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Electronic structure of superconducting multilayers
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The Bloch waves, the energy bands, and the local and global densities of states are computed for
superconducting multilayers in which the Fermi energy in the superconducting (S) layers, sFs, may
exceed the one in the normal (N) layers, sFN. Self-consistent pair potentials and their equivalent
square-well representations are considered. If the S-layer thickness exceeds several coherence lengths
the densities of states exhibit the subgap peak (besides the BCS peak) and the Tomasch-McMillan-
Anderson oscillations known from SNS junctions. These features, due to off—diagonal (Andreev)
scattering, decrease with increasing ratio sFs/sFN because of the competition from diagonal scatter-
ing. The temperature dependence of the energetic position of the subgap peak is weaker than that
of the BCS peak. In multilayers with S-layer thickness of the order of magnitude of one coherence
length and sps/sFN )) 1, the local density of states is BCS-like in the S layers and normal-metal-
like in the N layers. This is due to electron localization in the S layers and consistent with recent
scanning tunneling microscope conductance measurements in YBa&Cu307.

I. INTRODUCTION

Superconducting multilayers and their electronic struc-
ture were discussed theoretically by Andreev when con-
sidering the intermediate state in type-I superconductors.
In further studies Kronig-Penney and more general rnod-
els for the pair potential have been used. Experimen-
tally, superlattices formed by superconductors (S) and
normal metalss s (N) or semiconductorss' o have been
investigated with respect to their thermodynamic and
transport properties. After the discovery of the high-
temperature superconductors (HTSC) superconducting
multilayers have received special attention again: On the
one hand in the form of superlattices artificially prepared
Rom different cuprates and on the other hand as
models that might facilitate the understanding of the
intrinsically layered structure of the HTSC. ' Such
modeling has recently found rather direct experimental
support when Tanaka et al. discovered that bulk single
grain YBa2Cu307 specimen exhibit alternating metal-
lic and BCS-like scanning tunneling conductance spec-
tra with a periodicity of 0.8 6 0.2 nm. Furthermore, in
Bi-Sr-Ca-Cu-0 (BSCCO) 6lms2~ and single crystals22'2

a significant deviation of the temperature dependence
of the measured gaps from the BCS behavior is ob-
served; see also Ref. 24. In addition, in the single-crystal
BSCCO tunneling and Raman spectroscopy reveal two

gaps related to anisotropy. ' The anisotropy and the
temperature dependence of the in-plane energy gap in
YBa2Cu307 g have been measured by Polturak et al. 25

using Andreev refiections.
Andreev refIections are the fundamental mechanism

that determines the electronic structure of the multilay-
ers with equal Fermi energies treated in Refs. 2—5. In this
paper we extend the investigation to multilayers where
the Fermi energies in the S and N layers, eps and eFN,
may be very difFerent. We do not rely exclusively on

the Kronig-Penney model but rather investigate multi-
layers with self-consistent pair potentials, too. These are
discussed in Sec. II, and in Sec. IIIA we show that
equivalent periodic square well representations of them
are possible and how they can be constructed. In Sec.
IIIB we compute the quasiparticle wave functions, the
energy bands, and the global as well as the local den-
sities of states for difFerent N- and 8-layer thicknesses,
difFerent ratios of sFs/e'FN and temperatures in the range
0 ( T & T~. The combined analytical and numerical
methods also work in the case of Fermi energies so small
that quasiclassical approximations break down. In the
Discussion our results are compared with recent experi-
ments on HTSC with emphasis on localization effects due
to Andreev scattering and the mismatch of wave vectors
parallel to the N-S interfaces.

II. MATERIAL PARAMETERS AND PAIR
POTENTIALS

We consider a system of alternating superconducting
and normal layers, which is translationally invariant in x
and y directions, and which has the periodicity length
d = a + b in the z direction. In the superconduct-
ing layers, each of thickness b, the pairing interaction is
isotropic. The conduction-band electrons of the normal
and the superconducting layers are described by disper-
sion relations of &ee electrons with equal e8'ective masses
m. The Fermi energies of the S layers, eFS, may, in gen-
eral, be larger than those of the N layers, eFN. As in
Ref. 27, the spatial variation of the lower conduction-
band edges is modeled by step functions, whereas the
z dependence of the pair potential b, (z), calculated self-

consistently for eFs = eFN, and its equivalent square-well
representation are shown in Fig. 1. For eFS ) eFN our
computations of self-consistent pair potentials indicate

0163-1829/94/49(17)/12140(11)/$06. 00 49 12 140 1994 The American Physical Society



49 ELECTRONIC STRUCTURE OF SUPERCONDUCTING MULTILAYERS 12 141

Io~T Q„f dOs (4~) Tr[g(k, z, (u„)(r, —n-2)]
b, z

I [TITc( )]+E.1/( —0.5)

with the z-dependent critical temperature

0.5— ( )
Tcrv 1I1 N
T~g ln S. (4)

oo~,'', &
0 b

z

, L

FIG. 1. Self-consistent pair potential (solid line) and its
equivalent square-well representation (dashed line) E(z) of
a superconducting multilayer with constant Fermi energy;
TCN —0.1 Tcs, a = 6 $o, b = 3 go, (o = & kFs/s"InE(0),
6(0) = 1 76 kaTcs, 6 = 6(0 5 Tcs) = 0 95 6(0)

that the square-well representation becomes the better
the larger sps/sFN, see Fig. 2. This is in accordance
with Kieselmann's results for proximity contacts.

Similar to Kieselmann's and Ashida's et al. calcula-
tions for proximity 8 and double-layer ' contacts, our
self-consistent computations of multilayer pair potentials
are performed with the help of the quasiclassical Green's
functions g. In the weak-coupling limit they obey the
equations

[ihu„rq —b, (z), g(k, z; u„)]
d. -

+i(k s)hvar —g(k, z;ur„)= 0.
dz

Here ur„=(2n —l)mIo~T/fI, are 'the Matsubara frequen-
cies, v» (z) is the Fermi velocity, 7; are the Pauli matrices,
A

k is the unit vector in momentum direction, s is the unit
vector in z direction, and [A, B] = AB BA T—he ma. trix
6 of the pair potential is given by

(2)

and is subject to the self-consistency condition
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FIG. 2. Self-consistent pair potential for a superconduct-
ing double layer with in6nite walls at z = —a/2 = 2 go and
z = b/2 = 0.5(o. The dashed lines (visible in the range
0 ( z ( b/2) show the iterative approach to the self-consistent
form; TcN = T = 0, sFs/sFN = 2.

The solid angle integration is over all momentum direc-
tions k. The summation Z„over the Matsubara frequen-
cies can be cut off at flu„=hu, = 10krsTc. ' [Eq. (3)
results from a combination of Kieselmann'sls Eqs. (2.6c)
and (2.7b). It has been extended by Bruders~ to the case
of anisotropic pairing interactions. ]

In computing g and the pair potentials A(z) shown
in Figs. 1 and 2 we proceed similarly to Refs. 28 and 31:
Defining as the interfaces between the N and the S layers
the points where Tc(z) jumps &om Tc~ ( Tcs to Tcs,
we compute iteratively solutions of Eqs. (1) and (3) in
one N- and one S-layer of thickness a/2 and b/2, respec-
tively, using the nonlinear boundary conditions for g
at z = 0, starting with a steplike pair potential, which
vanishes in the N layer, until self-consistency is reached.
However, the fact that the N and the S layers are part
of a multilayer system is taken into account by including
also the solutions for g, which increase exponentially in S.
These solutions, which are left out in the calculations for
half-infinite S layers, ' ~ are linearly combined with the
exponentially decaying and constant solutions, and this
linear combination is subject to the boundary condition
of specular reHection in z = b/2. The same boundary
condition applies at z = —a/2. Specular reHection at the
system boundaries, i.e., the vanishing of the linear com-
binations of the quasiparticle wave-functions from which
the Green's functions are built up, is assumed by Ashida
et al. in their considerations of double-layer systems;
according to them the periodic continuation of a pair po-
tential calculated self-consistently with these conditions
for an N-S-layer system with cps ——eFN is the pair po-
tential of a multilayer system like the one shown in Fig.
1. For the case sps g sFN Ashida et al. ,

s calculating the
transition temperature for double layers, point out that
their theory can also be applied to multilayers with ap-
propriate continuation of the double-layer self-consistent
pair potential. Thus, we are confident that our conclu-
sion indicated above that square-well pair potentials are
rather good approximations of self-consistent pair poten-
tials like the one shown in Fig. 2 if cps ) cFN, holds for
multilayers indeed. The square-well shape of the pair po-
tential in this case is due to the localization of all those
quasiparticles in the S layers whose momenta hk~ paral-
lel to the N-S interface exceed the Fermi momentum in
the N layers and which are therefore specularly reHected;
thus the pair potential in the 8 layers becomes similar to
the one of a superconducting film. For multilayers with
cps ——eFN, where the self-consistent pair potential devi-
ates significantly &om the square-well form, see Fig. 1,
we will see in the next section that square-well represen-
tations with e8ective layer thicknesses are nevertheless
acceptable for the computation of energy bands and den-
sities of states.
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III. ENERC Y BANDS AND DENSITIES
OF STATES

A. Sensitivity with respect to self-consistency

where

hk
+ + U(z) —p.

2m 02z 2m

(u(r)) fu(z)l
e(r)) &v(z))

where k~ = e~k~+e&k„is the wave vector of propagation
parallel to the N-S interfaces and g = e x + e„y.The
u(z) and v(z) satisfy the one-dimensional BdGE

Eu(z) = 'R, u(z) + A(z)v(z),
Ev(z) = -&.v(z) + &(z)u(z)

(6a)

(6b)

We use the Bogoliubov —de Gennes equations (BdGE)
with the pair potentials computed in Sec. II. This is
convenient because a Wentzel-Kramers-Brillouin- Jeffreys
(WKBJ) method of computing quasiparticle wave func-
tions and energies from BdGE with arbitrary spatial
variations of the pair potential has been developed
before. ' ' Diferent Fermi energies in N and S are
taken into account directly by a spatially varying scalar
potential U(z); there is no need to introduce a reHection
coefBcient R, which enters the boundary conditions for
the quasiclassical Green's functions. 3 ' Furthermore,
the method of the quasiclassical Green's functions breaks
down if the Fermi energy does not exceed the pair poten-
tial considerably —a situation that may be relevant in
the HTSC —whereas exact solutions of the BdGE can
be calculated also in the case of small Fermi energies, if
square-well-like periodic pair potentials are valid approx-
imations of 6(z).

For the quasiparticle wave functions with the electron
and hole components u(r) and v(r) we make the ansatz

In the N layers we have p —U(z)—:ssN = 5 k&N/2m,
and in the S layers p —U(z)—:ass = h gs/2m. The
solutions of Eq. (6) have to satisfy the periodicity condi-
tion

fu(z+ d)),„„(u(z)l
e(z + d)) &v(z))

(8)

where the slowly varying functions g(z) and ((z) have to
satisfy '

2mV', g = [E —b, (z) cos q],
zF

m
V', ( =i, A(z) sing.

zF

(10a)

(10b)

As has been shown in Refs. 3 and 34, these equations
have two (linearly independent) solutions gq(z), (q (z) and
gz(z), (z(z). Matching the linear combinations of the cor-
responding quasiparticle wave functions in z = —a/2 and
observing Eq. (8) we obtain the eigenvalue equation

with the Bloch wave number K.
For a multilayer with spN = ups = h k&/2m the pair

potential 6(z) is given by the solid curve in Fig. 1. We
define k, ~ = (k&2 —kz) ~~z and make the following WKBJ
ansatz

0 = 2 sin([gz( —a/2) —qq( —a/2)] /2) cos [(r —k,~) d] —exp ( i [(2(—a/2) —(q( ——a/2) + 2(~])sinrlq( —a/2)

+ exp(i [(z(—a/2) —(q( —a/2) + 2(g]) sings( —a/2). (11)

Here gq, 2(z = b/2) = 6 arccos(E/Ao), (13a)

Q—:(m/5 k, ~)(E —Ao)
' b/2 (q, z(z = b/2) = ki

2 (As —E ) ~ b/2
zI'

(13b)

for E ) b, (b/2)—:b,o, and

(g =—'( /5 k,~)(A —E )'~ b/2

rh 2(z = b/2) = ji arccosh(E/40),

(g 2(z = b/2) = + z (E —Ao) b/2
h kz~

(12a)

(12b)

for E ) 40 and

for E ( Ap.
In order to compute the energy eigenvalues kom Eq.

(ll) the differential Eqs. (10) are rewritten as integral
equations [see Eqs. (7) and (8) of Ref. 34]. These equa-
tions are either integrated numerically subject to the
boundary conditions

for E & 60, or solved analytically in first-order Picard
iteration as indicated in Ref. 34. The g(E, k,~) and

((E,k,~) obtained by either of the two procedures are
inserted into the eigenvalue equation, Eq. (11), which
is solved numerically. The results are shown in Figs.
3—6. We note that the spectra obtained &om numeri-
cal integration and first-order Picard iteration agree very
well. [As in SNS contacts, 4 the energy eigenvalue equa-
tion obtained by first-order Picard iteration with the self-
consistent pair potential, solid curve in Fig. 1, is identical
to that obtained with the periodic square-well potential,
dashed curve in Fig. 1. It has the form of Eq. (21) with
eH'ective N and S-layer thicknesses. ] -The good quan-
titative agreement of the results &om the two methods
indicates that the following approximate description of
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FIG. 3. Dispersion relation E(k,~, /r) vs k ~ = (k~ k~)'—
and K:—k, p —/r, for the lowest (a),(b) and the next higher

(c),(d) band of the multilayer of Fig. 1; (a),(c) for the square
well and (b), (d) for the self-consistent pair potential; /r, =
Bloch wave number.

FIG. 5. Dispersion relation E(K) of the three lowest bands
of Fig. 4 at k,~ ——A:~.

tential is given by the dashed square-well form of Fig. 1.
In addition to the periodicity condition, Eq. (8), match-
ing of the quasiparticie wave functions u(z) and v(z) and
of their derivatives at the 1V-8 interfaces in z = 0 and
z = —a is required. The wave functions and the deriva-
tion of the eigenvalue equation

Dp + Dy8+ D28 + Dy8 + D08 = 0

multilayers is sufficient: Replace the self-consistent pair
potential b, (z) by a periodic square well pair potential
as shown in Fig. 1, where the area under both curves is
equal, and assign the effective thickness

5/2
a p = 2 [1 —b(z)/b, pj dz

—a/2

to the N layer with vanishing pair potential. The main
error associated with this approximation is the slight
difference34 in the density of states for E ~ 0 and a
smaQ reduction of bandwidths; see Figs. 4—6.

are given in the Appendix: 8 = e'" . Equation (15) is
valid for all energies E and absolute values k~ of the wave
vector parallel to the interfaces. The explicit form of
D; = D; (E, ke), i = 0, 1,2, is given in Eqs. (A12)—(A14).
The functions Do, Dq, and D2 are all either purely real
or purely imaginary so that they always can be rede6ned
as real functions in the eigenvalue equation, Eq. (15).
Multiplying Eq. (15) with e', and adding the equation
thus obtained to the original one, results in a quadratic
equation for cos(/cd), which has the two solutions

- 1/2

cos (m+d) = Dg/4 + —(Dz/4) —Dg/4+ 1/2

B. Localisation efFects

In the following we consider multilayers with cps &
e'FN. They are described by Eqs. (6) where the pair po-

= F+(E, ke)

Dy = Dr /Dp, Dz = Dz/Dp.

(i6)
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square meLL b,
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FIG. 4. Energy bands of the multilayer of Fig. 1. The
diamonds indicate the band edges calculated with the
self-consistent pair potential, whereas the shaded areas repre-
sent the bands computed with the square-well pair potential.

FIG. 6. The global density of states per unit area —nor-
malized to g~(E) = 2mdky //z h —for the multilayer of Fig.
1. The peak at E 0.3 E corresponds to the lowest band edge
at k ~ ——k~ in Figs. 3—5. There is no peak at E = A because
the 8 layers are much thinner than the N layers.
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This equation can be solved only for those values of E
and k~ for which

and

Di 4 —D2 4 + 1 2 ) 0

F+(E, kg) ( l.

(i7)
2. 0

L
1.5

1 . 0

This results in the energy bands shown in Figs. 7 and 8.
For the special case of equal Fermi energies in N and S
layers, which are much larger than the pair potential, the
eigenvalue equation can be further simplified. Observing
k2Fs ——k2FN ——k~& && 2mE/h2 one obtains

0.0
0.0

I

1.0
~/(vr/d)

1.5 Z. 0

FIG. 8. Band structure of the energy bands of Fig. 7 at
k&.FN/kFN

with

Di ———4Z cos (k,Fd),

D2 ——2 + 4Z —4 sin (k,~d)

Z—:cos(qhb) cos'(qa) —8 sin(qbb) sin(qa),

(iga)

(19b)

(20)

section L~L„is calculated for both spin orientations in a
periodicity volume of length d according to

g(E) = ) b(E —E (kg, r) )L Ly
kq, rc

cos (~+ + k, ~) d = Z. (2i)

where q = mE/h2k, ~ and b = (1 —b 2/E2) i/2. This,
inserted into Eq. (16), yields the well known eigenvalue
equation2 4

dkg kg ) — d~'h(E —E (kg, K*) )
1 d

—+

dkg kg ) BE(kg& K ) @(k ')
(22)

This equation is also valid in the first- order Picard it era-
t ion of the WKBJ approximation for self-consistent pair
potentials as indicated in Sec. III A. v+ refers to the
upper and z to the lower sign in Eq. (21). The corre-
sponding energy bands are shown in Fig. 9. In Figs . 7
and 9 the Bloch bands degenerate into discrete levels for
small energies and small k,FN = (kF& —k ) / . This is a
consequence of quasiparticle localization in the N layers
because of nearly perfect Andreev scattering.

In Fig. 8 we observe that in the case cps ) e pN the
spatially varying scalar potential U(z) removes the de-

generacy at Kd = nm, n = integer, one has in the case
cp N

——e ps . For smaller k,~ the baud-edge separation
becomes larger and results in the "band holes" and the
band splitting one notes in Fig. 7.

From the solutions of the eigenvalue equation, Eq. (16),
the global density of states per unit area of the cross

From Eq. (16) we see, that

Bz' 1 Barccos F'(E, kg)

BE(kg, K') d BE (23)

Integration over k ~ is limited to the intervals where Eqs .
(17) and (18) are satisfied. For fixed E these intervals
can be read oH' from Figs. 7 and 9: They are given by
the cuts of the straight line E = const with the curves,
which limit the energy bands indicated by the shaded
areas. The energy eigenvalues of those states, which are
localized in the S layer because of the k~ mismatch and of
those localized in the N layer because their S-layer pen-
etration depth is much less than b, are independent of K.

They contribute to the density of states like the corre-
sponding (E, kg) states in isolated superconducting films
of thickness b, and SNS junctions of N-layer thickness a

3.0 I

8! I 5 I gj
si I
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.4N I@i.Ittt SI$4

.;,'»PPg ja ( ~»ye II' %%i
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0.0 0.2 0.40.60.8
k,&,N/k&N

1 . 0 0.00.20.40.60.81.0
&pl &N

FIG. 7. Energy bands of a multilayer: a = 8 t'o, b = 3 (0,
&FS/&FN —4/3& SFS /A = 5000, T = 0.5 To

FIG . 9. Energy bands of a multilayer with cFs ——eFz .
, oth-

erwise same parameters as in Fig. 7.
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and semi-in6nite S banks, respectively. The k~ mismatch
results in an imaginary k,pN, according to Eq. (A7), and
thus an exponential damping of the quasiparticle wave

functions in the N layer.
Some typical examples of global density of states

curves are shown in Figs. 10 and 11. For thick S banks
and cps ——op~ the density of states curve in Fig. 10 ex-
hibits the subgap peak, the BCS peak and the Tomasch-
McMillan-Anderson osciOations one knows &om SNS
contacts. ' With increasing ratio ops/epN the subgap
peak decreases and the BCS peak becomes more pro-
nounced. This is the consequence of the increasing num-

ber of states localized in the S layers. In multilayers
with thinner S layers, Fig. 11, the subgap peak is more
pronounced and splits in two for ops ——2ep~. This is
associated with the band splitting discussed in the con-
text of Figs. 7 and 8. Also the eH'ect of the Tomasch-
McMillan-Anderson oscillations becomes more dramatic
in the vicinity of E & A. Figure 12 exhibits the vari-
ation of the density of states with temperature. The
temperature variation of the energetic position of the
subgap peak relative to b, (T), i.e., the position of the
BCS peak of a homogeneous superconductor, is also in-
dicated in Fig. 13 for two multilayers and one SNS junc-
tion. In the temperature range not too close to T~ this
position shows a slower decrease with temperature than
b, (T), and this effect becomes more pronounced with in-
creasing probability of 6nding quasiparticles in the S
layers, i.e., with increasing cps/epN. This in turn is
consistent with the even slower decrease of the subgap
peak position in the SNS junction (b ~ oo). In HTSC
one has experimentally found energy gaps, normalized to
their T = OK value, considerably above the BCS curve

A(T)/A(T = OK). s4 It remains to be seen whether
this has something to do with the subgap peak tempera-
ture dependence of our simple multilayer model.

The local density of states is given by the one-particle
spectral function in the quasiparticle approximation5'37

1.5

1.0

0.0-
0

FIG. 11. Global densities of states for multilayers with
a = 5 $0, b = 8 (0 and different Fermi-energy ratios.

0
~& 0

0

0
04
0.0 0.5

I

1.0
E/S(T=OA)

1.5 2.0

FIG. 12. Temperature dependence of the global density of
states of a multilayer with a = 5 (0, b = 8(0, and ops = spN.
The triangles mark the energetic positions of the BCS peak
of a homogeneous superconductor.

(24)

where the summation over i = (kp, m) is restricted to 1.0 '

0.8—

0.6—

0.4—

O. Z—

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2

T/T,

FIG. 10. Global densities of states for multilayers with
thick supercouducting layers, a = 8', b = 18/&» and dif-
ferent Fermi-energy ratios.

FIG. 13. Temperature dependence of the energetic position
of the subgap peak, normalized to the position at T = OK,
for a multilayer with a = 5(o, b = 8(0 and cps/spN ——1.0
(+), »«Fs/eFN = 2.0 (o). Also shown is this temperature
dependence for an SNS junction (b -+ oo) with @ps/epN = 1.0
aud N layer thickness a = 6 $0. solid line. For comparison the
BCS temperature dependence of the pair potential of a bulk
superconductor is indicated by the dashed line.
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positive energy states. Combining Eqs. (AS) and (A11)
with the analytically evaluated normalization condition

results in a system of equations from which the coefB-
cients Aq, . . . , As are determined numerically. Thus, the
quasiparticle wave functions u and v required for the nu-
merical computation of the local density of states ac-
cording to Eq. (24) are known completely. Comparison
of Fig. 14 with Fig. 15 shows that the increase in the den-
sity of states at E = 6 associated with the increase of
cps/epN occurs in the superconducting layer 0 ( z ( b/2
indeed, as a consequence of the increasing localization of
quasiparticles in this region. The subgap peak of Fig. 14
decreases as one goes &om N to S, and a small energy
gap opens up in S as can be noted &om the dashed curve
in Fig. 16. Our multilayer densities of states, which take
into account all states, even the ones that hardly feel the
superconducting layers at all because k~ ~ kF~, do not
contain an X-side energy gap as was obtained by Hara,
Ashida, and Nagai for double layers.

In the numerical computation of the energy bands
and densities of states presented so far we have cho-
sen 6/e'ps N ( 2 x 10 . With the view at the
HTSC, the energy bands and densities of states pre-
sented in Figs. 17—20 have been computed for much
larger ratios, i e. , 6/cps = 10 and 6/epN = 1.
In Fig. 17 the band structure of the lowest subband,
i.e., the dependence of the energy on k,FN and the
Bloch wave number e, is shown explicitly. The oscil-
lations of the subband energies as functions of k, FN
shown in Fig. 18 are similar to the oscillations of the
energy eigenvalues of superconducting —semiconducting-
superconducting (S-Sem-S) junctions. 2 'ss Nevertheless,
there are two basic differences in the energy spectra of
multilayers with cps )) cFN and S-Sem-S junctions: The
additional K dependence in the multilayers, indicated by
the shaded areas in Fig. 18, and the discrete, finite ener-
gies of quasiparticles moving parallel to the interface in S-
Sem-S junctions with their different effective masses; "'

these energies approach zero in our multilayers with con-
stant effective masses. The local and the global densities
of states of Figs. 19 and 20 are practically that of a bulk
superconductor for E & A. The reason is that the elec-
tron density is much higher in the S than in the N layers,

p C

FIG. 15. Local density of states of a multilayer with

&ps/spN = 4/3, otherwise same parameters as in Fig. 14.

z=- /a2

z= b/2

0.0 0.5 1.0 1.5 Z. O 2.5 3.0
z/~

FIG. 16. Cuts of p(E, z) in Fig. 14 with the planes
z = —a/2 and z = b/2; pN(E) = local density of states of the
multilayer at T ) Tzz. There is excellent qualitative agree-
ment with the local density of states computed by Tanaka
and Tsukada from a combination of solutions of the BdGE
and the Gorkov equations.

0- 0

FIG. 14. Local density of states p(E, z) of a multilayer with
zps/zpN = 1, otherwise the same parameters as in Fig. 11.

FIG. 17. Lowest-energy band E(k pN, tc) of a multilayer
with a = 4$o, 6 = 1 to, &ps/epN = 100, sps/6 = 100, at
T =OK.
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FIG. 18. Energy bands of the multilayer with the parame-
ters of Fig. 17 (kpN = 0.1 kps).

FIG. 20. Global density of states of the multilayer with the
parameters of Fig. 17.

and the severe mismatch for nearly all but the smallest

k~ inhibits the penetration of the overwhelming majority
of S layer electrons into the N layers. There remains a
nearly constant small density of states for E ( 6, which
is localized in the N layers and drops to zero close to
E = 0. The approach of the multilayer density of states
to the BCS density of states for E & 4 with increasing
ratio sps/sFN can also be noted Rom Fig. 11.

IV. DISCUSSION

We have shown that the energy bands and the densi-
ties of states of multilayers computed with self-consistent
pair potentials on the one hand and their equivalent
square-well representations on the other hand show very
little difference. They exhibit features already known
from SNS junctions, such as the subgap peak and the
Tomasch-McMillan-Anderson oscillations in the density
of states, which are due to off-diagonal (Andreev) scatter-
ing and interference between electron and hole waves. If
the thickness of the superconducting layers exceeds many
coherence lengths one has quasiparticle localization in the
N layers for energies below the maximum value of the
pair potential 6 because of Andreev scattering. With
decreasing S-layer thickness Bloch wave propagation re-
moves this localization. In multilayers where the Fermi

FIG. 19. Local density of states of the multilayer with the
parameters of Fig. 17. The qualitative aspects, namely, a
metalliclike density of states in the N and BCS-like density
of states in the S layers, do not change if eFN is increased up
to about 10K.

energy in the S layers is larger than that in the N layers
one has additional localization in the S and the N lay-
ers because of diagonal (electron-electron and hole-hole)
scattering. In this case the mismatch of the wave vectors
parallel to the interfaces (kp mismatch) inhibits Bloch
wave propagation of S-layer electrons.

Most detailed information on the electronic structure
of multilayers is given by the local densities of states,
such as the ones shown in Figs. 14—16 and 19. They
can be measured experimentally by the method of scan-
ning tunneling microscopy (STM) applied by Tanaka
et al. to the bulk single grain high-T~ superconduc-
tor YBa2Cu307. These authors find periodic alternat-
ing BCS-like and metalliclike STM conductance spec-
tra. The local density of states of Fig. 19 is BCS-like
in the S and metalliclike in the N layers, indeed. This
seems to indicate that the findings from our multilayer
theory (which is based on Fermi-liquid quasiparticles
and Gorkov pairing interaction4o 4i) may have some rel-
evance for the understanding of the electronic structure
of HTSC, despite of the many open questions concerning
the normal and superconducting state of the HTSC, such
as the applicability of Fermi-liquid theory and the nature
of the pairing mechanism.

In other HTSC like Bi2Sr2CaCu208+g two en-

ergy gaps have been measured, ' one of which
has a ratio 26(0) /k&T& considerably larger than
the BC S value. These gaps decrease more slowly
with temperature in temperature ranges not too
close to T~ than the gap of BCS theory. Slow

gap variations with temperature have also been
observed in Yo 5Smo 5Ba2Cu307 g, DyBa2Cu307
Bi2Sr2CaCu208 „,and Bi2Sr2CaCu208. The sub-

gap peak in the global density of states, present in mul-
tilayers and SNS junctions (in addition to the BCS
peak), shows a similar temperature dependence; see Fig.
13. However, in the experiments of Refs. 22 and 23 the
weaker temperature dependence is associated with the
larger of the two gaps, both of which are related to the
anisotropy of Bi2Sr2CaCu208+g.

In our multilayer model anisotropic pairing interac-
tions have not been taken into account. However, we
have seen that in the energy range E ) 4 the density
of states of multilayers with even very thin S layers ap-
proaches that of a bulk BCS superconductor with increas-
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Thus, as in the phenomenon of the subgap peak and
BCS peak, further theoretical and experimental research
will be necessary in order to clarify if these double peaks
are related to the experimentally found two energy gaps
in the above-mentioned HTSC. Appropriate theoretical
methods to be used in future studies of strongly corre-
lated, inhomogeneous superconducting systems are the
stationary and time-dependent density functional
Bogoliubov —de Gennes equations.
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FIG. 21. Isotropic (Ap) and anisotropic (b,2) component of
the pair potential of a bulk superconductor vs the ratio V2/Vp

between anisotropic and isotropic pairing interaction for tvro

different effective mass ratios.
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ing Fermi energy ratio ops/spN because of increasing lo-
calization of quasiparticles in the S layers due to the k~
mismatch. Therefore it might not be completely unjusti-
fied to expect that in the energy range E )6 multilayers
with cFS )& eFN and with anisotropic pairing interactions
exhibit the total density of states of a bulk superconduc-
tor with anisotropic pairing interaction. This density of
states has been computed by us4 taking into account
a Iegendre polynomial superposition of s- and d-wave

pairing interaction, and an anisotropic eR'ective mass
with m = m„&m, . A solution of the appropriately
modified BCS gap equation4~ is found with the ansatz

APPENDIX: QUASIPARTICLE WAVE
FUNCTIONS AND EIGENVALUE EQUATION

In the superconducting layer 0 & z ( 6 the solutions
of the BdGE, Eq. (6), with the periodic square-well pair
potential of Fig. 1 are

I
»n(ks+z) + &2

I I

cos (k, z)
f ())
& ~ ) 8'-)

I'I-& . (r-~
++3

I F+ I

sin (ks z) + A4
I I

cos (k& z),El's '
l,l'+)

(Al)

b, (k) = b, o y b,2(2k, —k —k„), (26) where for E & b,

3: mmmm,
'=

O 959.
mmmm, = O. 5
mmmm, = 0. 1

which consists of the superposition of an isotropic (s-)
wave part b,p and an anisotropic (d-) wave part b,2.31

Ic;, i = z, y, z is the ith component of the unit vector k.
The solutions for Ao and A2 at T = 0.1 T~ are shown in
Fig. 21. The density of states g(E) in the case of strong
anisotropy, Fig. 22, exhibits two peaks, the relative mag-
nitude of which varies with the ratio of the effective mass
components. One is at E 1.6kBT~ and the other one
is above. Thus, anisotropy may indeed account for two
density of states peaks in superconducting multilayers.
However, IA(k = k, )I ) IA(k, = 0)I, whereas the ex-
perimental findings in HTSC indicate the opposite. 2'

and

kp —— k,ps + (2mE/h ) 8

k ps =—(2meps/h —k )'/,
(A2)

(A3)

(1 ~2/E2) 1/2 (A4)

The spinor components are I'+ = (1+ b) I/2. For E ( 6,
with 6' purely imaginary, I'+ and the wave numbers k&
are complex. The quasiparticle wave functions in the
normal layer are given by

I

= A5I
I
si11(k~+2) + As

I I

cos (k~+2)
/u(z)l fll . fll
k~(z)J &Oy

"
&OP

/'01 . (01+ A7
I I

sin (k~z) + As
I I

cos (kN z),
EI)

(A5)

where

kIv = (k2pN + 2mE/h ) /,
kzFN = (2meFN/&' —k, )

'/
(A6)

(AY)

0
0.0 0.5 1.0 1.5 Z. O 2.5 3, 0

The matching and the periodicity conditions result in the
linear homogeneous system of equations

FIG. 22. Densities of states of anisotropic bulk supercon-
ductors with different effective mass ratios and large V2/Vo
normahzed to the density of states in the normal state.

M. A=O

for the vector A of the coefficients Aq, . . . , As with the
8 x 8 matrix
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Here 8 = e'"" and

sl = sin

s2 = sin

S3 = Sln

s4 = sin

kNa,+

kNa,
k+S,
sb

C1 = COS

C2 = COS

C3 = COS

C4 = COS

kNa
kNa,
k+S,
ks& .

(A10)

The requirement DetM = 0 yields the eigenvalue equation of the system, which can be brought in the form

Dp + D18+ D28 + D18 + Dp8 = 0. (A11)

Here Dp, D1, and D2 are subdeterminants or linear combinations of subdeterminants. They depend on the quasipar-
ticle energy E and the absolute value of the wave vector k~ parallel to the interfaces. They have been determined
with the help of the computer algebra program MATHEMATICA:

Dp ——4h'k~+k~k~+ka, (A12)

D1 = —4bktv kafka ka (C1 [c4(b —1) + c3(b+ 1)] + c2 [c3(b 1) + c4(b+ 1)])
+ 2bkNk& k& 81 k& 83(b + 1) + k& a4(b —1) + 2bk&k& k& 82 k& 83(b 1) + ks 84(b + 1)

+ 2bktv k&81 k&a4(b —1) + k&s3(b+ 1) + 2bkNktv a2 k&s4(b+ 1) + k&a3(b 1) (A13)

D2 ——4 b 81828384(k~ k~ + ks ka ) —4bktvkakaa1c2 kas3c4(b+ 1) + kac384(b —1)
—4bktvka ka c1s2 ka 83c4(h —1) + ka c384(h + 1) —4bk3l klvslc2 ka 83c4(b + 1) + ks c384(h 1)
—4bk~ktv c182 ka83c4(b —1) + kac384(h + 1)

+ktvk~c1C2(4k@ks (b —1)+csc4(3b +1) +2s384(1 —b )(ka +ka )j
+ kN a1a2 (2ka ks (b —1) + c3c4(1 —h ) + asa4 ks (1 —b) + ks (1+b) ]
+kiev a1a2(2kska (b —1)+csc4(1—b ) +s384 k& (1+b) +ka (1 —b) )
+ ktvk~ (4ka ka (h + 1) + csc4(b —1) + 283s4(b 1)(ka + ka )) .

Note that the trigonometric functions of Eq. (A10) have generally complex arguments.
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