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Kinetic energies of liquid and solid neon
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We have calculated the kinetic energies of liquid and solid neon in the temperature range 9.2 —35 K.
We have used the Wigner-Kirkwood expansion technique for the calculation of quantum corrections to

the kinetic energy up to the order of A in the expansion. All the averages are calculated by molecular

dynamics computer simulation. Our results are in agreement with the experimental findings of Peek

et al. Both the Lennard-Jones and Aziz pair potentials have been used in calculations with comparable

results.

Recently, Peek et al. ' have measured the kinetic en-
ergies of liquid and solid neon in the temperature range
of 4.7—35' K at various densities using deep inelastic neu-
tron scattering from natural neon. These measurements
along with the other properties make this system an in-
teresting object for theoretical studies. The other proper-
ties include internal energies, lattice constants, thermal
expansion, isothermal compressibilities, and specific heat.
Ho~ever, in the present study we shaH confine ourselves
to the calculation of kinetic energies, both in liquid and
solid phases. The results of calculations for other proper-
ties shall be presented elsewhere.

We have used the VA'gner-Kirkwood expansion tech-
nique" for the calculation of quantum corrections to
classical kinetic energy up to order of fi in the expansion.
All the averages in the expansion are calculated using
molecular dynamics computer simulation. Using
Lennard-Jones pair potential, calculations similar to ours
were carried out by Barocchi, Neumann, and Zoppi;
however, their calculations were confined to the order of

at 18 K and up to ill for higher temperatures and lim-
ited to density region not covered by experiment.

We have used both the Lennard-Jones and Aziz pair
potentials with parameters appropriate to neon. The
Aziz pair potential may be considered as slightly prefer-
able over the Lennard-Jones, particularly, in the liquid
phase at higher temperature. Thus, for example, we
find the kinetic energy 64.18+0.03 K at density
p=0.034597704 A and T =35 K as compared to the
experimental value of 66+4.7 K. In the Lennard-Jones
case this value is 62.81+0.03 K. It may be remarked
that at this density and temperature the R expansion con-
verges rapidly. In the solid phase, the results of the two
potentials are more or less indistinguishable.

The Hamiltonian operator of ¹interacting particles is

~here the summation is understood over repeated indices
r = 1,2, 3, . . . , Xwhich is the particle index and i = 1,2, 3
is the coordinate index. 4(r) represents the interatoinic
potential of all the pairs.

The partition function Z of the system can be obtained
by calculating the trace of exp( —p8) which we perform

in the plane wave basis.
3N/2
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g(+) exp ip (2)
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Xexp( —p8)exp ip
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(3)

where p= 1/kT The qua.ntity

~ p rF =exp( —PB)exp ip (4)

satisfies the Bloch equation: dF/dp+BF=0. Which
has a solution

. I rF =exp[ —PH(r, p)]exp ip w(r, p)—,

where H(r, p) is the classical Hamiltonian. The w may be
expanded in power of A

w =wo(rp)+iriw, (rp)+iri wi(rp)

+fi3w3(r, p)+A w4(r, p)

where w;(r, p) satisfy the recurrence relation:

w;(PP)= —f dtp (Vw, , tw; )V4)—1 p

m 0

+ f dt(V'w, ,—2tVw, ,V4)
2m 0

f (tw; 2V 4 t w; &V@V@)—
2m 0

with the condition that wo= 1, w&
= —(1/2rri)p(pV4).

Using Eqs. (5) and (6) one may write the partition func-
tion as

where P is the permutation operator with + for Bose or
Fermi systems. The superscript on momentum denotes
their permuted values. The partition function Z then be-
comes

3N
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'3N

g(k) + fd r d p exp i—p —exp[ P—H(r, p)]exp ip
fi

X(wo+fiw, +Pi wz+A' w3+A' w4+ . . ) . (8)

In what follows we shall specialize (8) to Maxwell-Boltzmann statistics because of the following two reasons. First, be-
cause of the repeated appearance of the derivatives in (7) the number of terms grow very rapidly as one proceeds to
higher orders which makes keeping the track of the various permutation exceedingly tedious. Second, we hope that for
the temperature range 9.2-35 K and densities considered for neon in the present study, the exchange effects are not
likely to be important. With this simplification the integration over the momentum coordinate in (8) can be carried out
with nonvanishing terms with even powers of fi. The terms with odd power of A' vanish.

The kinetic energy is

(KE) =

2

Tr g exp( PP )—
2m

Tr[exp( PP }]—
which using earlier equations may be written as

(Po+P2+P4+P6+ ' ' ' }
(KE

(1+yz+g4+y6+ )

where Po =3N/213; P; =A'((pp/2m)w; ), go= 1, and y; =R'(tc; ). Collecting the terms of equal power of fi we have

(KE) =K +K +K +K +K +
where

(10)

Ko=, K2= p(4. 1666X10 }(4,, ),
4

K4=
2 [p (1.7361X10 )(4;,qj )+p (

—1.7361X10 }(4;;4JJ)]
m

fi+
2 p ( —6.9444X 10 )(4J@tj) Kqyq, —

m

g6
K6= [P (3.6168X10 )(4;;"kk )+g'( —1.0850X10 )(4;;~7@kk ) ]

m

(12}

(13)

+ [g'( —8.6805 X 10 )(4;,ik@fk ) +p'( —8.2671 X 10 )(@,jk@,jk ) ]
m

6

+
3 [p (3.6168 X10 )(4;;4JJ@kk )+p (4.3402X10 )(4;;@jk@jk) ]

m

g6+ p (1.6534X10 )(4; 4;k4,k ) K4y2 K2y~—. —
m

(14}

The expressions for y2 and y4 are given as

P'( —4. 1666X10 ')&4,, &, (15)

N a"v4= g V(~r; —
r~. ~) and@;J „= . (17)i(j 1' 1' 1'

J n

where

[P3( —8.6805 X10 )(@;;~~~

+g'(8. 6805 X 10 )(4;;+")]

fi+ P (3.4722X10 )(N; 4; ), (16)

We have calculated the K; using the program for symbol-
ic computation of Wigner-Kirk wood expansion'
developed at Jamia Millia Islamia. The expressions for
kinetic energy obtained here are identical with that of
Ref. 8. The expressions corresponding to fi and for po-
tential energy and specific heat will be presented else-
where.

We have used the molecular dynamics technique to
compute the various correction to kinetic energy in the
temperature range of 9—35 K. The simulations were per-
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TABLE I. Single particle kinetic energies of solid neon at density 0.044264706 A with Lennard-
Jones pair potential. (KO) is the classical kinetic energy where as (K)2, (K)4, (K)6, (KE)~D, and
(KE ),„~, represents the 2nd, 4th, 6th order quantum corrections, total kinetic energy with corrections
and experimental kinetic energy, respectively. All the values are in degrees Kelvin.

Temperature

&Ko)

(K),
&KE&,
(KE ),„„

9.37

14.05
29.94+0.02
17.71+0.03

—11.43+0.01
49.81+0.20
50.70+4.00

12.02

18.04
25. 19+0.02
11.93+0.02

—5.32+0.05
49.80+0.05
47.70+3.00

18.09

27.13
19.15+0.02
6.61+0.01

—1.47+0.03
51.29+0.03
50.80+3.00

27.18

40.78
15.36+0.02
3.38+0.01

—0.30+0.01
58.93+0.02
59.59+3.00

TABLE II. Single particle kinetic energies of liquid neon with Lennard-Jones pair potential. All en-
tries have the same meaning as in Table I.

Temperature
Density

(Ko)
(K&,
(K)4
(K&,
&KE &MD

&KE&,„„

26.93
0.0359188

40.39
11.08+0.03
2.31+0.01

—0.13+0.01
53.76+0.4
53.80+3.00

35.10
0.0345977

52.65
8.91+0.02
1.42+0.01

—0.03+0.01
62.81+0.03
67.40+3.00

34.99
0.0316842

52.48
7.31+0.03
1.22+0.01

—0.04+0.01
61.01+0.03
66.50+3.00

TABLE III. Single particle kinetic energies of solid neon at density 0.044264706 A with Aziz pair
potenital. (KO) is the classical kinetic energy where as (K)z, (K)4, (K)6, (KE)~D, and (KE),„„,
represents the 2nd, 4th, and 6th order quantum corrections, total kinetic energy with corrections and
experimental kinetic energy, respectively. All the values are in degrees Kelvin.

Temperature

&Ko&

&K&,
(K),
(K),
&KE &MD

&KE &,„„

9.22

13.90
38.93+0.03
16.97+0.05

—20.89+0.01
48.81+0.12
50.7024.00

12.10

18.15
31.72+0.02
12.16+0.02

—9.07+0.06
52.81+0.05
47.70+3.00

17.97

26.95
23.31+0.03
6.86+0.01

—2.61+0.03
54.54+0.02
50.80+3.00

27.01

40.86
18.27+0.01
3.32+0.01

—0.57+0.01
61.51+0.01
59.59+3.00

TABLE IV. Single particle kinetic energies of liquid neon with Aziz pair potential.

Temperature
Density

&Ko&

&K&,
&K),
&K&,
(KE )~D
&KE &,„„

27.29
0.035918854

40.93
13.11+0.03
1.90+0.01

—0.07+0.02
55.44+0.4
53.80+3.00

35.10
0.034597701

52.65
10.54+0.02

1.16+0.02
—0.01+0.00
64. 18+0.03
67.40+3.00

34.88
0.031684211

52.32
8.74+0.03
1.04+0.01

—0.05+0.00
62.23+0.03
66.50+3.00
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formed with time steps in the range 1.0X 10 to 1.0X 10
units of A/c. The reduced time step was used at low tem-
perature (solid phase) to reduce the statistical fluctua-
tions. We have worked with 64 particles in the liquid
phase with simple cubic structure in which the particles
are placed at the center of the basic unit, which is sur-
rounded from all sides by periodically repeated replicas
of itself. We used the periodic boundary condition, i.e.,
when a particle leaves one face of the cell the move is bal-
anced by allowing that particle to enter from the opposite
face of the cell. A similar boundary condition was also
generated in case of solid phase by keeping the N parti-
cles in face centered cubic structure appropriate to the
solid neon.

We have summarized the average values of the various
contributions of the even powers of fi to kinetic energy
calculated by molecular dynamics simulation with
Lennard-Jones and Aziz interatomic potentials in Tables
I-IV.

The A' series expansion for quantum corrections to
kinetic energy show very good convergence at tempera-

ture 18 K and above. However, the series expansion does
not seem to be converging below 18 K and gives tortuous
contribution to kinetic energy though well in agreement
with experiment. Nothing can be said about higher-
order contributions from R and lower order terms.
Probably, the higher-order terms are indeed small or else
the agreement with experimental at lower temperature is
accidental. In order to settle this question we have to
wait till the next higher order, i.e., A term is calculated
in Wigner-Kirkwood expansion. These calculations are
underway and will be reported in due time.
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dharipande for drawing our attention to the use of molec-
ular dynamics technique to calculate the expectation
values for quantum corrections. We are also grateful to
Professor R. O. Simmons, for helpful discussions and
correspondence. This work was initiated at University of
Illinois at Urbana-Champaign for which Q.N.U. ac-
knowledges Grant No. DE-AC0276ER01198.
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