponding to spins

aligned with the imposed magnetic field.

Introduction. The nature of the ground state of an ag-
gregate of deuterons in a steady magnetic field comes into
play in the study of hydrogen-rich planets' 3 and, with
respect to the Bose property of deuterons, the possibility
of deuteron superfluidity. This study also finds applica-
tion to a Bose field of spin-aligned hydrogen ' as well as
to properties of interstellar pockets of deuterium.

For the most part, many-body studies in the past have
addressed spin-zero bosons relevant to superfluidity or
spin- —,

' fermions relevant to superconductivity as well as

Ising modeling of magnetic properties. ' In a number
of previous works' ' it was shown that a state exists for
a collection of spin-zero bosons interacting through a
two-body scalar potential which is spatially homogene-

ous. In the present work this configuration is extended to
the case in which particles have spin one and interact
with a uniform, constant magnetic field. It is further as-
sumed that the spatial extent of the system is large but
finite thereby limiting the magnetic energy to a finite
value. The system includes a neutralizing background
charge density ensuring overall charge neutrality.

The present study is relevant to a low-density aggre-
gate of deuterons with spin-spin interaction and interpar-
ticle interaction energies small compared to magnetic-
field energy. Estimates of the ground-state energy and
wave function are obtained in this limit.

Starting equations. Our starting Hamiltonian is given
by

2N
1H(r, , . . . , rtt;S, , . . . , SN)= g p; — — A(r,. ) +N4+ —g V(~r, —r ~))2M ' c 2~

N—(pD/A')g S;.B+—,'(pn/R) y g f(~r,. —r. ~)S S
i=1 l/j

where B=V X A is the imposed constant magnetic field
and A is its vector potential. The potential of the con-
stant neutralizing background is written 4, V( ~r,

—rj ~
) is

two-body potential, M represents deuteron mass,
f(~r, —r ~) represents a sharply peaked function about
~r;

—r ~=0, and e=~e~ represents deuteron charge. In
writing (1) we have assumed that the deuteron magnetic
moment, )LtDS/ttt', is predominantly in the S direction, '

where pD =10 erg/G. The constant y has dimensions
G cm, and together with the short range of the function
f, models the deuteron overlap integral. The sign of y
follows from the totally symmetric property of coupled
deuteron wave functions appropriate to bosons. In writ-
ing (1), we have assumed that the interaction of the neu-
tralizing background with the deuterons is scalar. Fur-
thermore, the preceding Hamiltonian assumes that the
interparticle interaction is separable into a scalar poten-

tial and a spin-spin interaction.
We rewrite the Hamiltonian (1) in the following form:

2
1 eH= g p;

— — A(r, )
i2M ' c

+—g V( ~r;
—rj ~

)+N4+Hs+H t,1

l9 J
(2a)

where H 2 denotes the spin-spin term in (1) and
N

Hs ———(pD /ttl) g S;.B . (2b)
i=1

With this form of the Hamiltonian at hand, we turn to
the formalism of second quantization.

Second quantization. Expressing the non-spin-
dependent terms in the Hamiltonian (2a) in second quant-
ization, one obtains
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H'= f dr 0 (r) i—fiV ——A(r) O(r)+ —f f dr dr'4 (r')+ (r) V(lr —r'l)+(r)%'(r')
2M c 2

dr+ r H+%' r +— drdr'+ r' 4 r H~+ r + r'1

2
(3a)

where the component Hamiltonians Hz and H~ are as
implied.

Field operators satisfy the Bose commutation relations

[0 (r), % "(r')]=5(r —r'), (4a)

[%(r),4(r')]=[4 (r), % (r')]=0 . (4b)

When operating on the state function of the system (in
Fock space), the field operator, 4 (r) creates a particle at
r whereas 4(r) annihilates a particle at r (with occupa-
tion number, N, ) according to the rules

'pt(r)l. . . N, &=V'N, +ll N +1 . . &, (4c)

(4e)

Ccl N Mc L + c

2M 2 '
8

where

r~=x +y

(6)

(6a)

'p(r)l N, ' '
&
=V'N

I N, —1 &, (4d)

where X, denotes occupation number at r. These latter
relations imply the particle number operators

N, =W (r)1i(r), N= fdr+ (r)+(r),
which are seen to commute with H' as given by (3).

Low densit-y limit In writ. ing (2) and what follows, the
vector potential A(r) is treated as a c number. We con-
sider the low-deuteron density, high-magnetic-field limit
for which Hz is dominant and H v is viewed as perturba-
tive. Toward these ends we first consider the properties
of Hz. Writing the vector potential in the form

A= —
—,'r XB (5)

[where B=(O,O, B), and B is constant] permits Hx to be
written

Here we have written v —=(n, m) so that the summation in
(10) is a double sum. In analogy to (4), a„operators obey
the commutation relations

[a„at ]=5,
[at„at ]=[a„a,]=0,

(1 la)

(1 lb)

N, =a~„+N =N . (1 lc)

In this representation, the expectation-operator Hz is
given by

Hx = fdr g g a,y„(r)Hxa„p, ,(r) (12)

which, with the orthogonality of the basis functions (9)
and the relations (11),give

H~=QE„a~, =+E N, . (13)

Evaluating Hx in the ground state, with (gb) (correspond-
ing to n =m =0), we obtain

Ex G =Nato, /2 . (14)

In this relation we interpret N as a c number.
The radial component of the wave function (9) corre-

sponding to the eigenenergy (14) is

With the Landau states (9) at hand, the field operators
in (3) et seq. are expanded as follows:

%(r)=pa, y,(r) . (10

L, = —(r XiiriV ), , (6b)

co, =eB /Mc-
is the deuteron cyclotron frequency.

Working in cylindrical coordinates, eigenstates of Hz
are given by

~,(g) =(1/b, )e «', -

g=p /2b, ,

g —=z

b, =A/Mao, ,

(15)

(lsa)

(15b)

(15c)

KV nm Enm 0 nm

E„=%to,[n+ —,'(2m + I)]+irt k, /2M, (Sb)

where eigenvalues of Lz are Am and the integers n, , m )O.

The wave functions y„are given by

(p, z, P) = R„(p)exp(img)exp(ik, z), (9)
1

&2~L
where R„are exponentially Gaussian damped Laguerre
polynomials and L is the edge length of the volume of
confinement.

b, /L «1. (16)

With these results at hand we turn next to the spin and
potential interaction contribution to the ground state of
the system in the said limit.

The expectation operator, Hv, stems from (3a) and (10)
and is given by

where (15b) is included for future reference. The limit of
large magnetic field as well as large volume of
confinement, may be expressed by the condition

Hv =f f dr'dr g g g g at. p .(r')atilt(r)Hi, aiqi(r)ai(r)az'pre'(r') .
V V
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In the present approximation we keep only the leading
term corresponding to (9) and (1S). With the commuta-
tion rules (11) there results

2

Hv= ffdr dr'[yo(r)] [po(r'}]~ . (18)

Inserting functional forms in the preceding expression
gives

Hi =[N(N —1)e b, /L ]I
where I represents the nondimensional integral

(19)

1 f dgdg'drl dt)'dpdp'

R 2= /+ /'+ t} + rl' 2[re—'+ v'g' cos((|}—p') ] .

(20a)

(20b)

Hsi= —A g f,i$; S),
iAJ

(21)

The g interval of integration is (O, L /2b, ) whereas the g
interval of integration is (O,L IV2b, ). With the condi-
tion (16},in the present case both these integration inter-
vals may be replaced by (0, ao ). Expression (19)
represents the ground-state contribution from the in-
teraction term in (3a) in the said limit.

The expectation operator H & in the yo(r) state is given

by

IS,S)6=IN;N;1, . . . , 1), (26)

which is noted to diagonalize both Hz and H 2. In thisS '

state,

ES PDBN . (27)

Ground state -energy Co.llecting terms from (2a}, (19),
(24b), and (27}gives the ground-state energy

NAco, e b,E = +N(N —1} I'+N4 pBN—
2 n'" D

yfp i[—N(N —1)/2], (29}

where we have set 0=—1. .
The ground-state energy (29) is appropriate to the limit

where magnetic field energy dominates interaction ener-

gy. That is

Spin-1 states are represented by three-dimensional
column vectors which we label a;(1), P;(0), y;( —1),
relevant to particle number i. Thus, for example,
S a;=fia;, etc. A product representation of the spin
state (27) is then given by

gG(S )=(a&P&y&, . . . , IN;N;1, . . . , 1)=a&a2 aA .

where

f,, —= ((po(r, )po(r, )If(r,, ) Ipo(r; )qo(r, )), .

A—:—,'(It,n/R) y . (22b) N(e /L)(b, /L ) «A'to,

Hy «H~
(22a) or, equivalently,

(30)

(30a)

H i= — S —QS,Af
i=1

(23)

where S is the square of total spin angular momentum.
The Hamiltonian, H 2, is diagonalized by the eigenstates

Is;m, ;s„sz, . . . , s~), where

s=0, 1, . . . , X, m, = —s, . . . , +s, s;=1, (23a)

represent quantum numbers of S,S„S,, respectively. It
follows that the ground state of H 2 is given by

IS )G
=

I N; m~; 1, . . . , 1 }
with corresponding eigenenergy

E,= Affi N(N —1)/2 .

(24a)

(24b)

Further assuming that f; =f=const (see the Appendix)
permits (21) to be rewritten

which is obeyed in the high B field, large volume, low-
density limit (16). The dependence of the left side of the
preceding relation on density n =NIQ is obtained by
rewriting (30a) in terms of these parameters. There re-
sults

nQ e b, /L « iilco, (30b)

which, with (16), is satisfied in the low-density, high-
volume limit providing n 0 =const.

As we are working in an energy representation (10),
Fock-space ket vectors are given by IN„,N, , . . . , )

1 2

~here X =PE denotes the occupation number of the
1 G

ground state. In the present limit the ground state is
given by the ket vector INE, O, O, . . . ). The coordinate

G

component of the ground-state wave function is then
given by the inner product

VG(r )=(r„.. . , r~INE, O, O, . . . )

We turn next to the Hs term in (2b) which may be
rewritten [recall statement preceding (6)]

=mo(rl) ' ' mo(rN) (31)

N

Hs = —(p,DB lfi }g S;,= (IJ,DBIfi)S, . —(2S)

It follows that in the ground state of Hs, all spin projec-
tions are +1, corresponding to mN=N. Combining this
property with the state (24a) gives the overall ground spin
state

q/ (rN $N}—q/ (re�}y ($N} (32)

which is relevant to the limit (16}and (30) and is seen to

where wave functions on the right side of (31) are the
ground-state Gaussian forms (9) and (1S). Combining
this result with the spin function (28) gives the
coordinate-spin and ground-state wave function



12 306 BRIEF REPORTS

be symmetric under particle coordinate and spin ex-
changes appropriate to a many-body Bose system.

Conclusions. The problem of the quantum states of N
deuterons in a steady magnetic field was studied. Work-
ing in second quantization, the ground-state energy and
related wave function of an aggregate of deuterons in a
charge-neutralizing background and immersed in a uni-
form magnetic field was obtained. This result is relevant
to the low-density limit wherein magnetic-field energy is
large compared to interaction energy. With minor ap-
proximation in the spin-spin term of the Hamiltonian,
spin wave functions comprised of products of single-
particle spin-1 states were found to diagonalize both spin
contributions to the Hamiltonian. An inequality for the
validity of these results was obtained which was found to
be obeyed in the low-density limit providing
n 0 =const.

f;, = f fdr;dr, ~y2(r;, r )~ f(~r; —r, ~), (A 1)

where q2 represents the two-particle wave function. In-
troducing the change of variables: r =r, —r,- and
2R=r;+r, gives

f, = f fdrd R~y2(r, R)~ f(r) . (A2)

drdR~y2(r, R)~ = g(r) .
drdR

0 (A3)

Inserting this form into (A3) gives

For a homogeneous equilibrium fluid, the radial distribu-
tion function, g (r), is given by

Fruitful discussions on these topics with my colleagues
Gregory Schenter, Matthew Angyal, Andre LeClair,
Kerry Litvin, and Felix Ejeckam are gratefully acknowl-
edged. I am particularly indebted to Brad Foreman and
George George, for their careful reading of this paper
and constructive criticism.

APPENDIX

fdr r g(r)f(r) .0 (A4)

For a homogeneous equilibrium fluid it may be shown

that f;1 is constant. First we note that, in general,
This relation indicates that f, is constant in . the said lim-
it.

'W. B. Hubbard, J. J. MacFarlane, J. D. Anderson, G. W. Null,
and E. D. Hiller, J. Geophys. Res. 85, 5909 (1980).

2G. H. A. Cole, Contemp. Phys. 22, 397 (1981).
J. F. Bauer, The Space-Age Solar System (Wiley, New York,

1988).
4R. L. Liboff, Phys. Lett. A 166, 416 (1992).
~J. H. Freed, Ann. Phys. (France) 10, 901 (1985).
R. W. Cline, T. J. Greytak, and D. Kleppner, Phys. Rev. Lett.

47, 1195 (1981).
7D. A. Cesarsky, A. T. Moffet, and J. M. Pasachoff, Astrophys.

J. 180, L1 (1973).
G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum, New

York, 1990).
D. Pines, The Many-Body Problem (Benjamin, New York,

1961).
'oE. Meeron, Physics of Many Particle Systems -(Gordon and

Breach, New York, 1966)~

"D. J. Thouless, The Quantum Mechanics of Many Body Sys--
tems (Academic, New York, 1961).

'2H. J. Lipkin, Quantum Mechanics: New Approaches to Select
ed Topics (North Holland, New York, 1973).

' E. P. Gross, Ann. Phys. 4, 57 (1958).
' L. L. Foldy, Phys. Rev. 124, 755 (1961).
' M. Girardeau, Phys. Rev. 127, 1809 (1962).

D. K. Lee and E. Feenberg, Phys. Rev. 113,755 (1959).
V. I. Ginzburg and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 34,
1240 (1958) [Sov. Phys. JETP 7, 858 (1958)].

ST. T. Wu, J. Math. Phys. 2, 105 (1961).
'9R. L. Liboff, Introductory Quantum Mechanics, 2nd ed.

(Addison-Wesley, Reading, MA, 1992), Sec. 12.10.
2oA. I. Akhiezer and V. B. Berestesky, Quantum Electrodynam

ics (Pergamon, New York, 1982).
2'S. Gasiorowicz, Quantum Mechanics (Wiley, New York,

1974), Chap. 13.
22L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Quantum

Mechanics (Pergamon, New York, 1981), Sec. 112. Including
m &0 values in (10) indicates that all such states are degen-
erate and correspond to the m =0 eigenenergy in (8b).

23R. L. Libo(F, Kinetic Theory: Classical, Quantum and Relatiu
istic Descriptions (Prentice-Hall, Englewood Cliffs, NJ, 1990),
Sec. 5.5.1.


