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Scaling properties of the dynamical structure factor of percolating Heisenberg antiferromagnets
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The scaling behavior of the dynamical structure factor S(q, co) of percolating Heisenberg antifer-

romagnets is investigated in terms of a dynamic scaling argument and numerical calculations. It is found,
based on the single-length-scaling postulate, that the asymptotic behavior of S(q, co) can be characterized

by only two exponents: the dynamic exponent z, and a new exponent y. This theoretical prediction is
confirmed by direct numerical calculations. The values of the exponents z, and y are determined for the
case of d =2 percolating Heisenberg antiferromagnets.

The spin dynamics of randomly diluted Heisenberg an-
tiferromagnets (percolating Heisenberg antiferromagnets)
has attracted much attention in recent years, because
they should possess intriguing dynamical properties origi-
nating from their specific geometrical features. ' With
respect to the dynamics of elastic percolating systems,
fracton excitations have played an important role dis-
tinguished from conventional vibrational modes (pho-
nons) The. dynamics of elastic or ferromagnetic percolat-
ing networks is described by equations of motion
equivalent to the master equation for diffusing particles.
For these dynamical systems, Alexander and Orbach
pointed out that the spectral (or fracton) dimension d is
the key dimension to describe the dynamical properties of
localized excitations in fractal structures, namely, disper-
sion relation, localization, and the density of states. The
conjecture was given that d is equal to —', for any Euclide-
an dimension d. Large-scale simulations of the densities
of states confirmed that d definitely takes a value very
close to ~4 for any Euclidean dimension d( ~ 2). The ex-
citations belonging to this class are called fractons.

Recently, inelastic neutron-scattering experiments
have been performed for three-dimensional percolating
antiferromagnet, providing rich information on their
dynamical properties. ' '" The dynamical structure fac-
tor S(q, co) for diluted antiferromagnets have been stud-

ied theoretically' ' and numerically. The spin systems
on a deterministic fractal has been studied by applying a
dynamic scaling argument. ' As shown in Ref. 16, the
fracton dimension d, for antiferromagnetic fractons takes
a value close to unity independent of the Euclidean di-
mension d, indicating that antiferromagnetic fractons be-
long to a different universality class from that of fer-
romagnetic or vibrational fractons. This is because anti-
ferromagnetic fractons are governed by a different type of
differential equation from that for elastic or ferromagnet-
ic system. For this reason, the dynamical properties of
antiferromagnetic fractons are interesting.

In this paper, we investigate this issue via the dynami-
cal structure factor $(q, co) of percolating Heisenberg an-
tiferromagnets. At first, we predict the frequency and the
wave-number dependence of the asymptotic behavior of
S(q, co) for percolating Heisenberg antiferromagnets,
based on the single-length-scaling postulate. These re-
sults are confirmed by direct numerical calculations of

the dynamical structure factor S(q, co) and the
localization length A(to) for d =2 bond-percolating
antiferromagnets at the percolation threshold.
Rb2Mn Mg&, F4 is an example of d =2 diluted Heisen-
berg antiferromagnets. '

We consider a percolating Heisenberg antiferromagnet,
whose Hamiltonian is given by

&=+ J;S; S
(ij )

where S; denotes the spin at the site i, and J; is the ex-
change coupling between nearest-neighbor spins. We
choose J; as J; =1 if a bond between sites i and j is
present on the percolating network, and J; =0 otherwise.
The linearized equation of motion for spin deviation
S,.+ =S; +iS~ from the Neel state is expressed by, in units
of S/A'= 1 where S is the magnitude of single spin,

as,'
i

' =o; g J,,(S;++S,+) .
J

Here 0; is a variable taking +1 for the site i belonging to
the up-spin sublattice and —1 to the down-spin sublat-
tice. This equation is rewritten in the matrix form,

(3)

where Is;(A, ) I is the eigenvector belonging to the eigen-
frequency co&. The matrix element D," is defined by

D; =o'; J;+5; QJk
k

(4)

From this definition, one sees the matrix [D, ]is asym"
metric, due to sign cr; and the sign of the second term in
the parentheses of the right-hand side, which is different
from the symmetric ones for lattice vibrations or fer-
romagnetic spin waves.

The dynamical structure factor S(q, co) averaged over
all possible realizations of percolating networks is charac-
terized by a function of q(=~q~) due to the spherical
symmetry of the systems. Based on the single-length-
scaling postulate (SLSP) as in the case of elastic vibra-
tions, ' S(q, co) for antiferromagnetic fractons is given
by the following scaling form, with the characteristic
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length A(co):

S(q, co) =q «F[q A(co) ], (5)

where F(x) is a scaling function, and y is a new exponent
characterizing S(q, co ). In the long-wavelength limit
qg«1, where g is the correlation length, Christou and
Stinchcombe ' have obtained, using a Green's-function
technique, an analytic expression of S(q, co) of percola-
tion antiferromagnets which satisfies the dynamical scal-
ing hypothesis. Their result suggests that S(q, co) takes a
Lorentzian form with respect to frequency co. In view of
the matching long-wavelength modes (qg « 1) with anti-
ferromagnetic fractons (qg»1) at the magnon-fracton
crossover, where the wavelength of fracton 2m/q =g (see
also Ref. 5), the frequency dependence of S(q, co) should
take a Lorentzian form even in the short-wavelength
fracton regime. The Lorentzian form of S(q, co) is written
as

lated by numerical diagonalization of the matrix [D,"],

y(q, co)= g g e ' [N '(co)],,e
l J

X ge 's (A, )

J

where s, (A, ) is defined by g;cr;s;(A, )s;(A, ')=5&&., and

S(q, co) is written as

S(q, co)= lim Im[y(q, co+i5)]
6~+0

=—g 5(co —coq) ge 's;(III, ) .

l

S(q, co)=G(q)
r(q)

[co—co, (q}] + 1 (q)
(6) X g e 'sl(A, )

J

(10)

where r(q) and G(q) denote the width of the line shape
and the q-dependent function, respectively. The charac-
teristic frequency co, (q) represents the peak position of
S(q, co) in the frequency space. The SLSP [Eq. (5)] re-
quires that both co, (q) and the linewidth I (q) obey the

same power law as co, (q) =cooq ' (the dispersion relation)

and I (q)=I oq ', respectively, where z, is the dynamic
exponent for percolating antiferromagnets. This ex-
ponent is related to the fracton dimension d, as

z, =Df /d, (Df is the fractal dimension). By comparing

Eq. (6) with Eq. (5), one obtains G(q)=Goq ' where Go
is a constant, namely, S(q, co) becomes

S(q, co) =Go
2z

oq

(co —
cooq ') +I oq

Equation (7) predicts that S(q, co) takes the power law as—y+ 2z
co q

' for qA(co) «1, and q for qA(co) »1.
We have performed numerical calculations to confirm

the above predictions for the asymptotic properties of
S(q, co), and determined the value of the exponents z, and

y. The dynamical structure factor S(q, co) is related to
the generalized susceptibility y(q, co )

where R; denotes the positional vector of site i.
We have treated d =2 bond-percolating Heisenberg an-

tiferromagnets at the percolation threshold (p, =0.50}
with periodic boundary conditions. The ensemble aver-
age has been taken over 54 percolating networks formed
on 62X62 square lattices. We have calculated the eigen-
values and the eigenvectors of matrix [D; ) by a direct
diagonalization technique. At first, we have calculated
the frequency dependence of localization length—1/z
A(co)-co '. The localization length A(co) is obtained
from the eigenvectors [s, (A, )I by the Thouless criterion
for localization

100 I I I I I I I

where ( )„denotes the average over all eigenmodes A,

with frequencies close to co. The calculated result of
A(co) is shown in Fig. 1. The filled circles and the verti-
cal bars represent the averaged values and the deviations
of the localization length A(co), respectively. Our result
indicates z, =1.83+0.08, which implies Z, =1.03+0.04

S(q, co) ~ (n(co)+1)1m[a(q, co)], (8)
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FIG. 1. The frequency dependence of the localization length
A(m) for d=2 bond-percolating antiferromagnets at p, on
62X62 square lattices. The ensemble average is taken over 54
samples.

—Ace/k~ T
where ( n ( co) +1 ) = 1/(1 —e ) is the Bose factor. '

The generalized susceptibility y(q, co) is defined by the
spatial-Fourier transform of the two-point susceptibility
y; (co) =S;+(co)/h+(co). The symbols S,+(co) and h+(co)
represent the temporal-Fourier transform of S;+(t) and
the transverse field h.+(t), respectively. In the following
calculations, the Bose factor is neglected because we con-
sider T=O and p=p„at the multicritical point. We
define the matrix [N;.(co) ] as N;, (co) =c«;(co5; D;, ), . . —
satisfying g N;, (co)S,+(co)= —h, +(co). Thus, y, .(co) can
be obtained from the inverse of the matrix N; (co) by

y,,(co)= —[N '(co)];, .2 The spatial Fourier transform

y(q, co) can be written, using eigenvectors [s, (A, )] calcu-
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FIG. 3. The scaling function F[qA(co)]—:q~S(q, co) as a func-
tion of qA(co). The filled circles and the vertical bars represent
the averaged values and the statistical errors of F[qA(co)], re-

spectively.

FIG. 2. The frequency and the wave-number dependence of
S(q, co) for d=2 bond-percolating antiferromagnets at p, on
62 X62 square lattice.

from the relation d, =Dflz„where Df =91/48 for
d=2. The value of 2, agrees well with our previous
work. ' As shown in Fig. 1, the localization length A(co)
ranges from 6 to 30 lattice spacing. So the finite-size
effect is negligible in the high-frequency regime, except
A(r0) =30.

Second, we have calculated the dynamical structure
factor S(q, ro} using the eigenvectors [s;(A, )] on the same
networks with those of the localization length A(ro). The
frequency and the wave-number dependence of S(q, ro)
obtained numerically are shown in Fig. 2 in a linear scale.
Each solid line is only a guide to the eye. These results
indicate that the linewidth increases rapidly as increasing
peak position. The value of the exponent y in Eq. (5) is
evaluated by the least-squares fitting from the q depen-
dence of S(q, co) with fixed values of qA(ro), as
y =3.0+0.3. Figure 3 is a plot of calculated values for
the scaling function F[qA(ro)]=q~S(q, ro) as a function
of qA(eo} using the above value of y. Filled circles
represent the average value over data within a narrow
range of scaling variables qA(ro }. The vertical error bars
indicate the width of the distribution. The universal
curve in Fig. 3 exhibits that antiferromagnetic fractons
satisfy the SLSP. The profile of the scaling function

F[qA(co)] in Fig. 3 indicates that the frequency depen-
dence of S(q, ro) behaves asymptotically as
S(q, c0}~co '9+o' for qA(ro) &&1 and the wave-number
dependences as S(q, co) ~ q

* ' for qA(ro) &&1 and
S(q, co) ~q * ' for qA(ro) &&1. Taking into account
the values of z, =1.83+0.08 and y=3.0+0.3, these re-
sults satisfy our theoretical predictions [see below Eq. (7)]
with respect to the frequency and the wave-number
dependence for S(q, ro).

In conclusion, we have investigated scaling properties
of the dynamical structure factor S(q, ro) of percolating
Heisenberg antiferromagnets at p, . We have predicted
the asymptotic form of S(q, ro) based on the single-
length-scaling postulate. The numerical results of the fre-
quency and the wave-number dependence of S(q, ro) on
d=2 bond-percolating antiferromagnets agree well with
the scaling predictions. The values of the exponents z,
and y have been determined numerically. We hope that
these findings stimulate further neutron-scattering experi-
ments.
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