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Hole superconductivity in Hubbard subbands
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We study the superconducting properties of the system described by the correlated-hopping model in

the limit of intermediate and strong correlations. The main effect of the Hubbard term U is reflected in

the appearance of the separated Hubbard subbands. The other interaction term K;, in the Hamiltonian
introduces the correlation between quasiparticles and for small number of holes in the system leads to
the appearance of superconductivity. The superconducting transition temperature hardly changes with

U in the approximation we use. We have found the dependence of the superconducting energy gap on

temperature T and energy c.k. It turns out to be a nearly linear function of cI, . The temperature depen-

dence of the two components of the gap slightly differ from the BCS 5( T) function. The effective gap to
the T, ratio strongly depends on the carrier concentration n taking on large values for small n (n (0.1)

and being close to the BCS value of 1.76 at larger n.

I. INTRODUCTION

There is growing evidence that high-T, superconduct-
ing (HTS) oxides possess a number of common charac-
teristics. ' They may be caused by some properties
shared by all HTS's like the quasi-two-dimensional na-
ture of the Cu-0 planes, the short coherence length, low
Fermi energy, etc. It is, however, not obvious which of
these properties are really important as some universal
features of HTS are observed' also in heavy fermion su-

perconductors with very low transition temperatures and
cubic (fcc) alkali-metal doped fullerides.

One of the models studied, with hopes of explaining
the phenomenon of HTS, is the "correlated-hopping" or
"hole-superconductivity" model. It belongs to the fami-

ly of extended Hubbard models and has been argued to
capture a lot of physics of high-temperature supercon-
ducting oxides.

In the previous works (see Refs. 3 and 4 and references
therein) the model has been studied mainly in the
Hartree-Fock-Bogolubov approximation. One expects
this mean-field scheme not to be valid for the large values
of U (on-site correlation energy) used in those studies.
On the other hand, the "correlated-hopping" parameter
K has been estimated to be of the order of the bandwidth
W or larger, and seems to be unphysically large. The
value of U has been taken ten times larger than W, and
has had a very destructive effect on 1,.

In the present work we shall study the "correlated-
hopping" model by using the approximation developed
previously by Hubbard and Hubbard and Jain and
shown to lead to correct behavior of susceptibility in the
weak and strong correlation limits. This scheme has al-
ready been extended to study the superconductivity in
the Hubbard model with a positive and negative U (Ref.
7) and also has been applied to the "correlated-hopping"
model by Das and Das. We extend the previous work
and consider not only T, but also the energy gap, density
of states, etc. In Sec. II we shall discuss the model and
main points of its solution. In Sec. III we present the re-

suits of numerical calculations and compare them with
the corresponding data obtained in the mean-field ap-
proximation.

II. HAMILTONIAN AND THE SOLUTION

The Hubbard Hamiltonian with a correlated hopping
term can be written as '

d, =ni ci for a=1,2,
where ni~ =1—ni~, nia nia, and

cia g din (3)

Operator d, ' =(I n, )c; acts on the Hilb—ert . sub-

space of singly occupied states and d; =n, c,. on the

1

EI lG~ tjT i 2 il7 ((1 2 X~l(7 l(T ( (7~i 0'

iJ CT ig io

(I)
IJ

where c; (c; ) is the electron annihilation (creation)
operator, t, is the hopping integral (for the clean system

we take t, , =0), K," denotes the correlated-hopping term

(hopping modulated by the presence or absence of elec-
trons on sites i and j), itt denotes the chemical potential,
and U represents the on-site electron-electron repulsion

( U )0). For the nearest-neighbor hopping in two dimen-

sions we have t,"=t, K,"=Kt;, and W=St, where W is

the bandwidth.
The term K;, has been estimated to be an order of

magnitude smaller than the diagonal Coulomb repulsion
U. It is also smaller than other o5'-diagonal terms V;,
previously considered in the same context. The argu-
ments for the importance of the K; term have been ex-

tensively discussed in the literature (see Hirsch and Mar-
siglio papers, and the references therein).

Following the Hubbard work we introduce for the
normal system in the intermediate region of interaction U

the new operators d; defined as
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and

Nk '= a

~=, 2 (Ek,—s, )

subspace of doubly occupied states. Their conjugate
counterparts d +,d; + act in the subspaces of empty and

singly occupied states, respectively. Such a division of
the Hilbert subspace of the single site reflects some phys-
ics of the narrow band correlated systems where we do
expect the appearance of subbands connected with singly
and doubly occupied states.

Because our treatment of the Hamiltonian (1) nearly
exactly traces the calculations of Jain and co-workers
and Das and Das we shall skip all the details and merely
discuss some salient features of the calculations and ap-
proxirnations.

One writes the equation of motion for the operators
d . The resulting highly nonlinear terms appearing on
the right-hand side of the obtained equation are linear-
ized in the spirit of the Hartree-Fock-Bogolubov approxi-
mation. There is a difference, however, between our
treatment of the K,J term and that of the work. We have
adopted an approach similar in spirit to one used by Jain
and co-workers in their study of superconductivity in
the Hubbard model with the on-site U and intersite V;
terms and have neglected the modifications of the
normal-state spectrum by the "correlated-hopping" term.
Our subband energies, therefore, are defined in the same
way as in Ref. 5 and 7 and read

Ek,= ,'(U+ek }+——,'( —1)'[(U —ek) +2nU]', (4)

with carrier concentration n &[0,2]. We then define,
again following Refs. 6 and 7, the annihilation operators
for electrons (holes} in subbands by

1 2
v —1 dkcr dko

&k —
&k Nk. + (&)

kv kv

where

NkvnK
Ek =Ek +

~k

The parameter K is determined by the relation Kk =Kck
and the coefficients Yk,Xk denote respectively

Kn
Ykv=Nk„Tk 1+

2

2Nkv K,

Xv=N T„2+3K~ + k K
2N

&k
(12)

and

U
~kv

Ek,(Ek, U)—
The equation (9) for the gap is supplemented by the equa-
tion for the carrier concentration n,

n=gg
k v k

1+ f(Ek„)
Eiv

Ekv P+ 1-
Ek.

(13)

In deriving Eqs. (9) and (13) we have assumed that for the
large and positive U that we are interested in, the inter-
subband pairing can be neglected.

Our neglect of the effect of K; on subband energies has
the virtue that subsequent expressions for parameters Nkv
and Tk are exact. Taking this correction into account
leads to expressions more complicated than those used in
previous treatments of the model. As already men-
tioned, the importance of the "correlated-hopping" term
is connected with the special correlations it introduces
between the holes in the band. These lead to the super-
conducting instabilities in the system. In our case it is
the U term in the Hamiltonian which is mainly responsi-
ble for the modifications of the normal-state spectrum.

0 for a=1,
U for a=2 .

~k.=—XX [Xk.E, —Yk.]
q a

X [f(E )—f( —E )] . (9)
E E

Here we use the following abbreviations:

Ek =+«k. V)'+~k. —

and

(10)

The BCS-like equations for the generalized gap functions,

kkv=XkvZO+ Yk

for the upper and lower subbands (v= 1,2), are derived in
the standard way ' and read

III. RESULTS

We start the discussion of the results with some details
on the normal-state spectrum of the model. As previous-
ly discussed, the main effect of the large Hubbard U term
is connected with the appearance of Hubbard subbands
of singly and doubly occupied states. The gap which ap-
pears in the spectrum is of the order of U, and it is a
well-known drawback of this approximation that it gives
a gap for any value of U. In Fig. 1 we plot the Hubbard
energies Ek defined in Eq. (11) as a function of single
particle energies c.k, both measured in units of the band-
width. The parameters used for this and most of the oth-
er figures are U = 108 and E =S, and correspond to
those taken by Hirsch and Marsiglio in their mean-field
study of the model.

A few features can be noted. The dependence of both
subband energies Ekv, v=1,2, on ck is nearly linear. The
lower band (in our notation v=1} has the larger slope
and width while the upper one is very narrow. Their sep-
aration depends on the value of c.k, but it is roughly of
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tions via the slave-boson technique. '

Our interpretation of this result which is in strong con-
trast to the mean-field calculations ' is the following. In
the first order, the presence of the large U results in the
appearance of two subbands accompanied by the corre-
sponding mass renormalizations visible in their relative
narrowness. The term K,J introduces (in the off-diagonal
terms) superconducting correlations between carriers and
this explains why T, does not (in the first order) depend
on U.

In this context it is important to remark that the
"particle-hole" symmetry, observed in the mean-field
treatment of the present model T,(n, E)=T,(2—n, E)—
is violated in this case. We have calculated T, for u =10
and k = —5 and found that the system is superconduct-
ing for the upper subband being partially occupied. The
value of T, (see Fig. 5) is, however, smaller (approximate-
ly by the factor of 2}. At present we do not know wheth-
er this "particle-hole" asymmetry can serve as an ex-
planation of the experimentally observed asymmetry be-
tween hole" and electron' superconductors.

The special version of the model with E; =0, and also
supplemented by the V; term, has been previously stud-
ied analytically by Jain, Ramakumar, and Chancey. Our
explicit numerical calculations nicely agree with the con-
clusion obtained by these authors that "large U values
may not preclude the appearance of the superconductivi-
ty in the system". '

We believe that the approximations adopted here have
to be modified when dealing with the negative-U Hub-
bard model so we cannot directly compare with the previ-
ous work on that model. Recently the same method has
been used to study two band model with interlayer cou-
pling, but no numerical results have been presented. '

Inspection of Eqs. (8) and (12) shows that the gaps 5„,

r/w
0.3

0.2-
k=5
k=4
k=3

u, =10 n=O. Z

0 1 Eg/F

0.4-

0.0
0.0

O.S
0.0

0.5 1.0

FIG. 6. The temperature dependence of A, (in inset we plot
Zo/A, ) for u =10 and several values of k. The concentration
n =0.2, corresponds to maximal values of T, for the parameters
studied.
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depend in a complicated way on the wave vector k (or
rather energy ez ). In general, we have two unknown pa-
rameters Zo and A, . Using the form (8) for hl„we have
solved (9) numerically finding A, and Zo for various tem-
peratures. The T dependence of both parameters has
been plotted in Fig. 6 for u=10 and n=0.2. The inset
shows the ratio of both parameters. Over a large temper-
ature range the ratio is constant. Its value depends on
the Hamiltonian parameters. Here we show it for u =10
and k =5,4, 3,2.

Having iL and Zo we can calculate the (T, sl, } depen-
dence of the gaps 6I, , v=1,2. These results are shown in-
Figs. 7 and 8. For all practical purposes and in a broad

0.2 0.8
0.9

0.1 D.99

p.p — f.D

0.0
1.0 1.2

FIG. 5. For negative values of k the system undergoes the
metal superconductor transition for n &1. Here we plot the
critical temperature in the upper Hubbard subband (v=2) for
u =10, k =—5. Comparison with the u =10, k =5 case
presented in Fig. 3 shows the differences between "hole" and
"electron" superconductivity.
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FIG. 7. The gap function hk& vs energy c,I, (both measured in
the bandwidth units $V) for various temperatures, ranging from
T = T, to T =0. The nearly linear dependence is observed. At
one point (c,*) the gap changes its sign.
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with T dependent 50, and 5&, v=1,2. Note the appre-
ciable concentration and temperature dependence of the

rst term. In a previous work the form (14) of the gap
without the first term has been assumed at the outset.

is is incorrect and leads to changes in all calculated
characteristics.

We also note the very high maximal values of the a
in the 1e ower band (Ftg. 7) and smaller values in the u er
one (Fi . 8). Thee ig. . e slope of the hk, is positive in the upper

in e upper

subband and negative in lower one, where it also changes
its sign. The point c' at which Ak2 changes the sign does

depend on temperature. In a sense such a change of
sign does not lead to physical effects as the modulus of
the gap enters the various formulas.

To see the structure of spectrum of material in the su-

perconducting state we have shown in Fig. 9 the density
of states D (E ) defined via
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D(E)—=
BE

(15)

where E is, for each k, defined in Eq. (10). In fact, such

D(E) is the superconducting state DOS divided by the
normal-metal density of states p(E),

2.0

p(e)=+5(c,—sk) .
k

(16) 1.0

In thts work the normal-metal DOS p(e ) is assumed to be
constant and is shown in Fig. 9 b th d h d 1'

y e as e ines,
w tc ormally represent D(E —p) functions. At T=O
we see the typical (but asymmetric due to energy depen-
dence of b, k ) DOS of the BCS type in the lower subband

and very narrow, slightly modified in the superconduct-
ing state as compared to the normal state DOS in the

upper subband.
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The value of the gap seen in the lower subband is (like

T, ) concentration dependent and we denote it by 60 (sub-

script 0 referring to the zero temperature). The n depen-
dence of the ratio b,o/T, is plotted in Fig. 10 for u = 10
and several values of k. Instead of the BCS value 1.76 we
have a strongly varying function with large values at low
concentrations and smaller values of order 1.5 at higher
concentrations. These trends are similar to what has
been found in mean-field theory.

IV. CONCLUSIONS

We have studied the properties of the "correlated-
hopping" model of superconductivity employing the
Hubbard-Jain approximation to treat the correlation
problem in the normal-state and Hartree-Pock type of
approximations in the superconducting sector of the
theory.

The properties of the system in various aspects resem-
ble those obtained in the mean-field treatment. The tran-
sition temperature T, is different from zero in a relatively

narrow range of concentrations, the gap is a nearly linear
function of energy, the effective gap to T, ratio dimin-
ishes with increasing concentration.

The approximation we use has the virtue that it de-
scribes better the normal-state properties in the inter-
mediate and strong correlation limit. In the supercon-
ducting state it leads to nearly U independent T, and
n,„—the concentration of carriers at which the system
ceases to undergo metal-superconductor transition. Our
results can explain why even very strongly correlated
(large U) systems can become superconducting. We be-
lieve the present approximation improves previous
mean-field calculations. '
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