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Conductivity of CuO3 chains: Disorder versus electron-phonon coupling

R. Fehrenbacher*
Theoretische Physik, Eidgenossische Technische Hochschule Honggerberg, CH-8093 Zurich, Switzerland

(Received 29 November 1993)

The optical conductivity of the Cu03 chains, a subsystem of the 1:2:3materials, is dominated by a
broad peak in the midinfrared (co=0.2 eV), and a slowly falling high-frequency tail. The one-

dimensional (1D) t-J model is proposed as the relevant low-energy Hamiltonian describing the intrinsic
electronic structure of the Cu03 chains. However, due to charge-spin decoupling, this model alone can-
not reproduce the observed o(cu). We consider two additional scattering mechanisms: (i) Disregarding
the not so crucial spin degrees of freedom, the inclusion of strong potential disorder yields excellent
agreement with experiment, but suffers from the unreasonable value of the disorder strength necessary
for the fit. (ii) Moderately strong polaronic electron-phonon coupling to the mode involving Cu(1)-O(4)
stretching, can be modeled within a 1D Holstein Hamiltonian of spinless fermions. Using a variational
approximation for the phonon Hilbert space, we diagonalize the Hamiltonian exactly on finite lattices.
As a result of the experimental hole density = 2, the chains can exhibit strong charge-density-wave

(CDW) correlations, driven by phonon-mediated polaron-polaron interactions. In the vicinity of half
filling, charge motion is identified as arising from moving domain walls, i.e., defects in the CDW. Incor-
porating the effect of vacancy disorder by choosing open boundary conditions, good agreement with the
experimental spectra is found. In particular, a high-frequency tail arises as a consequence of the
polaron-polaron interactions.

I. INTRODUCTION

The 1:2:3 family of high-T, oxides (and the related
1:2:4 series) with its most prominent member

YBazCu307 &
is the only example of the new supercon-

ductors which, in addition to the common CuOz planes,
also contains one-dimensional Cu03 chains contributing
to the electronic density of states at the Fermi level. At
the same time, this class of compounds is the best charac-
terized among the high-T, materials, and, furthermore,
many of the technological applications are based on
YBazCu307 &. However, in the interpretation of many
experimental data, it is not obvious how the features of
the chains can be separated from those of the planes.
The latter are known to drive the superconductivity in all

high-T, compounds, and are therefore of primary in-

terest. Only recently, with the availability of single-
domain crystals, has a clearer picture of the interplay be-
tween chains and planes emerged. In any case, for a com-
plete understanding of the properties of the 1:2:3 com-
pounds, it is absolutely necessary to distinguish, and
where possible isolate, the features of the Cu03 chains.

One of the physical quantities which contains valuable
information about the electronic structure of a system is
the optical conductivity cr(co). Its frequency dependence
is determined by both the character of the ground state
and (in principle) all the excited states. Experimentally,
o (co) can be determined quite easily, e.g., from
reAectivity measurements by applying a Kramers-Kronig
transformation.

The synthesis of detwinned YBazCu307 z and
PrBazCu307 $ crystals made it possible to extract the an-

isotropy of cr(co) in the crystallographic a (perpendicular)

and b directions (parallel to the chains), by polarizing the
electric field E in one or the other direction. This re-
vealed an interesting and important property of these
compounds, namely that ob(co) (with E~~b) shows a
strongly enhanced spectral weight compared to o, (co),
especially in the infrared region (co~1.5 eV). A pro-
cedure which suggests itself is then to subtract o, (co)
from o b(co), and to associate the corresponding oscillator
strength with the Cu03 chains, the main source of anisot-

ropy in these materials.
In published data (Ref. 1 for PrBa2Cu307 s and

Refs. 2 —4 for YBazCu307 s), these difference spectra
cr,h(co ):=cr b (co ) cr, (co ) sh—ow a characteristic broad
mid infrared pe-ak centered around 0 2eV, an. d a slowly

falling high frequency tai-l extending beyond 1 eV. This
tail falls off much more slowly than the simple Drude for-
mula (cr —1/co at high frequency) would suggest. At en-

ergies below 0.2 eV, there seems to be a difference be-
tween the two compounds: while in YBazCu307 & the
conductivity exhibits a Drude peak above T„ in

PrBazCu307 & it drops sharply to zero, rejecting the in-

sulating nature of the latter compound. Note that in the
Pr compound, this behavior of the conductivity has im-

portant implications for possible mechanisms explaining
the observed T, suppression. The above-described shape
of o,„(co)clearly indicates that the electronic structure of
the chains is nontrivial, and it stimulated our interest to
find a possible explanation.

In this article, we offer two likely mechanisms which
could lead to the observed a,„(co): (i) the presence of
very strong potential disorder, and (ii) moderately strong
polaronic electron-phonon (e-ph) interactions, possibly
combined with the effect of vacancy disorder. While the
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first explanation gives a better (in fact excellent) fit to the
experimental data, the second one seems to be more
reasonable from a physical point of view, since, as we
shall show, the potential-disorder strength needed to ob-
tain agreement with the experimental data is hard to jus-
tify.

The plan of this paper is as follows: First we shall
identify the one-dimensional (1D) t Jm-odel to be a good
starting point for the description of the electronic struc-
ture of the Cu03 chains. However, as is well known by
now from various studies, the optical conductivity of the
1D t-J model is more or less identical to that of spinless
fermions (as long as J is below the threshold for phase
separation) because of charge-spin separation. There is
barely any spectral weight at finite frequencies. Thus,
one is forced to include other interaction terms in the
Hamiltonian, which could possibly reproduce the experi-
mentally observed strong scattering.

We continue with a simple extension of the model by
including the disorder from oxygen vacancies on the
bridging 0(1) site. This is expected to be the main source
of disorder in the 1:2:3materials. It is mainly due to the
large mobility of the oxygen atoms at higher tempera-
tures. Such vacancies can be modeled by interrupted 1D
t-J chains, but we will show that such a scenario cannot
reproduce the observed o,„(co).However, as mentioned
above, the inclusion of strong potential disorder turns out
to yield an excellent fit to experiment.

As an alternative explanation, we then consider
moderately strong e-ph interactions. We suggest that the
apical oxygen mode with a displacement in the c direc-
tion is likely to be rather strongly coupled to the elec-
trons. Using the t-J model as the effective electronic
model, we will show that this coupling can be included in
the form of a Holstein term, in which the local ionic dis-
placement couples linearly to the local charge. Employ-
ing a variational approximation for the phonon Hilbert
space, we calculate o(co} for finite systems using the
Lanczos technique. The effect of the vacancy disorder
can be incorporated by the choice of open boundary con-
ditions. Finally, we will discuss the results of our
different approaches in the light of the experimental data,
and also suggest possible experimental tests of the
different mechanisms.

II. THE ELECTRONIC STRUCTURE OF Cu03 CHAINS

When trying to construct a model for the electronic
structure of the Cu03 chains, the first thing one should
note is the fact that the chain Cu(1) site has the same
fourfold oxygen coordination as the planar Cu(2, 3)
[neglecting the buckling of the 0(2,3) atoms out of the
plane]. Therefore, we can expect a similar Cu-0 bonding
pattern in both cases. This is confirmed by band-
structure calculations for YBa2Cu307 &, which apart
from the common strongly dispersive planar CuO pda
band also find a chain band crossing the Fermi energy
EF. This band is formed from an antibonding pdo.
combination of 0(1)2p —Cu(1)3d 2 2 —0(4)2p, orbit-

als, and shows a dispersion similar to the planar band,
but only along the chain axis.

o, ( co ) =D 5(a) }+o i's( to ),
where the Drude weight D is given by

(3)

BE (N}
D =mN

BN +=co
(4)

with Eo(4) being the ground-state energy of the system

Regarding the similarity between planes and chains, it
seems reasonable to try a description of the electronic
structure by the 1D analog of the Emery model

HEm g Eijciscjs+g Uicitcitclgci (1)
EJS

where i,j label the Cu(1) and 0(1,4) sites, the operators c;,
creates 3d 2 2Cu and 2p, -O holes, and s is the spin in-

x —y
dex. The e; include the usual on-site energies E& =0 (by
convention), e =3.6 [which we assume to be the same
for 0(1,4)], and the nearest-neighbor (NN) hopping in-
tegrals t &=1.3, t =0.65 (all values in eV). The cited
values correspond to the ones found for the plane, '

which, having regard to the above-mentioned similarities,
and the similar CuO bond lengths, also seem realistic for
the chains. Further justification for the use of these
values comes from measurements of the optical gap in the
compound Ca2Cu03, " in which one finds the same Cu03
chains with a Cu" oxidation state, i.e., in the insulating
charge-transfer regime. The observed value of the optical
gap is =2 eV, which agrees well with the values found in
the planar antiferromagnetic charge-transfer insulators
like YBazCu306, and therefore suggests a similar value of
Cp Cy.

In the light of this, it seems appropriate to apply the
same procedure as for the Cu02 planes, ' to derive an
effective low-energy Hamiltonian from (1), which consists
of a single strongly correlated tight-binding band (project-
ed on the subspace of singly occupied sites), and a
nearest-neighbor antiferromagnetic exchange interaction,
i.e., the 1D t-J model

H, it
= t g [Pic—i,ci+ ),Pi+ )+H.c. ]

I,s

+Jg Si Si+i "'i"i+i-
ls7

In this effective description, I labels the Cu(1) sites of the
chain, cI, creates a hole in the Cu 3d 2 & orbital withx —y
spin s, its neighboring 0 2p shells being filled (Cu"), and

ci, creates a singlet formed from Cu 3d 2 & and 0 2p,
holes (Cu"'). The projection operators Pi=1 —

ni&nit
eliminate configurations with doubly occupied sites.
Again, we argue that the effective parameters t and J
should be very similar to the ones derived for the plane, '

and hence we adopt those values, t =0.4 eV, J=0. 1 eV.
%e use the well-known Kubo formula for the calcula-

tion of the optical conductivity o (to). In particular, for a
one-band tight-binding Hamiltonian like (2), the prescrip-
tion to calculate ir(co) at wave vector q=O is the follow-
ing If we use periodic boundary conditions (PBC), the
real (absorbent) part o, (co) of a t Jring can be -decom-

posed into a Drude and a regular term,
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in the presence of a time-dependent magnetic flux 4
through the ring, and N the number of lattice sites. The
flux can be generated by a uniform vector potential along
the ring (x direction), A=Ae ' 'e„[@=NAe/(Ac)],
which modifies the hopping by the usual Peierls phase
factor t~t exp(+i@/L). The lattice constant ao has
been set to 1. 4o is the flux for which the total energy is
minimal. Usually either @o=0 (corresponding to PBC)
or 40=m [corresponding to antiperiodic boundary condi-
tions (APBC)], depending on the band filling. For the t J-
model, for example, one obtains +o=0 if the number of
electrons n, satisfies n, =4m+2, but 4o=a for n, =4m
(m a positive integer). In general, at 4=4o, the expecta-
tion value (j„)of the current operator j, at q=0,

j„=ttg (c,+, ,c„—c„c,+i, ),
l, s

in the ground state Intro(@o) ) vanishes, which is required
to make (4) applicable. The regular term cr i's(co) can be
written as

cr i's(co) = g 5[co—(E Eo )], —
m40 m 0

ground state of the corresponding system of spinless fer-
mions, and the spin part to the 1D antiferromagnetic
Heisenberg ground state. In fact, the spin-charge decou-
pling can be intuitively understood from the fact that, in
1D, the charge motion alone is not capable of changing
the spin configurations, since this requires the existence
of closed loops in the lattice topology.

This factorization, i.e., the charge-spin separation, has
the effect that, in the small J/t limit, the optical conduc-
tivity consists basically of the one expected from nonin-
teracting spinless fermions, since the electric field couples
only to the charge degrees of freedom. Consequently,
cr(co) is dominated ( ~997o of the total weight) by a
Drude peak, and has only very little weight at finite co.

Of course, as we cross the phase-separation line for very
large values of J ~ 3t, the situation changes: (i) The total
weight decreases with increasing J, and (ii) more and
more spectral weight shifts from the Drude peak to finite
co, until we end up with an insulator at J= ~. But these
values are far too large to explain the experimentally ob-
served spectrum. We therefore conclude that the 1D t-J
model alone cannot give a satisfactory explanation for the
optical response of the Cu03 chains. So we have to in-

clude additional terms in the basic Hamiltonian (2).

where %'0, % are the eigenstates of the Hamiltonian (2)
at 4=4o. For the total integrated spectral weight 0.„,
under cr &(co), there exists an f-sum rule

oi co de= — %'o T %o
0

with T the kinetic energy in (2). With the help of this
sum rule it is possible to give an alternative expression for
the Drude weight D

2~e

which is helpful to check the calculated results.
This formulation has been used to calculate 0(co) for

the 1D t-J model numerically on finite chains employing
the widely used Lanczos algorithm. The (at first sight)
surprising result was that the scattering introduced by
the strong correlations is barely noticeable: The integrat-
ed spectral weight at finite co appears 4o be an extremely
small fraction of the total weight O.„„whichindicates
that the optical response in the 1D t-J model is almost
identical to the case of spinless fermions. The deeper
reason for this is the separation of spin and charge, which
is a well-known and generic feature of 10 models with in-
teracting electrons. These models do not exhibit Fermi-
liquid behavior, but belong to a different universality
class, so-called Luttinger liquids. '

For the 1D t-J model, an exact solution exists only at
the supersymmetric point J =2t, at which the difference
in the charge and spin velocity can be rigorously shown. '

However, in the small J/t limit, we approach the strong-
coupling limit of the 1D Hubbard model, for which only
quite recently Ogata and Shiba have shown' that the
ground-state Bethe-ansatz wave function factorizes into a
charge and spin part. The charge part corresponds to the

III. DISORDER EFFECTS

Various experimental studies of the high-T, oxides in
general, and the 1:2:3materials in particular, have shown
that it is very difficult to control the oxidation, i.e., the
oxygen content of a sample. The high mobility of the ox-
ygen atoms (in some compounds even down to below
room temperature) makes it practically impossible to ob-
tain exactly stochiometric compounds. This is especially
severe in the case of the RBa2Cu307 & family, where the
O(1) atoms which form the Cu-0 bonds along the Cu03
chains have an extremely high mobility. Therefore, one
expects (and finds) a large degree of disorder in the
chains, in particular originating from 0 vacancies, and
possibly interstitials.

A first extension of the t-J model should therefore be
the incorporation of disorder. Since we have seen in the
last section that in 1D for realistic values of J/t = —,

' the

spin-exchange scattering hardly alters the optical conduc-
tivity as compared to that of noninteracting spinless fer-
mions (corresponding to J =0), we will neglect the J term
in the calculations of this section, i.e., we treat the elec-
trons as spinless. This simplifies the calculations dramat-
ically, because the problem reduces to a single-particle
one.

We will consider two kinds of disorder: (i) disorder in
the hopping matrix element t, and (ii) randomly disor
dered on-site energies e, . Type (i) should be a realistic
model for oxygen vacancies (see Fig. 1), taking into ac-
count that across a vacant oxygen site the effective over-
lap matrix element will be drastically reduced. Further-
more, a vacancy can also be expected to produce a strong
electrostatic potential arising from the missing charge of
the 0 ion. Possible sources of potential disorder lead-
ing to random on-site energies c.t are, e.g., oxygen inter-
stitials (see also Fig. 1) or other defects.
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oxygen vacancy sk
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X t1(ccrc.ccrc+1,. ~1+1,.ccrc. } .
1

(16)

(b) oxygen —Q —interstitial

o 0 o c o o o

Q cu(l) 0 0 Gi 0 0 0 0 With the help of Eq. (15) it becomes very easy to calcu-
late o(co) at T=O, since j„creates only single particle-
hole excitations above the ground state, and hence
o 1's(co) can be written as

FIG. 1. Schematic diagram of an oxygen vacancy (a) and an

oxygen interstitial (b) in the Cu03 chains.

cr1's(co)= g 5[co—(e„—Z, )]&,(„„,„z,—z,
(17)

Hd1I=X sic' c1 g ti(ci+1ci+H. c.),
1

(9)

where the t&, c& are random variables with certain proba-
bility distributions which will be specified later. This
Hamiltonian contains only single-particle terms, and
therefore its spectrum as well as the associated single-
particle orbitals are easily obtained by numerical diago-
nalization of the corresponding tridiagonal matrix. For
the calculation of cr 1's(co), we can still use Eq. (6) with the
modified current operator

Jx =I g t1(CI+1CI CI Cl+1) (10)
I

Hd;, is diagona1 in the single-particle states V'„,

H„, yZ„rtc„,—

The spinless Hamiltonian including the effect of disor-
der can be written as

In all of the calculations of this section, we shall use open
boundary conditions. Consequently, the Drude weight
must vanish (more precisely, it is shifted to a 5 peak at a
frequency of the order t/N), and the entire spectral
weight appears at finite frequencies. However, for chain
lengths N ~ 100, one has essentially reached the therrno-
dynamic limit for the shape of cr'1's(co) at frequencies
co « t /N, in which we are interested here.

A realistic model for a situation where the oxygen va-
cancies are the dominant source of disorder (as seems to
be the case for the Cu03 chains) can be constructed by an
appropriate choice of the coefficients c&, t&. For a single
vacancy between Cu sites 1 and 1+1, we assume a strong-
ly reduced hopping matrix element t'/t «1, and, in ad-
dition, a screened Coulomb potential which we can mod-
el, e.g., by a repulsive c,&, c&+,= V) 0, possibly extending
to the neighboring sites 1+2,1 —1, etc. with an exponen-
tia1 tail. According to the oxygen deficiency in
RBa2Cu307 &, we can then assume a certain concentra-
tion 5=nd /N of such defects (nd is the total number of
defects), and distribute them randomly.

In Figs. 2 and 3, we show the spectra for a chain of

C1=g Q(„C„,C1 =g CX1„C
„

The coefficients are

ly, &=c,'lo&, ly„&=c'„lo&.
(12}
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where I n„Jspecifies n, single-particle levels (n, =number
of electrons). If we label the single-particle levels'f„ in as-
cending order ('E„&Z„+,), the ground state is given by

le, &= g ct!o&.
r pl e

(14)

In order to calculate expectation values ofj„,we express
j in terms of the 0'„
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FIG. 2. Optical conductivity from the model for vacancy dis-
order. The results were obtained for a chain of length N =100
at n =

2 using the parameter t'/t =0.1, and different values for

Vand nd.
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FIG. 3. Optical conductivity from the model for vacancy
disorder. The results were obtained for a chain length N =100
at n =

~
using the parameter t'/t =0.1, and different values for

Vand nd.

length N =100 with t'/r =0.1, and different values of V

and nd. A length of N = 100 is suScient, since we are not
interested in the very-low-frequency behavior. %e corn-

pared the results for chain lengths of 100, 200, and 400,
and found no significant difference at frequencies
co~t/50. The precise value of t'/t does not affect the
shape of the spectra as long as t'/t «1 (which is the
physically relevant region). In these calculations, we

used a potential which extends to the three sites neigh-
boring a vacancy, falling off exponentially with a screen-
ing length equal to the lattice constant.

We always used a band filling of n: =n, /N =0.5, in ac-
cordance with the experimentally estimated value men-
tioned in the Introduction. Each curve represents the
average over 1000 samples of the disorder, and for clarity
of presentation we introduced a smoothing of the 5 func-
tions by averaging the points over small frequency inter-
vals typically of size t /200.

The characteristic feature of all spectra is a broad peak
at low energy, and a rather rapid falloff toward higher
frequencies. Comparing the results for different values of
V with fixed nd, t'/t, we note that the infiuence of Vis not
very big, when varied in the range V/t=0 —8. The
relevant effect seems to result from the reduced t', which
introduces strong backseattering at the vacancies, and
therefore effectively cuts the chain into isolated pieces.

As we increase the number of defects nd, we observe
that the low-energy peak broadens, and shifts to higher
frequencies. This ean be explained from the fact that the
average length N of perfect chain segments decreases as
nd grows, and consequently the quasi-Drude peak at
co=t/X of such segments shifts to higher energy. At the
same time, the spectra become more and more noisy,

30
I I

(h

g 20

10
C

3
0 0

—W=2
4

3
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~ 2
cg

"t) 0

V)

100

50cQ

8
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—W=1
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—W=4

l

3 4

FIG. 4. Optical conductivity from the model for pure poten-

tial disorder. The results were obtained for a chain of length

X =100 at n =
—,', and different values for the disorder strength

8.

dominated by strong isolated peaks corresponding to cer-
tain values of X.

Setting t =0.4 eV, we can try a comparison with exper-
iment. The present model predicts a shift of the observed
midinfrared peak to higher frequencies, when the oxygen
concentration is reduced. Since the exact oxygen content
(and therefore nd ) is difficult to estimate experimentally,
we cannot say with certainty whether the absolute value
of the calculated peak position is at the correct frequency
for a particular sample. However, assuming an upper
bound for the oxygen deficiency 5 &0. 1 in RBa2Cu30„
the calculated value appears at =0. 1 eV, half of the ex-
perimental value. In addition, there is also no sign of a
smooth high-frequency tail as observed experimentally.
Furthermore, the data in Ref. 3 taken from samples of
YBa2Cu307 s with different 5 do not show any strong
infiuence of 5 on the peak position, in contradiction to
the calculations. In conclusion, it seems that the
oxygen-vacancy disorder {at least if modeled as we did) is
also not enough to explain the observed mid-infrared
peak.

The second kind of disorder that could be present is
simple potential disorder, which might originate, e.g. , in
randomly positioned oxygen interstitials (see Fig. 1). We
model this by random on-site energies c.i on each site,
uniformly distributed in some interval [—W/2, W/2],
the size of which is a measure of the disorder strength.
In addition, we can also allow for variations in the hop-
ping matrix elements as before. This type of model is
often used in the context of Anderson localization, and it
is known from various studies, ' that cr(co) shows a peak
at low energy, and a high-frequency Drude-like tail.
Nevertheless, we have calculated 0(co) also for such dis-

order, since we were interested in the influence of the ran-
dom tt.

We first study the effect of pure potential disorder, set-
ting nd=0. Figure 4 shows the spectra calculated for
N =100, n, =50, and various values of W/t As ex.pect-
ed, we find a peak at low energy, and a subsequent slowly

falling high-frequency tail. The position of the peak rap-
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idly shifts to higher frequencies as the disorder strength
W is increased. Setting t =0.4 eV, we find that a value of
W= 1.6 eV is needed to obtain the experimental peak po-
sition of cu,„=0.2 eV. In Fig. 5, we superpose the spec-
trum from PrBazCu307 & on the calculated one at
W/t =4. The agreement in both the shape and position
of the peak, as well as the high-frequency tail, is aston-
ishing. From a purely theoretical point of view, it there-
fore seems that this model is fully adequate to describe
the optical conductivity of the Cu03 chains. However,
doubts concerning the validity of this scenario arise be-
cause of the large disorder strength W=1.6 eV required
to fit the experiment. We shall comment on this point at
the end of this section.

Let us now proceed by including vacancy disorder,
in this case restricting ourselves to values of t'/t
=0.1, V =0, since the effect of a finite V was found to be
not so crucial. Figures 6 and 7 show the spectra for de-
fect numbers nd=4, 8, 12, 16, and different strengths of
potential disorder W. If we compare different values of
nd for fixed W, we observe that the peak shifts to larger
energies as nz is increased (as expected). At the same
time, for smaller values of W/t & 2, and nd ~ 8, we recov-
er in the high-frequency tail the structure of the isolated
quasi-Drude peaks which correspond to very short chain
segments.

A comparison of, e.g., the nd =8 calculation to the Pr
spectrum, shows that now only a value of W=1.2 eV is
needed to obtain a fit as good as the one for
nd =0, W/t =4. However, going to an even larger
nd=16, the correct peak position requires a value of
W/t = 1, in which case the high-frequency tail is not very
well fitted anymore, especially regarding the strong
quasi-Drude peaks in the calculated spectrum.

In summary, a model including both potential and va-
cancy disorder exhibits an optical conductivity spectrum
which is extremely close to the measured one. However,
the potential disorder strength needed to fit the experi-
ment, W = 1.2-1.6 eV, is rather large, and the source of
such a strong random potential on each site is not obvi-
ous. A possible type of defect producing such a strong
potential could be an oxygen interstitial between two
Cu(1) atoms belonging to neighboring chains (see Fig. 1).
The corresponding electrostatic potential energy
V, =e /(er ) can be estimated to be V, =1.2 eV (using a
rather small value for the dielectric constant a=5) at the
regular oxygen sites nearest neighbor to the interstitial.

—Theory (W = 4)
.~ 6 . --- Exp. (PrBa,cu,O,)-
C

g 4
CQ

8

&0 I I I I

0.0 0.2 0.4 0.6 0.8 1.0I [eV]

FIG. 5. Comparison of the experimental spectrum obtained
in Ref. 1 with the curve calculated using the model with pure
potential disorder and disorder strength 8'/t =4.
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FIG. 6. Optical conductivity from the model with potential
and vacancy disorder. The results were obtained for a chain of
length N =100 at n = 2, using different values for the disorder

strength Wand vacancy number nd.

Nevertheless, it seems that a rather high density of such
defects would be necessary to produce the required ran-
dom potential on each site. In the next section, we shall
investigate a third mechanism which could give rise to
the observed optical response, namely polaronic
electron-phonon coupling.
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FIG. 7. Optical conductivity from the model with potential
and vacancy disorder. The results were obtained for a chain of
length N =100 at n = z, using different values for the disorder

strength W, and vacancy number nd.
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IV. POLARONIC ELECTRON-PHONON COUPLING

~Cu ) = [aoc&tcd &
+a &(cd&c~t cdirt )—III

+a,c,t,c,tt ] ~ ), (18)

which is localized on a single Cu and its four surrounding

It is well known from various studies of small-polaron
physics that systems with a strongly localized electron-
phonon (e-ph) interaction usually show an infrared ab-
sorption band. Therefore it is worthwhile to look more
closely at possible phonon modes in the 1:2:3materials,
which might give rise to such a coupling. The standard
theoretical approaches to these systems employ some
kind of mean-field decoupling to handle the polaron-
polaron interactions. This can give satisfactory results in
the limit of small carrier density, or coupling. However,
in the case of interest, the carrier density n =0.5/Cu is
not low, and is even close to a commensurate value at
which it can be favorable to form some kind of a lattice
superstructure, i.e., a charge-density wave (CDW). Fur-
thermore, as we shall show below, the estimated strength
of the e-ph coupling in the Cu03 chains puts us in a re-

gime of intermediate coupling, which is difBcult to handle
with standard perturbative methods. Hence, we need a
technique which is able to take into account the effect of
such correlations in a satisfactory way.

We start from the 1D t-J model as the effective elec-
tronic model with the motivation described above. Bear-
ing in mind that an empty site in the t-J model corre-
sponds to a Cu'" singlet formed from Cu 3d 2 2 and 0
2p, holes, we can identify an effective way of coupling
the apical oxygen O(4) vibrational mode with displace-
ment in the c direction to the holes in the singlet (see Fig.
8): The energy of the singlet is mainly governed by the
two hopping matrix elements tpd between Cu 3d 2 2 and

X

0 2p, orbitals, and t between neighboring 0 2p, or-
bitals. As the two apical 0 atoms above and below a Cu
are moved toward it, the values of tpd happ

increase, and
the total energy of the singlet is lowered due to the gain
in kinetic energy. Taking for the singlet the approximate
wave function

oxygens atoms, we can calculate the total energy of the
singlet E„„I„asa function of the displacement Q [mea-
sured from the experimental Cu(1)-O(4) distance] using
the empirical scaling laws for the hopping matrix ele-
ments'

7/2
rd(rd) rd i 2

PP

PP

(19)

where r d, r are the relevant interatomic distances be-

tween atoms with d or p orbitals.
From the plot of Q„.„&„(Q):=E,, &,(Q)
&„„sI„(Q=0) in Fig. 9, we note that for values Q & 0. 1

A, the curve is essentially linear, and only for larger Q
does the curvature become important. In view of this, it
seems appropriate to model the e-ph interaction by an ad-
ditional Holstein-like term in the Hamiltonian, which
couples the local displacement QI linearly to the local
hole density 1 —ni„

H, ph=A, Q Qt(I nI, )
—.

Is

We have chosen the coupling to the hole, because in the
t-J model the unoccupied site corresponds to the Cu"'
singlet for which the coupling should be much stronger
than for the Cu" configuration which corresponds to an
occupied site. The contribution to the coupling constant
k from this mechanism can be obtained from the slope of
the curve in Fig. 9 as A, :=d b,„„s&„(Q)/dQ~ & o= —4. 2

eV/A, where we defined Q to be positive for displacement
of the O(4) toward the Cu(1) atoms. However, this value
does not contain the purely electrostatic interaction ener-

gy, which should have opposite sign. We can estimate it
to be of the order of 1 —2 eV/A. A rough value for the
total A, can thus be given as A, =2 —3 eV/A.

The phonon part of the Hamiltonian is the usual one
(neglecting dispersion),

Pi KQi2
"=& 2M' 2

(21)
I

with the reduced oxygen mass M =Mo /2 = 8 amu, and
the spring constant K. In terms of the phonon creation
and annihilation operators ai, al,

' 1/2

QI= (ai+ai ),
2MQ

0 0 0 0 O 0 O 0 0

1/2
fiQM

Pt =t
2

(a, —a,'),
(22)

0 O(1,4)

0 Cu(1)

(b)
.0 0 0 0 OI 0 0

FKJ. 8. Schematic diagram of (a) the vibrational mode which
involves displacement of the apical oxygen in the c direction to-
ward the neighboring Cu{1) site, and (b) the coupling of this
mode to the Cu'" singlet.
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FIG. 9. Change A„„g&„in total energy of the Cu"' singlet

state as a function of the displacement Q of the apical oxygen as
shown in Fig. 8. The gain in kinetic energy of the singlet leads

0

to an estimate of the e-ph coupling constant of X= —4.2 eV/A.
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with the phonon frequency Q= &K/M, the total Hamil-
tonian becomes

H=H, q+fiQ g ai a(+A g (I —ni, )(a(+a( ),
I ls

and the new coupling constant is A=(iris', /2MQ)'~ .
The phonon frequency for the mode under consideration
is known rather accurately from Raman scattering' ' as
fiQ =60-65 meV, depending on the material. This allows
for an estimate of the spring constant as E=Q M =7-8
eV/A . The polaron binding energy Es.=k /(2E)
=A /(A'Q), which is the most convenient way to measure
the effective interaction strength, is therefore of the order
of Ez =0.25-0.64 eV. This is a value comparable to the
effective bandwidth 4t =1.6 eV, and therefore puts us in
a regime of intermediate coupling, which is the most
dificult to treat analytically. Note that our choice of
coupling the phonon displacement to the local hole rath-
er than electron density does not affect any properties of
the e-ph Hamiltonian (23}. Apart from a constant energy
shift, the Hamiltonian is electron-hole symmetric (as long
as the kinetic-energy part is}.

The spinless version of the Hamiltonian (23) is the usu-
al Holstein or molecular-crystal model. ' The optical
conductivity of this model has been studied in the
weak ' as well as in the strong-coupling case using
perturbative methods. However, in none of the ap-
proaches used were the polaron-polaron interactions tak-
en into account, i.e., the results are only trustworthy
(especially in the strong-coupling limit} in the single-
polaron limit.

There are a number of reasons why we consider these
approaches do not to apply for our problem: (i) We are
interested in a situation with high carrier concentrations,
i.e., polaron-polaron interactions are important, particu-
larly in the vicinity close to density n =

—,. (ii) The es-

timated value of the e-ph coupling corresponds to neither
weak nor strong coupling, so there is no guarantee that
perturbation series rapidly converge. (iii) We are also in-
terested in the effect of the spin degrees of freedom, even
though we do not expect them to be very important at
realistic values of the spin-exchange constant. (iv) We
would like to include the effect of vacancy disorder by
choosing open boundary conditions as already explained
in Sec. III.

An analytical treatment in the interesting parameter
regime including the additional effects of spin-exchange
coupling and disorder is hopelessly diScult. Consequent-
ly, we chose to study the model using a numerical tech-
nique, the Lanczos method. In a related paper, we
present a detailed discussion of our numerical results for
the simple Holstein model and contrast them with the an-
alytic results mentioned above.

V. NUMERICAL TREATMENT
OF THE E-JHOLSTEIN HAMILTONIAN

A numerical method suitable for dealing with strong
correlations would in principle be the quantum Monte
Carlo (QMC) method. This technique was used by
Hirsch and Fradkin to investigate the CDW transition

at half filling. They presented strong evidence that, for
arbitrary finite values of the phonon frequency 0, the
spinless Holstein model exhibits a transition from a me-
tallic to a CDW state at a finite critical value of the e-ph
coupling constant Ez. They derived the t-V model as the
effective second-order Hamiltonian in the strong-
coupling limit, and showed that the ratio of the effective
parameters limE t/V=O. We recall that most stan-

dard analytical approaches only take into account the
hopping renormalization from the first-order correction,
which defines a small-polaron band with a bandwidth—E~ /0-t=te . As Hirsch and Fradkin noted, the fact
that the t Vmo-del exhibits a CDW transition at t /V =
gives strong evidence for an analogous CDW ground
state in the strong-coupling limit of the Holstein model.

The drawback of the QMC method is that it is not
straightforward to calculate dynamical quantities as
o(to}, because the simulation gives direct results for
dynamical quantities only as a function of imaginary fre-
quencies. Therefore one needs to continue analytically to
the real axis, which is not always a well-defined pro-
cedure. In contrast, the Lanczos method has been suc-
cessfully applied to calculate o(co) at zero temperature
for purely electronic Hamiltonians on finite lattices.
This algorithm allows for the exact determination of the
low-lying eigenvalues and eigenvectors of the Hamiltoni-
an matrix. From the calculated ground state, it is then
possible to extract dynamical quantities such as, e.g., the
spectral function A (k, to), or the optical conductivity
tr(co), in principle with arbitrary accuracy. The big ad-
vantage of the method is that the results are exact; the
disadvantage is the limitation (imposed by the computer
memory available) to rather small lattices, so that often
an accurate finite-size scaling is impossible.

The algorithm works as follows: One generates an ar-
bitrary initial vector leap&, with the only restriction that

leap & should have a finite overlap with the ground state in
the symmetry sector of the Hilbert space one is interested
in. Starting from l@p & one generates an orthonormal set
of states

tlat„&]

by successively operating with H on

4„&,n =0, . . . , M, and orthonormalizing to all the pre-
vious vectors, such that the Hamiltonian is represented
by a real symmetric tridiagonal matrix in the basis

I l4„&j. In more detail, one obtains

Hl@p& =~plop&+pple i &,

~p=&+pl~l@p&, pp=v'&@pIH'I&p& —~p'.
(24)

The nth iteration is

ale„&=p„,la„,&+a„le„&+p„le„„&,
~„=&~„lal~„&,p„=v'&~„l~l~„&—~'„—p'„,.

(25)

In practice, these operations are performed on a cornput-
er. The main difticulty is to find an effective way for ob-
taining Hl@„&from l4„&.

The extreme eigenvalues and eigen vectors of the
M XM tridiagonal matrix generated in this way converge
extremely fast to the real ones of H. Starting from a
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2
1

p 2

Z Q 1 Z LA
~ ~ ~

LA

(26)

where the coefficients (rz„,ll„)of the continued fraction
are the usual Lanczos coemcients obtained from a second
Lanczos run using the starting vector imp&

=j ~%p&. The
continued fraction is truncated after M iterations (typi-
cally M =300), when a good convergence of the spectrum
is obtained. The real part of the optical conductivity is
then given by

o!'s(rp) = — ImG (co+Ep+i 5),1

7TCO
(27)

where we introduced a small imaginary part i6, which
gives a finite Lorentzian width to the 5 peaks appearing
in the original definition (6).

Unfortunately, the Lanczos method is not applicable to
an e-ph system without further approximation. The
reason is simply the fact that the phonon Hilbert space is
infinite dimensional already for a single phonon mode,
whereas the Lanczos algorithm can only be used for
finite-dimensional Hilbert spaces, since convergence to
the true ground state is only guaranteed if the vectors

a„iP } are expressed in a complete set of
basis states iP & of the full (in each symmetry sector)
Hilbert space. This requires computer storage of the
coeScients a„ofat least two vectors at one time. For
an infinite-dimensional Hilbert space, clearly one would
require an infinite amount of computer memory in order
to obtain exact results.

Therefore, the only possible way to apply the Lanczos
method to an e-ph Hamiltonian is to use a variational ap-
proximation for the phonon Hilbert space, which makes
it finite dimensional. Since variational approximations
are most often motivated by physical intuition and/or

completely random imp & (which is the safest choice), one
typically needs M =60—100 iterations to obtain an accu-
racy to 12 decimal places in the lowest eigenvalue Eo,
and an error b, =((,+p~H E—p!,%p&)'i =10 —10 for
the ground state ~% p&. The number of iterations needed
for convergence of the ground-state energy depends
strongly on the splitting E, —Eo to the first excited state,
and increases significantly as the two levels get close.

For the calculation of the optical conductivity at zero
temperature, one usually employs the continued-fraction
expansion of the Green's function

G(Z) =(% pi J(Z H) J i!lip&

computational convenience, obviously, there are many
possible choices for a variational ansatz. For our Hamil-
tonian, we considered the three "most natural" variation-
al approximations to the phonon Hilbert space, which are
within the limits set by current computer power and the
Lanczos algorithm.

The basic computational limitation we encounter is the
maximum number of independent phonon states that can
be allowed for each mode. If we denote this number by
Q, then on an N-site lattice, the total number of linearly
independent phonon states is given by R~h(N, Q)=Q
On the other hand, the size of the electron Hilbert space
(neglecting spin) on an N-site lattice with n electrons is
given by R, (N, n)=(„),so that the total Hilbert space
has the dimension R„,(N, n, g)=g =¹!Q /n!(N n—)!
As an illustration, in Table I, we show this number for
diff'erent values of N, Q, and fixed n =N/2, where the
electron Hilbert space is maximal for a given N. Bearing
in mind the size of core memory of present supercomput-
ers [ —1 Gbyte, corresponding to a maximum size

R„,(N, n, g) =4.5 X 10 ], we can extract from these num-

bers that the maximum tractable lattice sizes are N =15
for Q =2, N=9 for Q =4, N =7 for Q =6, and N =6 for
Q =8. We have performed calculations mainly for Q =2.
The quality of this approximations, i.e., the influence of
additional phonon degrees of freedom, was then tested by
a comparison with results for Q =4. As we shall see
later, the qualitative features obtained from the Q =2 cal-
culation are not altered. The lattice sizes for Q &4 that
are tractable are too small to extract meaningful results.
Therefore we did not consider them.

Restricting ourselves to the case Q =2, there are three
plausible choices for the two phonon states of each mode.
A detailed analysis of the results within these three sub-
spaces will be published in a separate paper. There, we
use several different criteria to test the quality of each an-
satz: (i) the total energy, (ii) the ability to reproduce the
exact parameters of the effective Hamiltonian in the
strong-coupling limit, and (iii) a comparison with avail-
able results for quantum Monte Carlo simulations. The
result of this analysis is that, in the interesting parameter
range from intermediate to strong e-ph coupling, there is
a distinct subspace, which gives by far the best results. It
is spanned by the direct product of the displaced
(coherent state)

io&, =e ""e""io&i, (28)

and the undisplaced oscillator ground state io&! at each
lattice site. We refer to this variational subspace as an-
satz II.

In the calculations presented in this paper, we always

TABLE I. The dimension of the total Hilbert space R„,(N, n, g) as a function of the lattice size N
and the allowed number Q of independent phonon states in each mode.

1.280 x 10'
8.192x 10
9.331 X 10
5.243 x 10'

1.792 x 10
4.588 x10'
1.176x10'
1.174x10'

2.580x 10'
2.642 x 10"
1.524 x10"
2.706 x 10"

3.785 X 10
1.550 x 10"
2.Q11 x 1Q"
6.350x 10"

5.623 x 10'
9.213X 10"
2.689x 10"
1.509x 10"

8.434 X 10'
5.528 x 10"
3.631 X 10'
3.623 x10"



CONDUCTIVITY OF Cu03 CHAINS: DISORDER VERSUS. . . 12 239

used ansatz II. In the strong-coupling limit t/8+~0,
this choice guarantees the correct ground-state energy,
since the corresponding subspace contains the true de-
generate ground-state manifold which is obtained for
t =0. One has to be a little careful with this choice, since
the two mentioned basis states are nonorthogonal,

~~ High-Energy Process ——+ Low-Energy Process

D

(29)

For the Lanczos method, it is simpler to deal with ortho-
normal basis states, hence we choose the combination

Let us now turn to the calculations of the optical conduc-
tivity. As can be seen from Eq. (6), the evaluation of this
quantity involves the whole set of excited states of the full
Hamiltonian. Consequently, having a good variational
approximation of the true ground state (obtained by op-
timization of the energy within a subspace of the full Hil-
bert space) does not guarantee that the optical conduc-
tivity calculated within the same subspace is as accurate.
It cannot be excluded a priori that excited states ~i ) out-
side this subspace have a considerable current matrix ele-
ment (i ~j~0) with the ground state within this subspace.
Obviously, such contributions are lost by our calculation,
and it seems necessary to estimate their importance.
Within our approach, the leading corrections can be ob-
tained by extending the local phonon basis to include ad-
ditionally the first excited states ~1)„~1)r of the
(un)displaced oscillator. This will be done in the next sec-
tion.

In a related paper, the doping dependence of the opti-
cal conductivity is investigated in the presence of PBC.
There, we stress the strong influence of the polaron-
polaron interactions on o(co), which were neglected in
previous calculations of this quantity. The generic physi-
cal picture that emerges is the following: For coupling
strength large enough to result in an ordered CDW state
at half filling, the conductivity at zero frequency, i.e., the
Drude weight, is proportional to the number of electrons
(as for a usual metal) at low electron (hole) density n « —,',
while at electron densities close to n =

—,'(~n —
—,
'

~
&& —,

' ), it
is proportional to the number of domain walls,
nd =2~n, N/2~ (see F—ig. 10).

In the context of a CD% state, a domain wall can be
described as follows: Let us characterize the ordered

1.5

1.0

a 0.5

EB = 0-0
EB = 04

.---- E~ = 0.8—E =1.0B

0.0
0.00 0.25 0.50 0.75 1.00

FIG. 10. Doping dependence of the Drude weight D for vari-
ous values of the coupling E& obtained for a lattice with N = 14
using (A)PBC at fixed phonon frequency 0=0.2.

0 n(1/2 ~ n &1/2 Domain
Wall

FIG. 11~ Schematic diagram of the dominant excitations in-
duced by an external electromagnetic field in an (un)doped
CDW. The doping of the CDW leads to the formation of
mobile domain walls.

VI. COMPARISON WITH EXPERIMENT

In this section, we restrict ourselves to a set of parame-
ters for the Holstein Hamiltonian which represents those
expected in real chains. In Sec. III, we already pointed
out the importance of defects in a realistic model for the
chains. We also mentioned the experimental finding that
the oxygen vacancies on the O(1) site in the chains are by
far the most important type of defects. Such a vacancy
presents a serious perturbation to the electron motion,

CDW state by a periodic function n (R, )=—,
'

+cos(yrRila)/2, which mimics the alternating electron
occupation on neighboring sites. In this picture, a
domain wall is a defect in the periodic structure, at which
the phase p=mRi/a suffers a shift of m. To the right of
this defect, all the electrons are shifted by one lattice site
(see Fig. 11). If an additional electron (or hole) is intro-
duced into the CDW, it is easy to convince oneself that
this generates precisely two domain walls (at least in the
presence of PBC), and they should behave like holes, i.e.,
carry positive charge, for n & —,', and like electrons i.e.,
carry negative charge, for n )—,'. Note, that the origin of
this behavior lies entirely in the effective electron-
electron interactions mediated by the phonons.

The doping dependence of cy(co) in this coupling re-
gime also reflects these interactions: At n= —,', the dc
conductivity vanishes, and at finite frequencies cr(co)
shows the characteristic CDW gap hc~w, beyond which
a slowly falling high-frequency tail appears (if the cou-
pling is not too large) As we d.ope away from half filling,
the dc conductivity is reestablished, and the gap disap-
pears. Spectral weight is being transferred from high
(co) b,ciyw) to low energy, but the slowly falling high-

frequency tail remains. As we approach the low-density
limit, the effective interactions become less and less im-
portant. This is reflected by the disappearance of the
high-frequency tail, and the ratio of the Drude weight to
the total spectral weight, which comes close to 1. For
small coupling (such that there is no CDW at n =

—,
' ), the

doping dependence of cr(u) is not very pronounced, since
the polaron-polaron interactions are negligible. We shall
therefore concentrate on the interesting case of
sufficiently strong coupling.
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since it effectively cuts the chains into more or less
disconnected segments. In consideration of this fact, we
think it is justified to assume that the dominant part of
the optical response originates from the excitations in
finite chain segments, and that the intersegment hopping
only plays the role of a small perturbation, which we
neglect. For our calculations, this means that we should
use open boundary conditions (OBC), i.e., an oxygen va-

cancy is modeled by a purely reflecting wall.
We already studied a similar case in Sec. III, where we

considered electrons without coupling to phonons. One
obvious property of electronic models with OBC is that
they cannot support any dc current. Hence, as already
mentioned earlier, the Drude weight is transferred to
finite frequencies, and especially for rather short chain
lengths, this leads to a dramatic change in the low-energy
response.

In this section, we shall study the optical conductivity
of the Holstein Hamiltonian in the presence of OBC. We
shall restrict the parameters to be t =0.4 eV and
0/t =0.15-0.2, and vary the e-ph coupling strength E~,
as well as the band filling. As for PBC, the largest system
we can study for all fillings is the 14-site lattice, so we
shall concentrate on this one at the beginning.

In Fig. 12, we show the spectra for electron numbers

n, =2—7, phonon frequency 0=0.2, and slightly
different coupling strengths around E~ =0.6—0.75 i.e.,
values which are very close to the critical one at half
filling, Es(0=0.2)=0.52. The common feature of all

spectra is a dominant peak, which is slightly shifted away
to higher co from the frequency (indicated by the dashed
vertical lines) at which the noninteracting system shows
its main response (see Sec. III). At smaller frequency,

there is also considerable absorption, which partly fills in
the quasigap below the main peak. At low density

(n, =2, 3), there is a rapid fallofF toward higher frequen-

cy, whereas for densities close to —,', we recover again the

slowly failing high-frequency tail, driven by the polaron-
polaron interactions. At half filling, and for n, =6, the
tail follows smoothly onto the main peak, whereas for
n, =4.5, the peak looks more like an isolated structure
superposed on slowly failing background absorption.

The differences compared to the spectra with PBC in
Ref. 25 are twofold: (i) The appearance of the low-energy

peak can clearly be related to an optical excitation, which
is already present in the noninteracting case, namely the
lowest particle-hole excitation of the free-electron system.
The corresponding energy is largest at half filling (due to
the simple cosine band structure), and decreases mono-
tonically with the density. This peak dominates the opti-
cal conductivity in the presence or absence of the e-ph in-

teractions, at least for not too strong coupling (where it is

suppressed for densities close to —,'). However, in the in-

teracting case, the peak is shifted to higher energies (as
compared to the free system), and also broadened as the
coupling increases.

(ii) The second new feature is the appearance of spec-
tral weight at very low energy below the dominant peak,
which partly fills in the quasigap. This weight decreases
as a function of increasing coupling in much the same

way as the weight under the peak decreases. The com-
bined reduction of weight of these two features can be re-
lated to the corresponding decrease of the Drude weight
obtained for PBC. Physically, the low-energy weight can
be associated with renormaiized charge motion, which
occurs on the energy scale -t. For PBC, this motion
contributes to the dc conductivity, whereas here, due to
the reflecting walls, the corresponding spectral weight ap-
pears at finite frequencies of the order of co- t.

This effect can be observed when we concentrate on the
low-energy spectrum below the main peak, and use a
smaller broadening 5=0.01 for our plots. Figure 13
shows this part of the spectrum for the case N=12,
n, =5, 0=0.2, and three different coupling strengths.
Note how the dominant peak in this low-energy part is
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FIG. 12. Frequency dependence of o I' (cu) obtained for a lat-
tice with X =14 using OBC. The plots show spectra calculated
for diferent fillings and coupling strengths E& (close to E& ) at
fixed phonon frequency 0=0.2.

FIG. 13. Low-frequency part of o", (~) obtained for a lattice
with N = 12 using OBC at n, =5. The plots show spectra calcu-
lated for different coupling strengths Ez at fixed phonon fre-

quency 0=0.2.
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shifted toward lower frequencies as the coupling is in-—&~ /0
creased, according to the dependence of t =te . A
detailed analysis of the peak position revealed exactly the
exponential dependence. Furthermore, for strong cou-
pling E~ &Ez, inspection of the change in this low-

energy spectral weight as a function of doping reveals a
very similar dependence as obtained for the Drude weight
in the case of PBC (see Fig. 10): For densities close to —,',
this weight increases with the number of domain walls,
whereas for n ~ 0, it increases with the number of elec-
trons. In summary, we can say that the low-energy spec-
trum clearly shows the presence of simultaneous renor-
malized (co —t }, and unrenormalized charge motion
(co t)-

In Fig. 14, we show the same spectra for lower photon
frequency 0=0.15, and various coupling strengths. The
qualitative shape of o(co) is very similar to the previous
case, but note that the coupling strength needed to obtain
the high-frequency tail is now smaller, because the pho-
n on frequency changes the renormalization factor—E /0~2 e 8

Inspection of the spectra at different doping levels

showed that the high-frequency tail, which is a charac-
teristic feature of the experimental spectrum, is present
only for densities around —,. This is a promising feature

of the e-ph model, since we know from experimental esti-
mates that the hole density in the Cu03 chains of both

PrBa2Cu307 & and YBa2Cu307 & is approximately —,
' per

Cu, which translates to the value n =
—,
' in our model.

Hence, we shall now compare the experimental spectrum
of PrBa2Cu307 & with those calculated spectra which

give the best agreement.
Figure 15 shows the experimental oI's(co} together

—Theory: (a) N = 14.
—— Theory: (b} N = 13-
~-- Ex . PrB

c 3
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'C I
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FIG. 15. Comparison of the experimental spectrum obtained
in Ref. 1 with two curves calculated using OBC and paraxneters

(a) N =14, E& =0.65, and (b) N=13, E& =0.55, both at n, =6,
0=0.2.

n ff'
2mp Vce]]

dco 0'(co)
me

moao ( —T )
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for tight-binding models . (31)

with the ones calculated for parameters (a) N =14, n, =6,
0=0.2, Ett =0 65, and (b) N =13, n, =6, 0=0.2,
Ez =0.55. We have used the usual value t =0.4 eV to fix

the energy scale. The agreement of the calculated with
the experimental curve is fairly good. In particular, the
high-frequency tail is very well approximated by the cal-
culation, and also the ratio cr(co=co~,I, ) lcr(co=1.0 eV) of
the peak height to the weight at the bottom of the tail
(co = l.0 eV) is correct. However, there is some
discrepancy at small frequencies: The quasigap below the
main peak is not observed in experiment. There, the con-
ductivity drops very sharply when approaching zero fre-
quency.

The total spectral weight can be expressed in terms of
an effective carrier number per unit cell
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FI(s. 14. Frequency dependence of a &' {m) obtained for a lat-
tice with N =14 using OBC. The plots show spectra calculated
for diferent fillings and coupling strengths Ez (close to E& } at
fixed phonon frequency 0=0.15.

where mo is the free-electron mass, V„IIthe volume of
the unit cell, e the elementary charge, and ap the lattice
constant along the chain, i.e., in the b direction. From
our calculations (Fig. 15), we obtain a value of
n ff 0.43-0.45. This compares rather well with the ex-

perimental one n,ff=0.5. The discrepancy comes from
the low-frequency part.

There are three possible explanations for the shortcom-
ing at low frequencies: (i) Since in our model the position
of the main peak, and therefore the size of the quasigap,
is determined by the energy of the lowest particle-hole ex-
citation of the corresponding noninteracting system, it is
clear that it should diminish as a function of increasing
system size. Hence, it is plausible to assume that the con-
tribution of longer chains (N ) 14) to the total spectrum
in real samples would fill in the missing spectral weight at
low energy. Such long chain segments should certainly
be present in these materials, provided that the oxygen
vacancies occupy random positions, and do not form an
ordered superlattice, for which there is no experimental
evidence. Unfortunately, the limitations posed by the
available computer power make it impossible to demon-
strate this explicitly by a calculation. However, the com-
parison in Fig. 16 between the spectra for increasing sys-
tem size clearly shows the shift of the peak.
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FIG. 16. Comparison of spectra 0 &'l'(~) obtained for die'erent
combinations of lattice sizes and fillings [N, n, ]=([10,4], [12,5]
[14,6]) using OBC and fixed values of E~ =0.65, 0=0.2.

(ii) The second explanation could be that the approxi-
mation of ansatz II slightly underestimates the contribu-
tion of renormalized (co(co „i,) versus unrenormalized
(weight of main peak) charge motion, so that in reality
(using the full phonon Hilbert space) there would not be a
quasigap, but rather a smooth decay of the conductivity
as we approach co=0. If this was the case, we should see
at least the onset of such a shift of spectral weight when
comparing the results from ansatz II with the calcula-
tions performed using the two additional excited phonon
states il ), , i1 ),.

Figure 17 shows a comparison between the two ap-
proaches for a nine-site lattice with n, =4, 0=0.2, and
different coupling strengths. The e-ph coupling was
chosen such that the qualitative shape of the peak and
the high-frequency tail are similar for the two approxima-
tions. We observe an excellent agreement between the
two cases over the entire frequency range, i.e., the low-

frequency weight is not affected by the reduction of the
phonon Hilbert space. This agreement supports the hy-
pothesis that the neglected phonon states in ansatz II
can be taken into account by a renormalized e-ph cou-
pling. In other words, the spectrum we obtain from a
calculation using ansatz II at coupling Ez presents an ex-
cellent approximation of the true spectrum (using the full
Hilbert space) at a coupling strength Ea )Ea. At least
this should be the case if both the particle density n and
the phonon frequency 0 are not too small. As we
showed in Ref. 25, at small density and 0/t (0.1, excita-
tions on the scale 0 become relevant, and this leads to a
qualitative difference between the results from ansatz II
and those from the true Hamiltonian. Note, also, that

5.0 i,

I

1

I

4.0

J =0.0
----- J =0.5 tfJ

5.0

4.0
E = 0.65, J = 0.5

----- E.= o.ss J = o

3.0

4.0

the additional phonon states lead to a slight smoothing of
the spectra as compared to the results of ansatz II.

(iii) Finally, we should consider the possibility that the
scattering from spin exchange could be enhanced by the
e-ph coupling as compared to the simple r Jm-odel (see
the discussion in Sec. II). Naively, one expects a com-
petition between the spin and the polaronic e-ph cou-
pling. The former favors singlet bonds between electrons
on neighboring sites, i.e., an effective attraction, whereas
the latter leads to an effective nearest-neighbor repulsion,
i.e., CD% correlations. This competition might lead to
interesting effects, which we investigate in more detail in
Ref. 25.

In Fig. 18 we show the spectra calculated for a 12-site
lattice with n, =5, total spin z component of S,= —,', pa-
rameters E~ =0.65, 0=0.2, and different values of the
spin-exchange coupling J. The ground state for all the
parameters has the lowest possible value for the total
spin, S=—,', as found in the simple t-J model. We note
that the spin degrees of freedom enhance the low-

frequency weight below the main peak, and shift the
latter to lower energy, while the high-frequency weight is
reduced. The additional low-frequency weight increases
as a function of J. This effect of the spin exchange on the
low-frequency region is very similar to what happens
when the e-ph coupling strength is reduced. A possible
explanation for this behavior could therefore be that the
nearest-neighbor spin-exchange coupling, which favors
electrons on neighboring sites, leads to an effective weak-
ening of the repulsive COW correlations on the scale
co J. This can be verified in the inset of Fig. 18, where
one observes a strong similarity between a spectrum at
JAO and some Es, with a spectrum at J =0 and a small-
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FIG. 17. Comparison of cT I'~|', co) obtained from ansatz II with
the results using a four-phonon basis for diferent couplings.
The spectra were obtained for %=9 with OBC at n, =4 and
0,=0.2.
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FIG. 18. Comparison of o. l' (co) obtained from ansatz II at
different values of the spin-exchange coupling J=O.O, O.S, 1.0,
and 6xed %=12, n, =5, E~=0.65, 0=0.2, S,= —, using OBC.
The inset contrasts the case of J=0.5 with a calculation for
J=0, Eq =0.55.
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er Ez &Ez. Apart from this effect, the spin degrees of
freedom do not play a significant role.

From these considerations, it seems most likely that
the missing weight should come from the contributions of
larger chains. We expect that this should fill in the quasi-
gap. Even though we cannot explicitly calculate a spec-
trum for this situation, our results strongly suggest that a
spectrum obtained from a superposition of random-
length chain segments (similar to the case we calculated
in Sec. III without e-ph coupling) would give good agree-
ment with the experimental one.

VII. CONCLUSIONS

In this article, we discussed different physical mecha-
nisms which could be responsible for the experimentally
observed frequency dependence of the optical conductivi-
ty in the Cu03 chains of the 1:2:3compounds. The main
features of the conductivity are a broad midinfrared peak
at co=0.2 eV, and a subsequent slowly falling (much
slower than 1/co~) high-frequency tail.

In view of the similarity between the CuO bonding pat-
terns of the Cu02 planes and the Cu03 chains, we argued
that a 10 t-J model derived from a multiband Hubbard
model should capture the relevant low-energy physics of
the chains. However, the known fact that this model
does not show any substantial optical absorption (due to
the charge-spin decoupling in 1D) forced us to consider
additional terms in the Hamiltonian, which could lead to
the observed strong scattering, and the resulting absorp-
tion.

The inherent tendency of oxides toward the formation
of defects naturally suggests inclusion of the resulting
perturbations of the charge motion of the electronic
structure. In the case of the 1:2:3 compounds, the oxy-
gen vacancies on the O(l} site connecting two neighbor-
ing Cu(1) in the chains present the most serious and also
most common type of defect.

The simplest way to model the vacancy disorder is to
assume that a vacancy acts as an almost impenetrable
barrier. This leads to a decomposition of an individual
chain into effectively disconnected segments, between
which charge motion is severely hindered. This effect can
be incorporated in the Hamiltonian by a strongly reduced
hopping matrix element between the lattice sites next to a
vacancy. For the optical conductivity, this has the conse-
quence that the dc conductivity vanishes, and its weight
is transferred to finite frequencies.

Neglecting the magnetic term in the t-J model, we cal-
culated the optical conductivity for such a model, assum-
ing a uniform random distribution of vacancies, charac-
terized by the mean length of an individual segment. Fix-
ing the energy scale by setting t =0.4 eV, we found that
this model exhibits a low-energy peak, but it is neither
able to reproduce correctly the peak position nor show
the observed high-frequency tail. For a more reahstic
model, where in addition to the disorder in t we also in-
cluded a repulsion potential on the sites neighboring the
vacancy, we did not find any better agreement with the
experimental spectrum.

As a second possibility, we included potential disorder,

which can be modeled by random on-site energies on
each lattice site. The ac conductivity of such models is
well known to show (i} a low-energy peak, the position of
which depends on the disorder strength, and (ii) a high-
energy tail. Therefore it appears to be a promising candi-
date to explain the experimental results. Indeed, we
found that it is possible to fit the measured spectrum very
accurately by this model. However, a quantitative
analysis revealed that a very large disorder strength
(W=1.2-1.6 eV) is needed to obtain the correct peak
position. There is no experimental evidence for such
strong disorder in the real materials, so it remains un-
clear whether this is the correct model. A possible type
of defect, which could in principle produce such strong
potentials, is an interstitial oxygen atom between two
Cu(1} atoms belonging to neighboring chains. But the
density of such defects ( = 10%) required to produce such
a strong random potential on each site seems unphysical-
ly large. Furthermore, it is hard to reconcile such a
strong impurity potential with the experimental fact
that the chains in YBa2Cu307 & give a significant contri-
bution to the dc conductivity along the b axis.

As a third likely source of strong scattering in the
chains we considered polaronic electron-phonon cou-
pling. In particular, we argued that the phonon mode
which involves the displacement of the apical oxygen
[O(4) site] in the c direction should couple rather strongly
to the holes in the chains. %'e showed that this coupling
is well described by an additional Holstein term in the
Hamiltonian, the local ion displacement being linearly
coupled to the local charge density. For simplicity, we
assumed this phonon mode to be dispersionless. Again
neglecting the spin degrees of freedom, the effective mod-
el becomes the standard Holstein molecular-crystal mod-
el for spinless fermions.

In consideration of the importance of the effective
electron-electron interactions, we chose a numerical tech-
nique for the calculation of o(co), which is capable of
dealing with such interactions in a clean way, the Lanc-
zos method. Apart from the limitation to finite lattices,
the drawback of this method when applied to an e-ph
Hamiltonian is that one is forced to restrict the possible
phonon states to some finite subspace, in order to obtain
a finite-dimensional total Hilbert space.

In a related paper, we investigated different possible
variational subspaces for the phonons, each of them al-
lowing two states at a given lattice site. The best choice
for the two local phonon states, which we called ansatz
II, was found to be the vacuum states of the undisplaced
and the displaced oscillator (0}&,~0}&. The agreement
from ansatz II of the parameters entering the effective
Hamiltonian with the exact ones, as well as with the
QMC data, was excellent.

For a comparison with the experimental spectrum, we
used ansatz II in the presence of open boundary condi-
tions, which is the simplest way to include the effect of
the oxygen vacancies. We found that the effective elec-
tron correlations lead to the appearance of the high-
frequency tail also in this situation, provided the density
is close to —,', which represents the estimated experimental
value. In the low-frequency region, we also found the
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characteristic peak, the origin of which can be traced
back to the lowest particle-hole excitation of the nonin-
teracting system. At even lower energies, the absorption
due to the renormalized motion of the domain walls part-
ly closes the quasigap.

When compared with the experimental spectrum, the
agreement is fairly good. While the high-frequency tail is
reproduced very well, at low energy there is some
discrepancy: The conductivity falls off too sharply on the
low-energy side of the main peak, and the quasigap leaves
some missing weight. Most likely this shortcoming is due
to the fact that only chains with length X ~ 14 could be
considered in our calculations. The contribution of
longer chains has to be expected to close the quasigap,
since its size diminishes for increasing chain lengths.
Adding the spin degrees of freedom was shown to lead to
additional absorption in the low-frequency region, and a
slight shift of the main peak to lower energies, without
strongly affecting the high-frequency tail. However, for
physical values of J/t ~0.5, the overall influence of the
spin degrees of freedom was found not to be very
significant, as expected due to charge-spin separation.
The inclusion of additional phonon states mainly has the
effect of renormalizing the e-ph coupling strength to
smaller values. Apart from a slight smoothing of the
spectra, it does not alter the results.

In conclusion, there are two likely mechanisms which
could give rise to the observed conductivity of the Cu03
chains in the 1:2:3materials: While the first one (strong
potential disorder) gives excellent agreement with the ex-
perimental spectrum it suffers from the di fficu]t
justification of the required disorder strength. The pro

posed polaronic e-ph coupling can be well justified assum-

ing reasonable physical parameters, and also gives fair
agreement with experiment.

It would be highly desirable to have an experimental
verification for one or the other mechanism. The total
spectral weight expressed in the effective carrier number
per unit cell was found to be very similar in both models,
n,&=0.4—0.45, and compared well with the experimental
value n,&=0.5. One possibility to distinguish the two
mechanisms could be the investigation of the isotope
effect on the conductivity spectrum. If the e-ph model is
applicable, the substitution of the apical oxygen from ' 0
to ' 0 should lead to a reduced phonon frequency 0, and
hence to an increased renormalization factor in which fL

enters exponentially. In this case a shift of the main peak
to higher frequency would be expected. Furthermore,
one should observe a sign of short-range CDW order re-
sulting from the polaron-polaron interactions in this case.
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