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Electric-field gradients (EFG s), due to substitutional transition-metal impurities in vanadium have
been evaluated using a discrete-lattice static method. The valence and size EFG s are generated simul-

taneously with the help of perfect and imperfect crystal potentials. The EFG's at the first- and second-
nearest neighbors (1NN, 2NN) of the impurity are calculated for the dilute alloys VNb, VMo, VTa, and
VW. The d-band effects of both the host and impurity are included through the crystal potential. The
calculated results are in agreement with the experimental values. The valence EFG is larger than the
size EFG at the 1NN while the size EFG starts dominating at the 2NN sites.

I. INTRODUCrION

Most of the theoretical investigations of electric-field
gradients (EFG's) have been carried out in substitutional
dilute alloys of fcc structure. ' The continuum model of
lattice is used for the size EFG. Recently, the EFG's in
Cu and Al alloys have been studied using the discrete-
lattice model. On the other hand, the transitional alloys
are much less studied for many reasons. In the experi-
mental study of dilute alloys of vanadium, it has been
found that even a few parts per 10 impurity in these al-
loys reduce the peak-to-peak intensity in the NMR signal
and give distorted line shapes. ' Second, the electronic
structure of transitional alloys is complex. Therefore the
theoretical study of these systems becomes a characterist-
ically diScult problem. Only a few theoretical studies of
EFG's have been made ' in vanadium alloys and these
too have been limited to the continuum model of the lat-
tice. Recently, we have performed ab initio calculations
for the impurity-induced strain field due to transition-
metal (TM) impurities in V using the lattice static method
(hereafter this paper is referred to as I). We have also
developed a parameter-free formalism for EFG's in dilute
cubic alloys which has been successfully applied to dilute
alloys of fcc symmetry. It is therefore interesting to ap-

ply this EFG formalism to transitional dilute alloys of
vanadium.

We present a brief review of the theory in Sec. II. The
calculations and results are presented in Sec. III, and the
results are discussed in Sec. IV.

II. THEORY

As discussed in I, the total change in the crystal poten-
tial h4(r} in the presence of an impurity is the sum of

two contributions, i.e.,

b4(r) =b(b"(r)+hP'(r),

where

bP"(r) =Pt(r) PH(r}, —

hP'(r) = g' [Ptt(r R„)—PH(r——Ro )] . (3)

V(R ) =V"(R )+V'(R ), (4)

where the valence EFG

V"(R }=[1—y(r)][V.Vbg"(r)], a

and the size EFG
V'(R ) = [1—y(r)][V.VE(b'(r)],

Here [1—y(r)] is the Sternheimer antishielding factor.
As y(r) approaches its saturation value y„(asymptotic
value) at distances less than the 1NN distance, y(r) is
therefore replaced by y in the present calculations.

The Cartesian components of traceless valence EFG
tensor are defined as

Here $H(r) and (bt(r) are the host and impurity ion po-
tentials and R„and R„are the atomic coordinates in the
perfect and imperfect crystals, respectively. hP"(r) and
b P'(r) are the contributions to h4(r) from the excess im-
purity valence AZ and the impurity-induced strained
field, respectively. The prime in Eq. (3) denotes that
rAR„and R„. The same convention continues.

The EFG tensor V at r =R, the mth nearest neighbor
(mNN) of the impurity, is obtained by taking the second
derivative of b,4(r), which is given as
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Here a and P (=x,y, z) are the Cartesian coordinates.
Similarly, the Cartesian components of traceless size
EFG tensor q'& are

q'p(R )=V'p(R~) ——g V' (R ),1

a

where

V'p(R ) =(1—y „}VVp

X g' [pH (r R„)——pH (r —R„)],
n(, Am)

(10)

The second term in Eq. (10) involves the sum over the
perfect cubic lattice; therefore, its Laplacian vanishes due
to symmetry reasons. But in numerical calculations we
use Eq. (10) as such for convergence reasons.

The total EFG is obtained by adding the correspond-
ing components of valence and size EFG's, i.e.,

V p(R )=V"p(R )+ V'p(R ) .

Here n is the number of 1NN's in a crystalline structure
and Z,H and Z&H are the number of s and d electrons per
host atom which are related to the host valency zH as
Z, 0+Zz H=Zz. PH (r) is the free-electron contribution
obtained from the Ashcroft empty core model potential
in conjunction with Thomas-Fermi screening. (1/a. ) is
the Thomas-Fermi screening length, and r,H is the model
potential core radius. Pz(r) is the contribution arising
from the shift in the d-band center and depends upon the
d-state radius r&& of the host atom. PH(r) arises from the
finite d-band width. ' The impurity-ion potential PI(r) is
obtained by replacing the subscript H by I in Eqs.
(13)—(16) and therefore

Pl(r)=PI (r)+Pi(r)+PI(r) . (17)

B. EFG

The double derivatives of the excess impurity potential
bP'(r) can be written as

V"p(r ) =(1—y „)[V Vphd" (r)+V,Vphd'(r)
The components of traceless EFG tensor q are given as

1
qap ~ap

3
~ap X~aa

a
where

+VaVphg (r)], (18)

The 3X3 matrix of q &
is diagonalized to obtain the

eigenvectors and the corresponding eigenvalues. The
maximum eigenvalue is taken along the line joining the
host and impurity atoms, i.e., the [111]direction for the
1NN and the [100] direction for the 2NN in the bcc
lattice. The corresponding eigenvector is taken
along the Z axis of the EFG coordinate system. It is
called the parallel direction, and the EFG is denoted
as qzz=q~I ~ The other two eigenvalues are written as

qzz =
q~ and q&z

=q„. The asymmetry parameter
n=

I q» qrr I /I qzz I-

III. CALCULATIONS AND RESULTS

A. Scattering potential

We have used the analytical form of the interionic po-
tential due to Wills and Harrison for the evaluation of
impurity-induced strain field in dilute alloys of V in paper
I. We use the same interionic potential in Eqs. (5)—(11)
to evaluate the valence and siz= EFG's at the displaced
positions of the host ions. The explicit form of the poten-
tial for the host metal in atomic units is

NH(r) = [4H'(r)+AH(r}+ AH(r) ]

where

e Kf'

PH (r) =Z,Hcosh (sr,H )
r

gyFE( r) PFE( r) yFE( r)

AP'(r) =P;(r) PH(r), —

b,P (r)=Pl(r) PH(r) . —
(20)

(21)

From Eqs. (13)—(16) one can readily find V VPH (r),
V VPH(r}, and V VPH(r) at the displaced position of
the host ions. Similarly, one can evaluate VaV+I (r),
V V+I(r), and V V+I(r) from Eq (17) and hence the
derivatives in Eq. (18). Using Eq. (18) in Eq. (7), one can
evaluate q p(R ~, which gives the components of trace-
less valence EFG tensor. Similarly, Eq. (13) is used in

Eqs. (9) and (10) to evaluate q'p(R„}. The displaced po-
sition R„ in Eq. (10) is taken from I, and the derivatives
are evaluated at the displaced positions of the host ions.
The sum over NN's of the impurity in Eq. (10) is carried
out until convergence up to three decimal places is
achieved.

The experimental values of the EFG are available for
the V alloys with 3d, 4d, and Sd impurities. Therefore we

apply the above formalism to calculate the EFG in these
alloys. The antishielding factor y „ for V metal is
—11.0. The model potential parameters are taken from
Wills and Harrison. The calculated values of valence
and size EFG's due to the TM impurities Nb, Mo, Ta,
and W at the 1NN and 2NN sites are given in Table I.
The results are in reasonable agreement with the experi-
rnental values at the 1NN sites. On the whole the calcu-
lated results are on the higher side than the experimental
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EFG
Impurities components qxx qll

iqi. a&c

[Expt.]

Nb

Mo

Ta

Nb

Mo

Ta

1NN
—0.766

0.262
—0.504
—0.327

0.129
—0.198
—1.057

0.286
—0.771
—0.442

0.086
—0.356

2NN
—0.089
—0.191
—0.280
—0.028
—0.127
—0.155
—0.104
—0.207
—0.311
—0.016
—0.147
—0.163

—0.766
0.262

—0.504
—0.327

0.129
—0.198
—1.057

0.286
—0.771
—0.442

0.086
—0.356

—0.089
—0.191
—0.280
—0.028
—0.127
—0.155
—0.104
—0.207
—0.311
—0.016
—0.147
—0.163

1.532 1.01
—0.524 [0.84]
1.008
0.654 0.40

—0.258 [0.34]
0.396

2.114 1.54
—0.572 [1.00]
1.542
0.884 0.71

—0.172 [0.71]
0.712

0.178 0.56
0.383

0.561
0.056 0.31
0.255

0.311
0.208 0.62
0.415

0.623
0.032 0.33
0.293

0.325

values, but there are many deficiencies in the experimen-
tal results too.

The calculated results for the EFG show the following
noteworthy features.

(i) It is found that q" dominates over q' in all the alloys
of V considered here, which is consistent with the results
of Pal et al. Rattan, Prakash, and Singh also predicted
the same behavior in some of the V alloys.

(ii) The maximum component of the EFG is along the
parallel direction [111]for the 1NN, which is consistent
with the experimental results. "

TABLE I. Calculated and experimental values of the EFG
(A ) at 1NN and 2NN sites for Nb, Mo, Ta, and W impurities
in V. v, s, and t denote valence, size, and total EFG's, respec-
tively.

(iii) The present discrete-lattice calculations yield a cy-
lindrically symmetric size EFG tensor q', which is con-
sistent with earlier calculations. The cylindrical symme-

try of q' is due to the bcc symmetry of the host lattice
and the use of the central crystal potential, which gives
g=O. The inclusion of the asymmetric nature of the d
states in the valence e8ect may yield a small but finite
value of g.

(iv)

qadi

is much larger than q fi
for Nb and Ta impurities,

while both are comparable for Mo and % impurities at
the 1NN.

(v) Although EFG at the 2NN site is less than that at
the 1NN site, it is large. Further, at the 2NN site qll

dominates over q ll, contrary to the situation at the 1NN

site. Such a trend in the EFG was also found in dilute al-

loys with fcc structure. The large values of the EFG at
the 2NN sites show that the impurities are not screened
in the Wigner-Seitz (WS) cell, which is consistent with
the results of Podloucky et a/. "The situation in the di-

lute alloys of fcc structure is quite different as the EFG at
the 2NN sites is quite small in these alloys. It shows
that the impurity is nearly screened in the %S cell of the
impurity atom in the dilute alloys of fcc structure, which
is consistent with the results of Dederichs et al. '

IV. DISCUSSION

In the present investigations, the uncertainties in the
EFG due to asymptotic and preasymptotic behavior of
charge density, core enhancement factor, and size
strength parameter no longer exist. ' The d-band charac-
teristics of the host and impurity are included explicitly
in the ionic potential. The calculations are internally
consistent as the impurity-induced strain field, used here,
has been calculated with the help of same interionic po-
tential. The calculated values of the EFG reproduce the
trend of experimental results. The present results can be
improved by using a more reliable ab initio interionic po-
tential. One of the methods is to calculate Pz(r) and

PH(r) using dielectric screening theory. ' In the end we
would like to say that, to the best of our knowledge, this
is the first calculation of the EFG in dilute alloys of bcc
structure which uses the full discrete-lattice model for the
evaluation of both the valence and size EFG's.
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