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Anisotropic s-wave gap and nuclear magnetic resonance in high-temperature superconductors
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The Knight shift and the nuclear magnetic relaxation rates O', ', 8'~~', and 8'~~' are calculated for tem-
peratures below the superconducting transition temperature of the high-temperature cuprate supercon-
ductors; the superscripts refer to the Cu and the ' 0 nuclei while the subscripts refer to the direction of
the magnetic field with respect to the CuO layers. The calculations are based on a recently proposed in-
terlayer tunneling mechanism of superconductivity in these materials. In general, the results are con-
sistent with experiments even though the superconducting gap respects the full point-group symmetry of
the lattice (anisotropic s wave); the anisotropy of the magnitude of the gap is an essential element.

I. INTRODUCTION

The identification of the symmetry of the supercon-
ducting order parameter is of considerable importance in
constraining theories of high-temperature superconduc-
tivity. Although it is commonly agreed that the super-
conducting state consists of electrons paired in spin
singlets, a consensus regarding the symmetry of the su-
perconducting order parameter has not emerged. '

Nuclear magnetic resonance (NMR) can, in principle,
provide useful information regarding the wave-vector
dependence of the superconducting order parameter.
One of the striking results that casts some doubt on the
applicability of a BCS (Bardeen, Cooper, and Schrieffer)
-type pairing theory in these materials is the absence of
the Hebel-Slichter coherence peak in the NMR relaxa-
tion rates below the superconducting transition tempera-
ture, T, . More recently, Cu spin-lattice relaxation
rates in YBa2Cu307 (YBCO) have revealed a nonmono-
tonic temperature dependence of the anisotropy ratio for
magnetic fields applied parallel and perpendicular to the
CuO layers. The temperature dependence of the ratio of
the Cu to ' 0 relaxation rates in parallel field appears,
on the other hand, to disagree among experiments. '

Based on these findings, it has been argued that the su-
perconducting state must exhibit an unconventional su-
perconducting order parameter (i.e., an order parameter
that does not respect the full point-group symmetry of
the lattice) with d 2 & symmetry, and that the s-wave

X Jl

pairing can be ruled out. ' In this paper, we show that
this is by no means the case. The experimental observa-
tions are entirely consistent with an s-wave pairing and a
completely gapped Fermi surface, provided that the mag-
nitude of the gap is anisotropic. Although photoemission
measurements cannot detect either the sign of the gap or
nodes in the gap because of the current energy resolution,
they have certainly provided evidence in favor of a gap
whose magnitude varies substantially on the Fermi sur-
face. " In a crystal, the symmetry of the gap is deter-
mined by the irreducible representations of the point

group. Thus, by an s-wave gap we mean a gap that
transforms like the unit representation. Our conclusions
are based on calculations of the Knight shift and the re-
laxation rates 8'~, 8'~~, and 8'~~ for the Cu and the
' 0 nuclei. Here the superscripts refer to the specific nu-
cleus and the subscripts to the direction of the magnetic
field with respect to the CuO layers.

II. THE MODEL

We briefly review the interlayer tunneling model that
has been discussed in detail elsewhere, ' ' and which we
use to calculate the NMR relaxation rates and the
Knight shift. It consists of coupled superconducting lay-
ers where the coherent single-particle tunneling is
suppressed due to the orthogonality catastrophe. In this
model, the motion, even within a layer (ab plane), is
characterized by a non-Fermi-liquid spectral function in
the normal state. In contrast, we have argued that in the
superconducting state the quasiparticle picture should be
at least approximately valid for motion within a layer;
however, the coherent motion of the quasiparticles from
layer to layer is still blocked in the superconducting state.
The dominant interlayer coupling is then'

H~ = —g Tz(k)[cz'&' c"zic' z czt +H. c.], (1)
k

where Tz(k) = ti(k) /t, cz&t is an electron creation opera-
tor pertaining to the layer (i), of two-dimensional wave
vector k, and spin f. The bare matrix element deter-
mined at a high energy scale, ti(k), characterizes the
coherent single-electron tunneling between the layers.
Note that the orthogonality catastrophe does not operate
at this scale. For such a bare matrix element it is ade-
quate to use the band-structure results and parametrize
TJ(k) by Tz(k) =TJ(cosk„a —cosk a) /16, ' where a is
the lattice spacing. Here, t is a band-structure parameter
defining the motion in the ab plane; see below.

Thus, the Hamiltonian for a system of bilayers' appli-
cable to materials such as YBCO is
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Here, we have assumed that the in-plane attractive kernel

Uk k. is due to electron-phonon interactions, and, for sim-

plicity, have considered Uz& = —V, (~sq~, ~s~ ~
&coD),

where coD is the Debye cutoff of the in-plane phonons.
The electron-phonon interaction will be parametrized by
A, =N(0) V, where X(0) is the density of states at the Fer-
mi surface per spin. This choice of Uk k leads to a natu-
ral explanation of the anomalous isotope effect observed
in these materials. ' ' Any additional effects involving
Coulomb interactions are included in the Coulomb pseu-
dopotential parameter p*, as in BCS theory, or are taken
into account by a simple Fermi-liquid correction. Note
that Eq. (4), together with the self-consistency condition
on Ao, completely determines the temperature depen-
dence of b, f, ( T).

In the superconducting state, the spin susceptibility

yo(q, co) is obtained from the standard BCS expression'

f (Eg+q) f(Eg)—"""~—(E,—E„)+tr
1 f (Eq+q )

—f (Eq—)
+—Ak' "~+(E„,+E„)+ir

f (Eg+q )+F(E„)—1
+—A„, (E„„+E„)+tr— (6)

and p is the chemical potential. This model combines the
topology of the Fermi surface, observed in photoemission
experiments, ' with the non-Fermi-liquid nature of the
normal state.

In mean-field theory, H is diagonalized by a Bogo-
liubov transformation; here we assume that
bz' ——(c"z&cI,'& ) is independent of the layer index,
bk' =bk. The resulting gap equation is' '

Af [1—Tq(K)y», ,(k) ]= b'08(coD —
~
s(k)

~ ), (4)

where b f, —= (b„)y»,,(k), y», „(k)=tanh(E&/2T)/2E&,

EI, =Qsq+(b f, ), and ho is determined self-consistently
from

correct. In this expression, we merely have to substitute
b, z by our gap b, f, that we would obtain from Eqs. (4) and
(5). Strictly speaking, however, this expression is valid
only in the limit I ~0+ because the quasiparticles are
infinitely long lived in BCS theory. Nonetheless, this ex-
pression is often used for a finite I to represent possible
inelastic scattering in a simple phenomenological
manner. We note, however, that the justification for such
a procedure to include large inelasticity, observed in re-
cent experiments close to T„' is not entirely clear.

In the following, we shall extract the Knight shift and
the nuclear magnetic relaxation rates from the spin sus-
ceptibility g(q, co), where

go(q, co)
x(q ~)=

1 —Ugo(q, co)
(8)

This random-phase approximation is a simple way to in-

corporate the Fermi-liquid corrections in the supercon-
ducting state and is discussed in more detail belo~; U
signifies the strength of the Fermi-liquid corrections.

A few remarks on our choice of parameters are ap-
propriate. In our computations, we have chosen two sets
of band-structure parameters t, t', and p, in Eq. (3). For
the first set, t=0.25 eV, t'=0, and p= —0.07 eV, corre-
sponding to a band filling of (n ) =0.86. For the second
set, ' t=0.2S eV, t'=0. 45t, and p= —0.31S eV, corre-
sponding, again, to a band filling of (n ) =0.86. We refer
to the first set as set I, while the second set will be re-
ferred to as set II. The main difference is the quasiparti-
cle motion in the ab plane. Set I produces a closed Fermi
surface around the point I in the first Brillouin zone,
while set II results in an open Fermi surface.

Because, in our theory, the critical temperature T, of
the anisotropic s-wave superconductor is rather insensi-
tive to A, in the weak-coupling limit when Tz(k) dom-

inates the behavior of T„' ' a small variation in A. does
not significantly affect the magnitude of T, . For the bulk

of the paper we have chosen, for illustrative purposes,
X=0.205 (set I) and A, =0.225 (set II); in addition, in or-
der to exhibit the sensitivity of the results with respect to
A, we have also computed the Knight shifts with A, =0.41
(set I) and A, =0.45 (set II). As in Ref. 13, we have conser-
vatively estimated TJ =0.043 eV to produce T, =100 K,
with ~D =0.02 eV.

To be thorough, we also include a comparison with the
results obtained with an order parameter of d & ~ sym-

metry, i.e.,

b,o( T)
(eosk„a —cosk a) .

2

For d & symmetry, we use 260/T, =8, and the T
dependence of b,"(T) has been taken to be

where bo( T)=botanh(ct+T, /T 1), —(10}

+ 1 ~k~k+q+ ~k~k+q1+
Ek&k+

I =I (T) is the quasiparticle lifetime in the supercon-
ducting state, and f (Ez) is the Fermi function. This ex-

pression is correct as long as the BCS mean-field theory is

where o.= 1.74 reproduces the BCS-like behavior in

Aod(T). As stated above, the minimum gap amplitude
b,o( T) for the anisotropic s-wave pairing must be obtained

self-consistently and can be tuned (effectively tuning the
anisotropy of the gap) by varying A,, while maintaining TJ
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constant. Note that we have used a notation where b,o( T)
is the minimum of the anisotropic s-wave gap in contrast
to b,o(T) which is the maximum of the d-wave gap. We
apologize to our readers for any notational inconveni-
ence.

In Fig. 1 we plot b,o(T) as a function of temperature
for both sets I and II. The superconducting gap for all k
vanishes when 50( T) vanishes at T„as can be seen from
Eqs. (4) and (5}. In BCS theory, with an isotropic s-wave

gap, the temperature dependence of the gap closely ap-
proximates to its T=O value at temperatures as large as
T/T, -0.7. The modification of the temperature depen-
dence of b, ro(T) comes about as a result of the renormal-
ization of the pair susceptibility that takes place in our
theory. In effect, the replacement:

Xpair(~ }

T (K)
FIG. 1. Minimum values of the anisotropic s-wave gap hp( T)

as a function of T. The circles correspond to band-structure pa-
rameters t=0 25 eV., t'=0, p= —0.07 eV, (n)=0.86 (set I),
while the squares correspond to t=0.25 eV, t' =0.45t,

p = —0.315 eV, ( n ) =0.86 (set II).

can incorporate the Fermi-liquid corrections in the super-
conducting state by adding molecular fields which do not
change the thermodynamics, nor any single-particle
properties, but affect the low-frequency and small-wave-
vector response functions. The additional molecular
fields describe the distortion of the "average" Fermi sur-
face, while the formation of Cooper pairs is not affected.
There is no inconsistency in using these Fermi-liquid
corrections because we have assumed that the quasiparti-
cles in the ab plane are recovered in the superconducting
state below T, . In principle, for an anisotropic system,
there are a large number of Fermi-liquid parameters. In
practice, however, we believe that only a small number of
them play any important role, because, first, the higher
harmonics of the Landau functions are expected to be
small, and, second, the low-order terms of the expanded
Landau Hamiltonian exhaust the total number of ma-
croscopically conserved quantities.

The Knight shifts are shown in Figs. 2 and 3. The
chosen values of Uare U=O and U=2t. For the d wave
the resulting Stoner enhancement at T, is 1.75, while for
the anisotropic s wave, it is 1.57, for the parameter set I.
For parameter set II, they are 1.93 and 1.86, respectively.
These enhancement factors are eminently reasonable.
For the anisotropic s wave, the Knight shift at low tem-
peratures is strongly suppressed as the electron-phonon
coupling A, is increased. To better illustrate this we have
also calculated the Knight shifts for A, =0.41 (set I) and
A, =0.45 (set II) with all other parameters held fixed.
Note that these values of A. are still within the weak-
coupling regime. The results are shown in Fig. 4 and
compared with the experimental results' ' on YBCO for
O(2,3). The results for sets I and II are essentially the
same on the scale of the figure, so we show the results for
only one of them, set II. The results for the Cu(2} Knight
shift ' are similar. %e caution the reader that A, is one of

1.2

U=O (II)

when Tz(k)%0, is the reason for a non-BCS temperature
dependence of ho( T) at intermediate and higher tempera-
tures.

0.8-
~D

0.6-

III. KNIGHT SHIFT

The Knight shift is found from

yo(0, 0)
y(q~0, co =0)=

1 —v~0(o, o)

where yo(0, 0) =go(q~O, co=0)= —gi, t)f (Ei, )/t)Ei, .
The denominator accounts for the Fermi-liquid correc-
tion in the superconducting state in a simple manner.
Close to T„ there can be a high density of thermally ex-
cited quasiparticles; hence, the model of noninteracting
quasiparticles cannot be valid. Following Leggett, ' one
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FIG. 2. Knight shift for the d-wave gap with 250lkT, =8
and band-structure parameter sets I and II as in Fig. 1.
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FIG. 3. Knight shift for the anisotropic s-wave gap for
A, =0.205 (set I) and A, =0.225 (set II) and band-structure param-
eter sets I and II as in Fig. 1.

the determining parameters that controls the magnitude
of the anisotropy of the gap and is expected to be
different for different materials. For example, there is no
reason to believe that the same parameters should apply
to Bi2Sr2CaCu20s (BISCO); in fact, for this material, the

Knight shift at low temperatures has a different overall
temperature dependence.

The reader may wonder why the Knight shift at 60 K
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FIG. 4. Knight shift for the anisotropic s-wave gap for

A, =0.41 (set I) and A, =0.45 (set II) and band-structure parame-
ter sets I and II as in Fig. 1.

is considerable when b,o(T =0)=70 K. This could not
possibly happen within the BCS formalism if b.z(T=O)
were interpreted as the BCS gap, which it manifestly is
not. This is a unique feature of our theory; while an in-
crease in A. changes the gap anisotropy and increases the
minimum gap b,o(T=O), it has little effect on T, when

TJ(k) dominates in the weak-coupling limit. ' ' Thus,
one can easily adjust ho(T=O) to be bigger (as in BCS
theory) or smaller than T, . Suppose for the moment that

—4(,( T)/T
the Knight shift is proportional to e '; then it is
clear that the crossover in this exponential function, from
concave to convex, takes place at temperatures
T-b o(T= 0) /2, and the shape of the curve for T (T,

may appear very different for different choices of
b,o(T=O) with respect to T, . In fact, it is possible to be
more quantitative if we choose the superconducting den-
sity of states to be a step function at the minimum gap
edge. ' The logarithmic singularities at higher energies'
have little effect in the evaluation of the Knight shift be-
cause of the presence of the derivative of the Fermi func-
tion in the integrand. One easily Gnds that the Knight
shift, E ( T), is

K(T) ~ 1

hp( T) l2
e ' (13)

It is possible to fit a function to b,o(T) shown in Fig. 1

and reproduce, with the help of Eq. (13), our numerically
evaluated results for the Knight shift shown in Fig. 3. Fi-
nally, note that the non-BCS temperature dependence of
ho( T) also helps in producing an appreciable Knight shift
for temperatures comparable to the minimum gap, as it
falls more rapidly with temperature at intermediate and
higher temperatures than the BCS gap, as mentioned ear-
lier.

Note that the substantial positive curvature in the
Knight shift, shown in Fig. 2, for the d wave would be
absent if one were to use 2b,z/T, =3.5, which is the value
one obtains self-consistently at the mean-6eld level. Be-
cause inelastic scattering and Quctuation effects are ex-
pected to be smaller at smaller temperatures than at T„
they are expected to enhance the ratio 2hod/T, from its
mean-6eld value. This has the effect of compressing"
the Knight-shift curves along the temperature axis, intro-
ducing a stronger upward curvature consistent with ex-
periments. The choice of large 2b,o/T, =8 for d-wave

pairing can be viewed as an attempt to mimic these
effects. For the case of anisotropic s-wave pairing, we
have calculated the gap self-consistently within the
mean-field approximation and have not taken into ac-
count the effect due to fluctuations. Although the effect
of the inelastic scattering close to T, has been incorporat-
ed in a phenomenological manner in the calculation of
the relaxation rates, its effect on T, has not been incor-
porated; see below. As is the case for the d wave, it is, of
course, possible to adjust the parameters to improve the
agreement with experiments, but this appears to be of lit-
tle value.

Because the interlayer Josephson coupling in Eq. (1) is
local in k space, the fluctuation effects are expected to be
quite important. A qualitative way to understand this
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IV. RELAXATION RATES

The NMR relaxation rates, W~~ ~(T), are obtained from

3T 1' F ( }
™g(q,to}

ll ~
— im ~ ll. j q

kg $ 60~0 N
(14)

where p~ is the Bohr magneton. The superscript a refer
to Cu and ' 0 nuclei, while the subscripts

~~
and l indi-

cate the direction of the applied magnetic field with
respect to the CuO layers. The hyperfine form factors
F~~ ~(q) are

Fj (q)= —,'[A +12B(c soq„+acsoq a)]

+ —,'[A +I2B(c sqo„+ac sqoa)]

F~~ (q}=[Aj=2B(cosq„a+cosq a)]
C2

F~~ (q)= [1+—,'(cosq, a +cosq a)] .

(15}

effect is to consider the pseudospin formulation of the
BCS theory in which the pseudospins are situated on a
continuum of k points. In BCS theory each pseudospin
at a given k is essentially equally coupled to infinitely
many pseudospins because the interaction term in the
BCS reduced Hamiltonian is approximately independent
of k. This is why mean-field theory works so well in that
case. The present problem can be viewed as two coupled
systems of pseudospins, corresponding to the two indivi-
dual layers, situated on two separate continua of k points.
The coupling between them is given by HJ in Eq. (1). In
the limit that the effect of Tz(k) dominates over that of A, ,
this locality in the k-space coupling can lead to substan-
tial fluctuation effects. Thus, in a more complete theory
the agreement between theory and experiments close to
T, is expected to be better.

lim
40~0

1m'(q, co ) Bf(E„)
A g q 5(Eq+ E—q)

+ A q q[1 —f (Ek+q) —f (Ek)]

X5(Eg+ +Eq } (17)

To include lifetime effects, I (T) &0, the 5 functions are
broadened into Lorentzians of width I'( T). This method
has the advantage of preserving the property
lim„plop(q, to)-to. By comparing with Ref. 8, we
have checked that both methods agree to within
10—20%; see below for more details. This gives us the
confidence that this heuristic procedure is reasonable.

In all our calculations, the Hebel-Slichter peak is des-
troyed, due in part to the inelasticity close to T, and in
part to the strong anisotropy of the gap. At low tempera-
tures, the k sum in Eq. (17) is dominated by the minima
of the excitation spectrum, E&. The temperature depen-
dence in this regime is therefore determined by the mini-
ma of the gap, 6&, on the Fermi surface. Moreover, the 5
function limits the q sum in Eq. (14) in such a way that
Et,=(E&);„=Ez+q. Therefore, when T «(b&};„,the
relevant q vectors connect the minima of E& on the Fer-
mi surface. For the Fermi surface corresponding to set I
these wave vectors are close to (O,n. /a) and (n./a, n/a},
while for the Fermi surface corresponding to set II they
are close to (0,0.742)m. /a and (0 742,0 74. 2)n /a. Wheth. er
or not the gap changes sign on the Fermi surface is not
qualitatively important in restricting the q vectors; what
is essential is that the gap be substantially anisotropic,
i.e., its value at (kF„,O) must be very different from its
value at (kz„,k~„) and at symmetry-related points.

Here, we shall use two sets of parameters, All= —48,
A ~

= 1.608, C =0.918, and parameter set I, and

Ail= —48, 3~=0.848, C=0.918, and parameter set
II. ' Finally, we adopt I'=T, (T/T, ) for the inelastic
scattering rate and U=2t for the Fermi-liquid correc-
tions for the d-wave calculations, and, somewhat inad-
vertently, I'=0.8T,(T/T, ) and U =2t for all anisotrop-
ic s-wave calculations. These choices for I'(T) incorpo-
rate, phenomenologically, the drop in the inelastic
scattering rate below T„as observed in YBCO. '

It is appropriate to remark on the limit co~0 when
I ( T) & 0, in Eq. (14). Note that Eq. (8) leads to

Imp(q, co)
lim
co~0 CO

Imp(q, to ) /co
=- lim

z~-p [1—U Repp(q, co)] + [U Imp(q, to)]
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where, for I (T) &0, lim„plop(q, co)/co~ ~. This
problem may be circumvented in different ways. One
possibility is to interpret the limit co —+0 to mean
co~I (T). We proceed differently and consider first
to~0 and I ( T)=0+. Then,
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FIG. 5. Redo(q, 0) for the isotropic s-wave gap with

260/kT, =8 and band-structure parameter sets I and II as in

Fig. 1.
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Consider the temperature dependence of Do(q, T}
—= lim &I'D(q, co)/co in Eq. (14) and two representa-
tive wave vectors, q, =(0.05,0)~/a and

qz=(1.0,0.9)n./a. For all cases, isotropic s-wave pair-

ing, d-wave pairing, and anisotropic s-wave pairing, there
are remnants of upturns in Do(q„T) just below T, .
However, for these three different types of gaps, Do(q2, T)
behaves differently. The upturn for the s wave, in fact,
gets sharper, while the upturn for the d wave is replaced

by a sharp decrease just below T, and a considerable
amount of spectral weight appears at lower temperatures.
Thus, even though Do(q, T} is multiplied by T and is in-

tegrated over, the d-wave relaxation rates at low tempera-
tures are considerably enhanced over s wave. The aniso-

tropic s-wave pairing shows a behavior intermediate be-
tween the isotropic s-wave and the d-wave pairing.
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Do(q2, T) exhibits a slow rise just below T, and, subse-

quently, does not decrease as sharply as for d-wave pair-
ing. The slow rise below T„ in contrast to the sharp rise
in the case of the isotropic s wave, is due to the anisotrop-
ic nature of the gap, similar to the d wave. Recall that
the anisotropic nature of the gap leads to a step discon-
tinuity of the density of states at the minimum gap edge
and not a square-root singularity. ' The absence of the

Hebel-Slichter peak is therefore not surprising. That
Do(qz, T) does not decrease as rapidly as for the d wave is
due to the different behavior of the coherence factors
Az+ . However, similar to the d wave, an appreciable
amount of spectral weight appears at lower temperatures.
The reasons are similar to those that led to a considerable
enhancement of the Knight shift at low temperatures as
compared to an isotropic s-wave gap and lead to appre-
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ciable relaxation rates at low temperatures, in the range
b 0/4 & T & 6,0/2.

Consider now Redo(q, co) as a function of temperature
along some typical directions in the first Brillouin zone.
This quantity is shown in Figs. 5—7, at two representative
temperatures, T =0.4T, and T =0.8T„ for both sets of
band-structure parameters, I and II. It is evident that the
overall features of the q dependence are dominated by the

topology of the Fermi surface and not by the supercon-
ducting gap. The different gaps produce different tem-
perature dependences, however. For both anisotropic s
and d waves and for sets I and II, the temperature depen-
dence of the peaks close to (n., m ) is weak, in contrast to
what one finds for an isotropic s-wave gap, at least for
T )0.3T, . At higher temperatures, the minima of the
anisotropic s-wave gap along the diagonals are small,

1.4

1.8

1.6-

1.4-

0.8-

CLI 0.6-

a
~ o o

~ 0

W, ~, „:(I)

~ W / W, , : (II)

o~ oo ~~ e 1.2-

D
0.8-

0.6-

0.4-

oI oo oo ~~ ~ o QIcl

0.2- 0.2-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 ~
I

~ I ~ I 1 1 I ~ f ~ I ~ I ~ ~
I

~ ~ I ~ ~
I

T 'I I ~ ~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T/TG

FIG. 15. Anisotropy ratio $V&~~ {T) /8'&~~ {T) for the aniso-
tropic s-wave gap with the same parameters as in Fig. 3.
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the anisotropic s-wave gap with the same parameters as in Fig.
3.
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mimicking a node. For ~q~g„&1, where g is the super-
conducting coherence length, the susceptibility is
suppressed at low temperatures due to the formation of
singlet Cooper pairs. The suppression is stronger for the
anisotropic s wave than the d wave, rejecting the activat-
ed nature of the uniform susceptibility for the anisotropic
s wave for T « T, . In this respect, Reyo(q, 0) for aniso-
tropic s-wave pairing appears to combine the large-q
behavior of a d-wave gap with the small-q behavior of an
isotropic s-wave gap. Because the enhancement factor in
Eq. (16) is dominated by large q [as seen from the
Redo(q, 0) behavior], the temperature dependence of this
factor is similar to what one would obtain for a d-wave
gap, over a considerable range of temperature.

The relaxation rates for d and anisotropic s waves are
shown in Figs. 8-13, while the anisotropy ratio,
W

& j ( T) /W~& ( T), and the Cu-to-0 ratio,
Wt~~ (T)/WI~~ (T), are shown in Figs. 14,15 and 16,17 for
parameter sets I and II. Similarly to the Knight shift, the
upward curvature for the d wave is greater, although in
both cases the inelastic scattering combined with the an-
isotropies of the gaps destroys the Hebel-Slichter coher-
ence peak. For the anisotropic s wave, excellent fits to
the numerical results over the entire temperature range
can be obtained with the expression

3 5p (0)/T
W, =(aT+bT +cT )e ' . Of course, over alimit-
ed range of temperature it is always possible to fit a
power law such as T . As for the Knight shift, it is possi-
ble to adjust the parameters to make the agreement with
experiments better.

It is important, however, to note that the nonmonoton-
ic temperature dependence of the anisotropy ratio
W& (jT)/W&~~ ( )Tis qualitatively reproduced even with
the present set of parameters. If we keep all other param-
eters fixed, the shallow minimum will shift to higher tem-
peratures if we increase the value of A, , although precise
agreement with experiments on YBCO may still be
difficult to achieve within the simple framework of the
present paper. The experimental values of the anisotropy
ratio seem to fall rather sharply at T, and the minimum
is deeper.

The temperature dependence of the Cu-to-0 ratio
W,

~~

(T)/WI~~ (T) at low temperatures is opposite to the
recent low-field measurements (see also Refs. 6 and 7),

for both d waves and anisotropic s waves; in all cases, the
theoretical results are more in accord with the high-field
results of Hammel et al. We are perplexed by this
disagreement and speculate that the field inhomogeneity
may be more of an issue at low fields than at high fields.

Good fits to the relaxation rates, their ratios, and the
Knight shift have also been obtained assuming a gap of
s+id symmetry. However, such a gap breaks time-
reversal symmetry, which, at this time, can be ruled out
on experimental grounds.

V. CONCLUSION

In the present paper, we have shown that it is possible
to reproduce the experimental features with a reasonable
set of parameters within our formalism of interlayer tun-
neling, but have not attempted a detailed fit to the experi-
mental data. As was explicitly demonstrated with the
Knight shifts, it is possible to adjust the parameters to
further improve the agreement, but this cannot be very
meaningful until we fully understand the Fermi-liquid
corrections, the fluctuation effects, and the observed
inelasticity close to T„which must await further work.
We also need to understand the crossover from the non-
Fermi-liquid-like spectra1 density to the quasiparticlelike
behavior just below T, . Of course, if the major part of
the inelasticity close to T, is due to electron-phonon in-
teractions, it can be incorporated by generalizing our
theory' ' in a manner similar to the Eliashberg formula-
tion of conventional superconductors. This, in principle,
is straightforward.
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