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Magnetoelastic anomaly of cubic antiferromagnetic materials
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The magnetoelastic anomaly observed in cubic antiferromagnetic materials is theoretically investigat-
ed. The antiferromagnetism of doubly degenerate narrow d bands is described using a two-band Hub-
bard Hamiltonian and the nesting condition of the band structure. It is shown that the electron redistri-
bution between the antiferromagnetic states introduces a large elastic softening just below the Neel tem-
perature. The theoretical results satisfactorily account for the elastic anomaly observed in chromium
and its alloys and, also, in antiferromagnetic Invar.

Among the many physica1 aspects of antiferromagnetic
(AF) materials, the magnetoe1astie property poses a very
puzzling question. The shear elastic constant c'
[=(c»—c, )z/ 2] shows a large decrease just below the
Neel temperature T~. This elastic anomaly was noted
early on Cr, ' on its alloys, and on AF Invar such as
Fe60Mn40 as shown in Figs. 1-3. So far, no satisfactory
theory has been forwarded to explain this puzzling
behavior. Although Cr and Fe60Mn40 are all cubic ma-
terials, detailed crystal structures are not same. It im-
plies that the anomaly is independent of detailed crystal
structures and also of the Invar properties. In this paper,
we show that the anomaly originates from the electron
distribution between the AF states of the narrow d band
structure.

Recently, it was shown that the nature of the elastic
softening is closely related to the symmetry of the Fermi
level. Only c' is affected when the Fermi level is of the

e type, whereas both c' and c44 show anomaly when it is
of the t2g type. Since, here, we are mainly concerned
with elucidating the physical origin of the elastic anoma-
ly of c', we assume that the Fermi energy is located on a
twofold degenerate eg band. The case of the threefold de-
generate t2g levels will be discussed later. As a model
Hamiltonian, we consider the two-band Hubbard Hamil-
tonian which is given by

H=gt;(c;, c1, +c;z ctz )
&~ J~&

+ Uy (n;] tn; / ] +n;z)n;z$ )

+U' g n;, n;z —Jgn, , n, z
i era'

where n is the number of electrons, 1 and 2 denote the
two degenerate bands, U and U' are the intraband and
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FIG. 1. Elastic constant c' as a function of temperature for
Cr (Ref. 1). The full curve represents the theoretical fit. The
Neel temperature is indicated by an arrow.

FIG. 2. Elastic constant e' as a function of temperature for
Cr-Al alloy (Ref. 2). The full curve represents the theoretical
fit.
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Here P, is the basis functions of e band with the 3z r-
symmetry and y+ is the spinor function. The coeScients
sin8i, + and cos8&+ are defined by

~ 40

O

35 ~ ~

I'e Mn

and

sin8i + =R+Ql/(1+R + ),
cos8i, =g 1/(1+R ~ ),
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FIG. 3. Elastic constant c' as a function of temperature for
antiferromagnetic Invar alloy, Fe60Mn40 (Ref. 3). The full curve

represents the theoretical fit.

~i~=»nk C'1kt cos~k+@2k+Q f

+2+»n~k++1k $ cosk+@2k+ Q $

where the Bloch wave function 4,k &
is given by

C&,k t
=g exp( ik.R; )P,(r —R; )y+ .

(3)

(4)

@,k~, @2k+&&, and 42k+&~ are also accordingly defined.
I

the interband on-site Coulomb term, respectively, and J
is the interband exchange interaction. The AF eigenval-
ues of this Hamiltonian have been studied by Ray and
Ghatak. The key ingredient for the existence of the
AF state is the formation of a spin-density wave
(SDW}, whose order parameter is given by

g ~ =(c, k cz k+& ~ ). For a maximal existence of the
antiferromagnetism, we assume g & &

= —g & &
and

g & &
=g

~ &
=0. We also define a parameter

g=(U'+ J)g&&. For formation of the SDW, it is neces-
sary that the band structure satisfies the nesting condi-
tion. With the nesting condition,
e,(k)= —ez(k+Q)=ez, the energy eigenvalues can be
readily obtained following Ref. 6:

E+ =+Qek+g sgn(ek) .

In Ref. 6, and also in other previous calculations, the
energy eigenfunctions were not of primary interest and,
thus, were not given explicitly. However, in this calcula-
tion, we are interested in the perturbation of the AF ener-

gy levels due to the strain and, thus, need the explicit
form of the eigenfunctions. The eigenfunctions can also
be readily obtained from Eq. (1}using the above eigenval-
ues and are given by

Since we are interested in the elastic property of AF
materials, we should study the effect of the ultrasonic
strain on the AF energy levels. The effect of the strain on
a cubic crystal can be represented as H'= V; e;.. In or-
der to study c', we consider the corresponding tetragonal
strain. When the tetragonal strain is expanded in the ir-
reducible form of the cubic group, the only surviving
contribution is given by e» =e»+eyy 2e~ = —2e. We
now calculate the matrix elements of H' between the AF
eigenfunctions. Using the eigenfunctions given above, we
arrive at the following expressions after several but
straightforward steps:

e3i lq i+) =a+Giae,

(q'i+I V31e31lq'1 —) pG2e

where a~=(sin 8k+ —cos 8k+) and P=(sin8k+sin8&
—cos8k+cos8k ). G,z and Gz are defined as follows:

(b,sin 8k++bzcos 8k+}
G(g=G+ a

(b, isin8k+sin8k +hzcos8k+cos8k }
62 =G+

where b, , and hz are the terms which represent k depen-
dence of the electron-strain interaction and are given by

b, ,(k) =+exp[ —ik. (R, —R, )]

X ( P,(r—R; ) I V» (r) I P, (r—RJ }),
b2(k)= +exp[ —i(k+Q) ~ (R, —R, }]

X(gz(r —R;)lV»(r)lgz(r —R )) .

The process leading to Eq. (7) can be generalized readily
to any type of strain components and, thus, is expected to
be useful in studying the strain or structural modulation
of the antiferromagnetism.

Now to study the magnetoelastic effect, we add the
perturbation to the diagonalized SDW Hamiltonian,

H strain

+Ek+a+G, +e pG2e
—Ek+a G) e

+Ek+a+G)+ e

pG2e

pG2e
—Ek+a G

(10)
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TABLE I. Parameters used to fit the experimental data. Do is the maximum density of states at the
Fermi level and 8'is the band width (Ref. 5).

Tz (K) Do (eV ') W (eV) (G', ) (eV') y=(G', )/(Gf ) a (Gpa) b (Gpa/K)

Cr
Cr-Al
Fe60Mn40

311
252
465

1.50
1.50
1.50

0.20
0.20
0.20

5.0
6.6
5.0

1.25
1.45
1.43

161.0
155.5
54.65

—0.044
—0.042
—0.029

This matrix can be diagonalized to yield two doubly de-
generate strain-perturbed AF eigenvalues. In order to see
the effect of the strain on the AF levels, we expand the ei-
genvalues up to the second order in strain;

(PG,e)'
E~ ——+Ek +a~6)~ e+

2/zko
f

From Eq. (5) and (6), and from the definitions of a+ and

P, it can be shown easily that P=O and a+ = —a above

T~, thus giving E+ =+Ek, which is the expected
paramagnetic result. Below Tz, we observe that the AF
ordering enhances the splitting between two e levels.
The expression for the elastic constant change is given
b 6

1 BF
b,c'=—

ue q
—p

I'

1
2=—f «D(&)[f(E) f( —E)]— (G')

3 E 2

(12)

where (Gf+ ) and (Gz) represents the mean values of
the deformation potential in the first Brillouin zone.
From the first term of the above equation, we observe
that the AF ordering introduces a new softening contri-
bution. This additional elastic softening below T~ origi-
nates from the redistribution of electrons between the
strain-split AF energy bands. The second term of Eq.
(12) corresponds to the normal softening term which also
exists in the paramagnetic state above Tz. We believe
that this AF ordering induced softening clearly explains
the magnetoelastic anomaly observed in cubic AF materi-
als as shown in Figs. 1 —3. Here, a question may be raised
why in ferromagnetic materials, there exists no such elas-
tic anomaly. ' The answer can be found from the nature
of the ferromagnetic transition. Unlike the AF transition
which mixes the up and down spins to form a band, the
ferromagnetic transition does not mix the spins. Since
the perturbing ultrasonic strain does not allow spin-Hip
transitions, no large additional softening is expected at
the Curie temperature.

Although, it is not the main object of this communica-
tion to provide an exact quantitative explanation of the
magnetoelastic anomaly, nevertheless, we show that the
main features of the changes of c' can be fitted satisfacto-
rily using reasonable sets of parameters. Since the first-

principles calculations of the deformation constants are
not feasible, we treat them as adjustable parameters to fit
the experimental data. In Figs. 1 —3, we compared the
fitted theoretical results with experimental data. For the
fitting process, we assume the lattice contributions to fol-
low a linear relation; cL =a+bT. Table I shows the sets
of parameters to fit the experimental data. The result
clearly shows that the present theory satisfactorily ex-
plains the magnetoelastic anomaly observed for c' of cu-
bic AF materials. It has been reported that c44 of the cu-
bic AF materials do not show any softening effect, but in-
stead shows a slight hardening trends at Tz. Since it is
known that c44 is not affected, when the Fermi level is of
pure eg nature, we conjecture that this slight hardening
effect may originate from the existence of small t2~ level
mixing at the Fermi level.

There exists yet another mechanism for the elastic
softening. "' In this mechanism, electrons redistribute
between strain-shifted energy pockets which are located
at the equivalent k points of the Brillouin zone. Since it
is known that this mechanism is quite general and dom-
inant when the Fermi level is not located at the zone
center, we examine, here, the possibility of this mecha-
nism in the AF materials. The AF transition considered
above mixes the electron and hole pockets which satisfy
the nesting condition and introduces an AF splitting.
However, this AF transition does not have any effect on
the relative positions of the energy pockets located at the
equivalent k points. Therefore, no new softening contri-
bution is expected from the interpocket mechanism below
the Neel temperature. The distinct property of the elas-
tic anomaly in AF materials is the sharp decrease of the
elastic constant at the Neel temperature, which is only
possible when there exists a new softening contribution.
Therefore, we conclude that the interpocket redistribu-
tion cannot be a dominant mechanism for the elastic
anomaly in AF materials.

In conclusion, we have studied the magnetoelastic
anomaly of the cubic AF materials theoretically. In the
process, we obtained the AF energy eigenstates and the
strain perturbation of the AF energy levels when the Fer-
mi level is of the eg type. We believe that this procedure
can be easily generalized and will be useful when one is
interested in the strain modulation of the AF ordering.
Finally, we have shown that the large elastic softening
below TN can be attributed to the electron redistribution
between the strain perturbed AF energy states.
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