
PHYSICAL REVIEW 8 VOLUME 49, NUMBER 17 1 MAY 1994-I
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Using an effective Heisenberg model for clusters the spin-wave spectrum is calculated by direct di-

agonalization. The inclusion of a nonuniform magnetization pro61e at zero temperature, nonuniform

exchange interactions as a result of structural relaxations, longer-range interactions, and of magnetic
surface anisotropy have been studied. Very small effects are found on the thermal magnetic prop-
erties relative to those predicted for the simple nearest-neighbor Heisenberg model by Hendriksen,
Linderoth, and Lindgard [J. Phys. C 31, 5675 (1993); Phys. Rev. B 48, 7259 (1993)].

The magnetic properties of clusters of transition metal
atoms have recently been studied in order to eluci-
date how ferromagnetism evolves &om the atom to the
bulk. Free molecular beam experiments ' have revealed
larger magnetic moments per atom in small iron clus-
ters, than expected in the bulk. Neutron scattering ex-
periments have been performed on clusters supported
in a matrix and accurate magnetization measurements
have been made. Calculations for nanometer-sized par-
ticles by Pastor et a1.5 have shown that the magnetiza-
tion at zero temperature has a nonuniform profile with
larger moments at the surface. Experimental investiga-
tions seem to confirm this. We have previously discussed
the intrinsic thermodynamic magnetic properties of clus-
ters using spin-wave theory ' for a Heisenberg model,
where a fixed magnitude of the spins S; = S and site-
independent nearest-neighbor exchange interaction were
assumed. Here we wish to discuss the consequences of the
more realistic model in which we allow for a magnetiza-
tion profile at T = 0 and a structural relaxation, which in
turn will give rise to a site-dependent exchange interac-
tion. Also longer-range interactions and possible effects
of anisotropy will be discussed. The spin-wave theory
at finite temperature and the thermodynamics for the
itinerant magnets are exceedingly difBcult. However, it
is a good approximation to assume that the 3d-electron
spins around a site i are performing a coherent precession
which can be represented by the precession of an effective
site-dependent spin S,. The results by Pastor et al. for
the relatively large clusters with N = 51 atoms will form
the basis for the present discussion of the influence of the
electronic modifications on the thermodynamic magnetic
properties of nanometer-sized particles.

The theory and the method of calculation have re-
cently been described in detail; therefore only a few
basic steps will be given here. We consider an effective
Heisenberg model

Z = —-) J,,S, . S, . (1)

Contrary to the previously studied model ' we shall here
allow both the exchange interaction J,~ and the spin val-

ues S, at T = 0 to vary with the sites i, j in the cluster.
We shall also consider the effect of interactions beyond
the nearest neighbors. The equation of motion for the
spin deviation operator S+ for a ferromagnetic cluster
can in a symmetrized, site-dependent random phase ap-
proximation be solved self-consistently by a direct numer-
ical diagonalization, yielding both the N discrete eigen-
values E~ and the corresponding (normalized) eigenfunc-
tions Q,

" for each state p. The states with the minimum
relative change from site to site and few nodal planes
have the lowest energy. These states have large ampli-
tudes at the surface, and since they are the first to be
populated at finite temperatures it is clear that a more

rapid decrease of the magnetization is predicted for the
surface layers. The magnetization is given by '

N —x

M;(T) = S —) ~Q,
".

~
n(Ep),

p=1
(2)

where n(E&) = [exp(E„/ksT) —1] is the Bose weight
of the state p. The spectrum (Ez) is discrete with a
sizable gap AE to the first excited state, which for a
N = 749 n-iron cluster is AE/ks = 30 K. Interestingly,
the mean magnetization M(T) can in a large temperature
interval (up to 35% of T,), be well fitted7's to an effective
power law M(T) —M(0) = AM(T) = BT However, .
the parameters have no direct physical meaning. The
energy gap AE gives in principle rise to an exponential
behavior of the mean magnetization deviation AM(T) =
S —~ P, (S;.). Since g, ~g,. ~

= 1 and the first excited
state is three times degenerate for overall cubic symmetry
(i.e. , not only for ideal bcc or fcc symmetry) the low
temperature behavior can be written

AM(T) 3

M(0) N
= —[n(AE) y n(2AE)]+ . , (3)

where we have used that there is a second triplet at
2b, E, and where the dots represent n(E~) functions

for E„= 2AE. The energy gap can be obtained by a
fit i to Eq. (3) using a temperature range k~T ( sAE
For impure systems with lower symmetry the degener-
acy will be lifted; however, for small splittings a fit to
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Eq. (3) might still be preferable. The energy gap is di-

rectly related to the exchange interactions. We generalize
here the expression obtained by Hendriksen et al. ' to
include the interactions J to several neighbor shells m,

AE(r, ) = JSf (r,), (4)

t,~C, C~~ + g C~~C Cia —Edcr
&42)~ %ACT

= ed + UAn(i) —2agp(i), (5)

where t,~ is the tight binding hopping term, o the spin in-
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where f (r, ) = z a/(1. 42r, +0.58a), r, is the cluster radius

in units of the lattice constant a, and J = Jq+ J2+4J3 for
bcc and J = Jq+ J2+3J3 for fcc. In Fig. 1 the magnetiza-
tion is shown as a function of T and reciprocal cluster ra-
dius 1/r, for the center spin (short-dashed line), the aver-

age moment (solid line), and the outer shell (long-dashed
line). The average moment calculated by the spin-wave
theory extrapolates naturally (thin line) to the T, values
calculated using a generalization of the spherical model.
For a 51 bcc cluster T, is found to be reduced to 59Fo
of the bulk value T, (bulk). For increasing cluster sizes

T, is seen (thin dashed line) to approach T, (bulk) for

1/r, ~ 0, following an expected scaling behavior. It is
clearly of interest to investigate how robust these results
are to the electronic modifications of the model, which
are expected to be relevant for small metallic clusters.

Only for the very smallest clusters with a few atoms
are the electronic and structural properties calculated
from first principles. Since we are here interested in
nanometer-sized particles we shall base our discussion on
the calculation of the moment distribution in a N = 51
unrelaxed bcc iron cluster by Pastor et al. They used
the unrestricted Hartree-Fock decoupling of the Hubbard
model, which can be written (neglecting the band in-

dices)

dex, and ~; —cd is a "penalty field" term. This strongly
discourages large (square) amplitudes of ~c,

"
~

= n (i)
in the outer shells in order to minimize charge trans-
fer An(i) = n~(i) + nt(i) —no in the presence of the
large Hubbard U term. The number of electrons (charge)
around site i is n (i) = (n (i)) and no is the aver
age charge. The magnetic moment in units of p~ is
p(i) = nt(i) —nt(i) oc S, of Eq. (1), and the exchange
integral g splits the 0 =g and $ states. Eg, and e& are
constants. The diagonalization problem of Eq. (5) for

c,. is identical with that for S, It is instructive, as an
alternative to the traditional projected density of states
argument, to think about the problem in terms of the
wave functions found for the spin-wave problem. For
the electrons it is essential to include the charge transfer
penalty, which strongly mixes the states in energy since
U/t, ~ is large, shifting the large amplitude surface states
to high energies. The shell moment for a 51 bcc cluster
calculated self-consistently including the penalty term
Eq. (5) is shown in Fig. 2, solid line. A lower than
average moment in the center and a strongly increas-
ing moment S, for the outer shells were found. This
can easily be incorporated in the solution of Eq (1).
We find that it leads to a small increase of the calcu-
lated T, of 5%, mainly due to the larger average moment
tip = 1.10@(bulk) found for the cluster by Pastor et at. s

The calculated magnetization extrapolates naturally to
the calculated T, ; see Fig. 1. The calculated T, values
will be compared for various models in Table I.

Another modification to consider is variations in J;~
due to structural relaxation of the cluster, which can
strongly alter the overlap terms in the exchange integrals.
In an unrelaxed cluster it is not possible to have a nonuni-
form moment distribution at T = 0 without a certain
charge transfer. Suppose for simplicity that we have fully
occupied 1' bands n~(i) = n&, and so the moment varia-

tion arises solely from the j. bands nt(i) = no& + An(i).
Then it is easy to see that the charge transfer is related
to the moment profile by b,n(i) = p(bulk) —p, (i). Let us
make a crude model for the lattice relaxation by requiring
that the electron density around each nucleus be equal
to that of the bulk and enforcing this by adjusting the
Wigner-Seitz radius r~s to account for excess electrons.
For iron (atomic state: argon-3ds4s2) with eight conduc-
tion electrons per nucleus we then argue as follows. In

3.0
Z'.

2.5
0
u 2.0
I—

1.5

FIG. 1. The calculated magnetization versus temperature
and inverse cluster radius 1/r, of the center spin (short-
dashed line), the average magnetization (solid line), and that
of the outer shell (long-dashed line). The thin lines extrapo-
late to the calculated T . The number of spins is indicated as
well as T, (bulk) for 1/r, = 0. For the 51 cluster the thin ad-
ditional lines indicate the small modification due to inQuence
of the magnetization profile (normalized to 1).
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FIG. 2. The calculated magnetization profile (in units of
pii) of a 51 bcc-iron cluster calculated by Pastor et aL (Ref.
5), solid line. The average moment is 2.45pe. The effective
moment profile, including the lattice relaxations, is shown as
a dashed line.
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TABLE I. Comparison between the calculated values of the e8'ective transition temperature T,
for a 51 bcc-iron cluster. For the NN case T, (bulk)= 0.71 T, (bulk) (Ref. 12).

EKect considered

)(1,(i) = S (NN), Jq from T, (Ref. 8)
y, (i) profile (Ref. 5), unrelaxed, x = 0

p,(r(i) profile, relaxed, x = +10
y„(r(i) profile, relaxed, z = —10
p(i) = S (3NN), J from T,
p(i) = S (NN), J) from D

Tc
Z MF (bulk)

0.41?
0.415
0.415
0.418
0.473
0.417

Tc
Tc (bulk)

59%
62%
62%
62%
63%
82%

For comparison the magnetization profiles are scaled to yield the average moment p, o
——S.

a sphere with volume 3 r~s there are eight electrons in
the bulk, whereas for the cluster there are 8 + An(i)
in the volume 3 r; . Consequently, we need to adjust
the radius as r; = res[1+ s„sAn(i)]. We now distort
the bcc cluster by packing these spheres of unequal radii
(0.98r, ). The relative distance between the spins can be
writtenr, ~

= R+brU = R(1+4s[An(i)+An(j)]), where

R = a~3/2 is the bulk distance. We apply the argument
to the 51 bcc cluster studied by Pastor et al. The result
is an expansion of the core of the cluster and a contrac-
tion of the outer shells, with lattice constant changes of
the order of 1%, as generally expected. s For all atoms the
displacements are along the cubic symmetry directions,
except for the outermost shell, which is more drastically
reconstructed. However, the nearest-neighbor coordina-
tion number is unchanged by these displacements and the
bond directions are only slightly modified. Now, suppose
the exchange constant in Eq. (1) depends strongly on the
distance between the spins J(R+ Ar) = J(R)(1+z &'),
where ~x~ = 10. The site-dependent Heisenberg interac-
tion in the relaxed cluster is then

(6)

The estimated changes in the exchange interactions are
10% due to the structural relaxations. This modi-

fication of J,~ can be included in Eq. (1), by using
J,~

= J(R) = Jq and instead introducing the effective
moments (a,tr(i) = p(bulk) —[1 —4s]An(i). Notice that
for x = 0 we have the unrelaxed result. For iron x is ex-
pected from various experimental facts to be positive
z —+10. Therefore, including the lattice relaxation
in this crude model tends to effectively reduce the mo-
ment profile, as shown in Fig. 2, dashed line, and only
perturb the already minimal effect of a magnetization
profile for iron. We can understand why the effect is so
small on the thermal magnetic properties. This permits
us to assume that it holds true also for larger clusters.
The magnetization profile does act as a "penalty field"
for large amplitudes at the surface. However, contrary to
the electron case, the field strength is far too small to sig-
nificantly shift the energy sequence of states and change
the wave functions. A refined calculation of the T = 0
magnetization profile and a somewhat larger effect of the
relaxation on the exchange interactions will not alter this
conclusion.

Let us additionally consider the possibility that we

need a model with longer-range interactions to describe

a-iron. It has previously been found that in order to fit
both T, and the spin-wave stifFness constant D a model
including interactions to the first three neighbor shells
(3NN) is necessary. The calculated T, (bulk) becomes
too high by 40% if one includes only Jq ——J, which
fits D. One could take the interactions to be all equal:
J) ——J2 ——Js ——J/6. The constants J), J2, Js cannot
be fitted from the spin-wave dispersion relation because
this gets overdamped when entering the Stoner excita-
tion band. The efFective 3NN model reproduces the first
moment of the Stoner band better than the NN model
and is therefore better for thermodynamic calculations,
as it is able to correctly obtain both D and T, (bulk).
For small clusters there is no Stoner band —but discrete
levels. It is therefore not evident whether the effective
3NN model works well also in this case. The result
is shown in Table I. In the 3NN model T, increases to
47% of TM" (bulk). However, at the same time T, (bulk)
increases, to 0.75 T, (bulk). Therefore, relative to
T, (bulk) the long-range model for the 51 bcc-iron cluster
has only a slightly higher T, than the nearest-neighbor
model; see Table I. In the above arguments we have deter-
mined the relevant exchange interactions from the bulk
transition temperature. For the itinerant magnetic metal
cluster it may be more appropriate to use the NN model
but with the larger Ji, which fits the spin-wave stiffness
constant. This does increase T, for the cluster; see Table
I. A measurement of AE, using neutron scattering or low
temperature magnetization experiments, would give the
most direct determination of the exchange interactions
in the clusters.

Finally, a modification of the magnetic properties is
conceivable if the magnetic anisotropy is different in the
clusters than in the bulk. We have previously considered
the effect of a shape anisotropy originating, for exam-
ple, from the dipolar interactions in terms of a uniaxial
anisotropy field. Experimental values of this field for 3—6
nm o. particles shows that the anisotropy energy is much
smaller than the exchange energy per unit volume, and
hence such anisotropy has negligible effect on the ther-
mal properties. Another effect is crystal field anisotropy
which could be much larger than in the bulk due to the
presence of the surface and of the structural relaxation.
No definite calculations are available on this question, so
let us qualitatively discuss the effects assuming a spheri-
cal cluster. The contraction of the surface layers suggests
a larger than bulk anisotropy at the surface. The low-
ering of the symmetry due to the missing neighbors will
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produce a crystal field with a predominant axial term
in the radial direction with a term in the Hamiltonian
of the form DS&, where ( is the component along a ra-
dius vector. The anisotropy constant is either D ) 0
or D & 0. In the last case, if ~D~ is large compared
to the exchange interaction a hedgehoglike spin struc-
ture would be expected. This is on the other hand not
likely, at least for iron clusters, where the exchange in-
teraction is much larger than the anisotropy in the bulk.
For anisotropy energies with a magnitude ~D~ & 10%%uo of
J the exchange interaction will ferromagnetically align
the spins with some canting, schematically shown in Fig.
3 for the radial and the tangential cases. The surface
anisotropy will increase T, only of the order of a few
percent. This is a consequence of the competition be-
tween the aligning exchange interaction and the radial or
tangential anisotropy field. The clusters will be magnet-
ically harder for the tangential anisotropy than for the
radial because of less destructive competition. This is
interesting because it is opposite to the effect of uniax-
ial and planar anisotropy in bulk systems. The surface
anisotropy will in general make the surface layers mag-
netically harder, similar to the above discussed electronic
effects. However, unless the surface anisotropy energy is
much larger than the exchange interaction, only small

radial tangential

FIG. 3. InHuence of an enhanced surface crystal field
anisotropy term DS& on the magnetic ground state of the
cluster (schematic) for D & 0 (radial) and D ) 0 (tangen-
tial).

It is a pleasure to acknowledge S. Linderoth and S.
Mgrup for valuable comments.

effects on the thermal properties can be expected.
We have considered extensions of the nearest-neighbor

Heisenberg model for metallic clusters and shown that
our previous results are robust to the most compelling
modifications. Measurements of the magnetization, T,
and of the spin-wave dispersion for iron and other clusters
would be interesting in order to test the predictions and
for getting a deeper understanding of the cluster and the
itinerant magnetism.
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