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Superconductor-insulator transition in two-dimensional dirty boson systems
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Universal properties of the zero-temperature superconductor-insulator transition in two-
dimensional amorphous 6lms are studied by extensive Monte Carlo simulations of bosons in a dis-
ordered medium. We report results for both short-range and long-range Coulomb interactions for
several different points in parameter space. In all cases we observe a transition from a supercon-
ducting phase to an insulating Bose glass phase. From Bnite-size scaling of our Monte Carlo data
we determine the universal conductivity e' and the critical exponents at the transition. The result
o' = (0.55+0.06)(2e) /h for bosons with long-range Coulomb interaction is roughly consistent with
experiments reported so far. We also find o' = (0.14 + 0.03)(2e) /h for bosons with short-range
interactions.

I. INTRODUCTION

From the work of Abrahams, Anderson, Licciardello,
and Ramakrishnan it is known that no true metallic be-
havior can be observed for noninteracting electrons at
T = 0 in two dimensions, since all states will be localized
by arbitrarily weak disorder. %hen repulsive interactions
are turned on the situation is less clear but the general
belief 2 is that a metallic phase still should be absent at
T = 0 in the presence of disorder, although we know
of no rigorous proof of this. However, in the presence
of attractive interactions, a superconducting phase is ex-
pected, both at T = 0 and finite T, even for a finite
amount of disorder, because disorder is irrelevant at the
finite-temperature transition, which is of the Kosterlitz-
Thouless type discussed below. The onset of supercon-
ductivity at T = 0 is presumed then, in d = 2, to be
directly &om the insulating phase with no intervening
metallic phase. One should therefore in principle be able
to observe a direct insulator-superconductor transition
at zero temperature in two dimensions as a function of
disorder and/or interaction strength. The main topic of
this paper is to analyze such a transition and extract its
universal features.

Dimensionality and divergent length scales play an im-
portant role in continuous phase transitions. The di-
verging correlation length scale implies that many micro-
scopic details are irrelevant. Furthermore physical quan-
tities containing dimensions of length to some nonzero
power typically diverge or vanish at the critical point.
Two dimensions (2D) is a special case in that the conduc-
tivity contains no length scale units; i.e., the conductance

per square is the same as the conductivity. Hence, right
at the T = 0 quantum critical point, the conductivity
is not only finite and nonzero but also universal, ' even
though it is zero in the insulating phase and infinite in
the superconducting phase. This view divers &om that
of previous work which parametrized the transition in
terms of the normal state resistivity. The calculation of
this universal conductivity is one of the main goals of the
present paper. A short account on some of our results
has already been published.

A schematic phase diagram is shown in Fig. 1 as a
function of temperature, T, and disorder, A. At zero
temperature, a critical amount of disorder, E„separates
the superconducting from the insulating phase. Even at
finite temperatures the superconducting phase persists
whereas a truly insulating phase only exists at T = 0,
because, at finite T, electrons can be inelastically scat-
tered &om one localized state to another, and hence con-
duct. This insulating phase, consisting of localized elec-
tron pairs, can then be described, close to the critical
point, as a Bose-condensed fluid of vortices. The univer-
sality class of the transition should therefore be that of
the superconductor to Bose glass.

Let us first discuss the nature of the transition at finite
temperatures indicated by the solid line in Fig. 1. The
finite-temperature transition should have many similari-
ties with the 2D XY transition at which logarithmically
interacting vortices unbind. However, Pearl showed
that in a superconducting film vortex pairs only have
logarithmic interactions out to a distance A~ = 2A /d
beyond which the interaction energy falls ofF as 1/r
Here A is the bulk penetration depth, d the film thick-
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FIG. 1. Sketch of the general phase diagram for thin-61m
superconductors as a function of disorder, 4, and tempera-
ture, T. The dashed line, T,o, indicates the mean-6eld onset
temperature where Cooper pairs start to form. At T = 0 an
insulating phase appears (solid line) and a transition from a
superconductor to an insulator takes place at a critical value
of the disorder 4 .

ness, and A~ the screening length for magnetic fields.
Due to this cutoff, the energy required to create a vor-
tex is always finite and no sharp transition should exist.
However, according to the Kosterlitz-Thouless theory,
the value of A~(T, ) is given exactly by~2 ~4 A~(T, ) =
Po/(16m k~T, ), where Po

——hc/2e is the fiux quantum.
Numerically A~(T, ) = 2/T, where T, is in kelvin and
A~(T, ) is in centimeters. Thus, A~ is so large at T, that
rounding of the transition due to the presence of free
vortices below T, is almost certainly unobservable. In
fact, rounding due to finite-size effects is probably more
important.

The vortex unbinding transition at T, is driven by fluc-
tuations in the phase of the superconducting order pa-
rameter. At a higher temperature, T,o, fluctuations in
the amplitude of the order parameter will become im-
portant and a crossover to a regime dominated by para-
conductivity will occur. T,o is indicated by the dashed
line in Fig. 1. For T, & T (& T,o the presence of free
vortices destroys the characteristic global properties of
the superconducting phase. Nevertheless, a local order
parameter still exists between T, and T,o. The pres-
ence of &ee vortices leads to a finite conductivity of the
form~2 o.„0.37o„((/(,)2, where a„ is the conductivity
of the normal state electrons, (, the core size of a vortex,
and (, a typical distance between free vortices, is the
Kosterlitz- Thouless correlation length which diverges
exponentially at T . The exponential tail in the resistiv-
ity caused by the presence of &ee vortices between T and
T,o has been observed experimentally ' in supercon-
ducting films with high normal state resistivity. In these
experiments the "mean field onset temperature" T 0 is
determined by fitting the resistance to an Aslamazov-
Larkin form, and T,o —T is found to be of the order
of half a kelvin. In the dirty limit, Beasley et al. derive
the relationship v = (T,o —T,)/T, 0.17e2/cr 5, and so,
for films with a relatively high sheet resistance, T can

be appreciable. For a review of the finite-temperature
transition we refer the reader to Ref. 19. More recently
some evidence for a vortex-antivortex unbinding transi-
tion in superconducting niobium films with R~ ——122 0
has been found. However, the difference between T, and
T 0 is very small in the clean limit which makes the
Kosterlitz-Thouless behavior diKcult to observe.

The superconducting order parameter is a complex
scalar, described by both a magnitude and a phase.
Our key basic assumption is that universal properties at
superconductor-insulator transition are determined only
by phase fluctuations, as outlined above, and that the
magnitude of the order parameter, and therefore of the
gap in the fermionic energy spectrum, remains finite at
the critical point. We thus assume that when disorder
drives T, to zero, T,o remains nonzero. If the transition is
approached from the insulating side, a local order param-
eter appears before the onset of global phase coherence at
6,. Implicit in our assumption is that Cooper pairs, and
thus a gap to fermionic excitations, persists into the insu-
lating phase, even though superconductivity is destroyed
by phase fluctuations. On the scale of a diverging phase-
correlation length, (, the individual Cooper pairs will

look like point particles. The fermionic degrees of free-
dom should therefore be highly suppressed at the critical
point and an approximate description in terms of point-
like bosons should be valid. It is possible that strong
disorder destroys the local fermionic gap at a finite den-

sity of points, but, provided that the Fermi degrees of
freedom are localized, they may still be dynamically ir-
relevant and our model applicable.

Since we shall be concerned with the transition at
4 = A„T = 0, vortices in the system will not be excited
thermally, but there will be vortices present created by
quantum fluctuations. We therefore need to treat the
vortices as quantum mechanical objects and one might
expect the transition at 6, to be described by a (2+1)D
XY model, where the extra dimension arises because
we are considering a T=O quantum phase transition; see,
e.g. , Ref. 10. However, as we shall see in Sec. II, al-

though the physics is indeed described by a (2+1)D sys-

tem, its symmetry is, in general, not that of the XY
model. It is also worth noting that the vortex mobility,
(2e /vrh )( R~, is significantly augmented in dirty su-

perconducting films. Hence, at 6, the vortices should
be seen as fairly light objects that move rather freely. At
still higher disorder the Bose glass phase should cross over
into a Fermi glass when the individual electrons consti-
tuting the bosons become localized. This behavior may
have already been observed in a magnetic field.

Recent experiments seem to confirm that a di-
rect insulator-superconductor transition indeed does take
place at zero temperature in many materials. Haviland
et al. and Liu et al. have performed experiments on
Bi films grown in situ. The experimental technique is
described in Ref. 27. These films are believed to be truly
amorphous on an atomic scale. The authors report a
critical dc resistivity, Rz, very close to Rg, where

Rg = 6/4e = 6453 0 .

Furthermore, experiments performed on DyBaCuO
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films2s 2s and NdCeCuO (Ref. 30) show clear evi-
dence for a direct superconductor-insulator transition.
The reported critical resistivity seems in this case to
be somewhat higher, around 10 kO or 1.5Rg. ' Iee
and Ketterson have presented results from experiments
on MoC films again showing very clear evidence for
a superconductor-insulator transition occurring at zero
temperature, but with R& slightly lower, in the range
2.8—3.5 kO 0.5Rq. Furthermore, experiments per-
formed on Josephson junction arrays, s *33 which are be-
lieved to be in the same universality class, also seem to
support the picture of a superconductor-insulator tran-
sition in agreement with theory. The existence of
a superconductor-insulator transition in two-dimensional
61ms at zero temperature thus seems well established but
evidence for the universality of the critical resistivity re-
mains weak. It is not clear, however, whether all the
experiments are in the critical region. In order to es-
tablish that a given experiment is actually probing the
critical regime, one must show scaling of the resistiv-
ity data. This has been done successfully by Hebard
and Paalanen ' for the field-tuged transition and par-
tially successfully by the Minnesota group. However, it
is likely that most measurements to date have failed to
probe the critical regime, and further experiments at even
lower temperatures are expected to give better agreement
among the different estimates of R&.

The situation concerning the relevance of a bosonic
picture seems less clear. Hebard and Paalanen ' have
reported results on amorphous InO films in a magnetic
field, supporting the existence of Cooper pairs in the in-
sulating phase. For the B = 0 transition, Hebard and
Paalanen have presented clear transport evidence that
T,o remains 6nite as T, is driven to zero. On the other
hand, direct tunneling measurements by Dynes et al.
and Valles et al.42 on homogeneously disordered Pb 61ms
shows that the gap goes to zero at the critical point.
There seems, however, to be a general agreement that a
local superconducting order parameter exists prior to the
transition in granular 6lms and in Josephson junction ar-
rays where the individual grains become superconducting
above T, . It is possible that tunneling experiments tend
to emphasize regions of the samples containing quasilo-
calized fermion states below the gap which are necessary
to achieve tunneling.

A number of theoretical and numerical studies of
the superconductor-insulator transition have been per-
formed. Gold studied the impurity-induced insulat-
ing transition in the interacting Bose gas. Giamarchi
and Schulz considered the one-dimensional electron gas
with attractive interactions in the presence of disorder.
They found a transition to a localized phase in the same
universality class as that of repulsively interacting bosons
in a random potential. This lends strong support to our
assumption of the dirty boson universality class in the 2D
case. Fisher et al. ' considered the boson Hubbard
model and, through a scaling analysis, derived equations
for the exponents governing the superconductor-insulator
transition as well as the phase diagram for dirty bosons.
A renormalization group approach was taken by Weich-
man et al. who performed a double-c expansion for

the dirty boson problem. Following the initial sugges-
tion of a Bose glass phase in the disordered system and a
Mott insulator in the clean system, Batrouni et ut. and
Krauth and Trivedi5o showed, by quantum Monte Carlo
simulations, the existence of Mott insulating phases in
an interacting boson system without disorder, character-
ized by the exponents predicted by Fisher et al. Subse-
quently, these authors considered the disordered case and
evidence for a Bose glass was found. A Bose glass
phase was also observed in a real space renormalization
group study by Singh and Rokhsar. The universal con-
ductivity was first calculated by a 1/N expansion and
Monte Carlo methods for the (2+1)D XY model by Cha
et al. and Girvin et al. ' The universal conductivity
for disordered bosons was then calculated by Runge by
exact diagonalization techniques on small lattices. Uni-
versal properties for a boson system in the presence of
disorder both with and without long-range interactions
were calculated by S@rensen et al. by Monte Carl+
simulations, using a path integral representation which,
effectively, only includes phase fluctuations in the Bose
6eld. A universal conductivity was also recently found by
Kampf and Zimanyi in the boson Hubbard model in-
cluding both phase and amplitude fluctuations. Two re-
cent works have recently been published after the present
work was finished. Batrouni et al. have calculated the
universal conductivity by quantum Monte Carlo simula-
tions directly on the boson Hubbard model, and Makivic
et al. have calculated the exponents and the universal
conductivity using a hard-core boson model. The results
of these last two papers differ from ours, and we shall
comment on this in Sec. VIII.

Here we shall consider two forms of interaction between
the bosons: short-range repulsive interaction and long-
range Coulomb interaction. The model with short-range
interactions is relevant to experiments on the onset of
superfluidity in He 61ms. However, our present results
for the zero-temperature transition in 2D are not directly
applicable to He experiments in porous media such as Vy-
cor or xerogel, 6 '6 since these experiments are mainly
concerned with the 3D transition at finite temperatures.
As stated above, the model with Coulomb interactions
is expected to be in the correct universality class to de-
scribe the superconductor-insulator transition. However,
the model and many of the results presented in this paper
are applicable to other systems too. The world lines of
the dirty boson model describe a gas of stringlike objects
in a random medium. In addition to the superconductor-
insulator transition this model may also apply to other
problems such as vortex lines in high-temperature su-
perconductors with correlated pinning centers ' and
polymer solutions. Our results for universa/ quantities
might also be relevant for these problems.

The organization of the paper is as follows. In Sec. II
we shall construct a form of the boson Hubbard model,
including disorder and interactions, which is suitable for
Monte Carlo simulations. Here we shall assume, as dis-
cussed above, that only bosonic degrees of freedom, i.e.,
complex order parameter fluctuations, are relevant at the
superconductor-insulator transition. In addition, to fur-
ther simplify the numerical work, we efFectively include
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only phase 8uctuations of the bosons, amplitude fluctu-
ations being neglected. Section III describes the scaling
theory of the quantities that we are interested in. We
discuss, in Sec. IV, how we determine these quantities
in the simulation, and we also treat the finite-size scal-
ing techniques needed to extrapolate our results to infi-
nite size. Section V describes our Monte Carlo methods,
while Sec. VI presents our results for short-range inter-
actions and disorder, relevant to experiments on helium
Glms. In Sec. VII long-range Coulomb interactions are
included along with disorder. We believe that this model
contains all ingredients necessary to make it relevant to
experiments on the superconductor-insulator transition,
i.e., that it is in the correct universality class. Our results
are discussed in Sec. VIII.

II. THE MODEL

&b~ = ~o+&i, (2.1)

In this section we introduce our basic model and via
a sequence of transformations arrive at a form suit-
able for Monte Carlo simulation. As argued above it
should be possible to describe the universal features of
the superconductor-insulator transition in terms of boson
physics. In this section we shall argue that the relevant
starting point is the boson Hubbard model with a ran-
dom local chemical potential (site energy). If only phase
Huctuations are relevant we can map this model onto a
dual Villain type model. We shall see that only in the
absence of disorder and when there is an integer number
of bosons per site does this model belong to the same
universality class as the (2+1)D XY model.

In order to model the superconductor-insulator transi-
tion in terms of bosons, we must include an on-site repul-
sive interaction; otherwise all bosons would collapse into
the lowest lying, highly localized state. The on-site repul-
sion term is the simplest possible way to model Coulomb
repulsion. The correct treatment of the long-range part
of the interaction will be discussed below. For simplicity
we shall take an underlying square lattice of spatial size
N = L x L. Changes in the symmetry of the lattice are
not expected to modify the critical behavior of the model.
We can then write down the boson Hubbard model the
in the presence of disorder:

unless we fix the boson density at an integer value, no.
l,et us consider this case first. If we set 4, = ~4, ~e* " and
integTate out amplitude Huctuations, the boson Hubbard
model, Eq. (2.2), becomes a model of coupled Josephson
junctions, (see also the Appendix),

Hgg = —) n, —) tcos(8, —8, ),
{r,r')

(2.3)

H, = —) ~

—
~

—) t cos(8, —8,~ ) . (2.4)
U . t'1

2 - (i ct8, )
)

Let us write the partition function corresponding to
Hq, as

Z = Tr exp[ —P(T + V)],

where the kinetic energy of the rotors is

(2.5)

U). ct

2 t902r
(2.6)

(which corresponds to the potential energy of the bosons)
and the potential energy of the rotors is

V = —) tcos(8, —8,i) .
(r,r')

(2.7)

We evaluate the trace in the partition function by writ-

ing a path integral over M time slices w~ between w = 0
and ~ = P:

Z = Tr (exp[—P(T + V)]/M)

lim Tr (exp[ —A~ T] exp[—A~V] j (2.8)

where, in this representation, n„which denotes the de-
viation of the boson number &om no, runs &om —oo to
oo and so Eq. (2.3) can only be quantitatively compared
with the Hubbard model, Eq. (2.2), when np is very large,
but is expected to be in the same universality class for
arbitrary integer np. Note that t in Eq. (2.3) is 2np
times the parameter t in Eq. (2.2). The phase operator,

0, is canonically conjugate to n„and so this version of
the boson Hubbard model can be written in the angle
representation as the quantum rotor model

where

Hp ———) n, —) (p+ v, —zt)n„

where hv. is imaginary time and

A~ = P/M (2.9)

H, = t ) (etC, +C,—O,', ).
(r,r')

(2.2)

Here U is the on-site repulsion, p is the chemical poten-
tial, z the number of nearest neighbors, and n, represents
the random on-site potential varying uniformly in space
between —A and A. As usual, n, = @t4, is the num-
ber operator on site r. The hopping strength is given
by t, and (r, r') denotes summation over pairs of nearest
neighbors, each pair counted once.

In the absence of disorder there is no insulating phase

j=0
{(8(~,+,)) I

exp[ —sr T]

x exp[—b 7.V])(8(~,))), (2.1O)

where ~(8(7~.))) is a coherent state in which site r has

phase 8, (~i) at time 7~ and the trace is enforced by pe-

is the width of one time slice. Note that the limit A~ ~ 0
must be taken to correctly represent the underlying quan-
tum mechanics problem. Equation (2.8) can be rewritten
by inserting complete sets of states
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riodic boundary conditions

(8(rM)) = (8(«)) .

The coherent states are eigenstates of the potential, and so

(2.11)

exp( +ctt) (e(ct))) = exp & tt te) cee lp '(ct ) p (et)) t (tt(ct)))
(r,r')

(2.12)

M —1

Z= B8
~ 5 ~

j=O
exp ( K ) cos[8, (r~) —8, (r~)] ) T~,

(r,r')

where the sum is over all nearest neighbor spatial pairs,
and hence Eq. (2.10) becomes

x J, rj O, rj (2.18)

I

this complete set of states, we have

T, = ) {p,(ctet) J;(ct))exp( — (J;(ct)) )

2.13
and thus

where

and

~& ——((8(~&+i))le "l(8(~&)))

K =ter .

(2.14)

(2.1s)

M —1

Z ~ 178 exp / K~ cos Hri rj —Or rj
(J) (r,r') j=O

T M —1

x exp &
— ) ) [J, (r;)]' &

r g=O

Since the kinetic energies on different sites commute, we
can consider each site separately:

M —x

xexp& i) ) J, (7;) [8,(r, ) —8, (~,+i)] ) .
r j=O

~ ~

T& 8r (7j+i) exp
ArU 82

2 (982
p, (T't) ) . (2.16) (2.19)

Let J, (r~) be the integer-valued angular momentum at
r at time rj. The corresponding state has the wave func-
tion

(2.17)

which is an eigenfunction of the kinetic energy. Inserting
I

We can now proceed in two possible ways. We can either
integrate out the angular variables (8) to obtain a sta-
tistical mechanics problem in the integer variables (J),
or we can sum over the (J) to obtain a classical (2+1)-
dimensional XY model. Let us start with the latter.

Because b,r is small, the sum over the fJ) is slowly
convergent. We may remedy this by using the Poisson
summation formula

OQ +~
P(8) ) r),~UJ /2 iJ8— )

J m= —oo

2' Jm —b,rU J /2 i Je

(g )
ArU (2.20)

P (8) K cos(8) (2.21)

This periodic sequence of narrow Gaussians is the Villain
approximation to the periodic function Z = 'VOexp $ K(i i) cos Oi —Oi

, {l,l')
(2.23)

1
UAr (2.22)

where we have dropped an irrelevant constant prefacter,
and

Ki, i ——K (2.24)

where the sum is now over all near-neighbor bonds in
both the space and time directions, i.e. 1 = (x, y, r). For
spatial bonds,

Using this result in Eq. (2.19) we finally arrive at the
partition function of the anisotropic (2+1)D classical X'Y'

model,

given by Eq. (2.1S), while for temporal bonds

(2.2s)
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given by Eq. (2.22). It is implicitly assumed here that
the difference between the Villain action and the cosine
term (which is small for small 3 7 ) is in fact irrelevant in
the renormalization group sense.

Note that we need to take the limit Av m 0 which
implies K m 0 and K ~ oo such that the geometric
mean

K=(KK) i (2.26)

is finite. Universality properties are unaffected if we
rescale space and time so that we obtain finally an
isotronic (2+1)D XY model

In other words, the current should be divergenceless at
every site in space and time; i.e. , it should obey a conti-
nuity equation

B„J =0. (2.31)

2
Z = ) exp &

——) ) K (Jt", ~) ), I2.82)

If Jl*
l

lies on the bond between sites (x, y, r) and(a,y, ~)

(x + 1, y, T), then it is convenient to define Jl»y~~—J~ i y ~, etc. The divergence constraint is then im-
posed at each site by requiring that Q„Jl", l

——0, where
v runs over +z, ky, k~. %'e thus obtain

I

Z = 278exp & K cos Hi —0~

(& &')

(2.27)

We are interested in the behavior of the boson Hubbard
model at T = 0, which means taking the number of
time slices, M, to infinity. The coupling constant, K,
then controls the quantum rather than thermal Quctua-
tions 6 '2~

Allowing for a noninteger boson density and/or includ-
ing the random potential in the boson Hubbard model,
Eq. (2.2), makes the model more realistic but complicates
the situation by breaking the particle-hole symmetry of
the bosons. This corresponds to broken time-reversal
symmetry for the quantum rotors (since particle number
is represented by angular momentum) and hence leads to
complex weights in the corresponding classical statistical
mechanical problem which is no longer in the univer-
sality class of the (2+1)D XY model. The difficulty of
complex weights can be avoided by considering the alter-
native approach to Eq. (2.19) in which we integrate out
the {0)variables. Let us do this first for the case of in-
teger boson density and no disorder. Adding the effects
of disorder and noninteger density will then be easy and
will lead to a real action.

We first reexpress the cosine in Eq. (2.19) as the best
Villain approximation to it, i.e. ,

where the sum is over all integer values of the J from
—oo to oo, the prime indicates the constraint that 3 be
everywhere divergenceless, the couplings are

K = UA7. , (2.33)

and K& ——K given by Eq. (2.29). Note that in taking
the quantum limit, 67. ~ 0, the spatial couplings K
and Ky diverge, while the coupling in the time direction,

K, tends to zero. This is the opposite of what we found
in the phase representation; see Eqs. (2.15) and (2.22).

We interpret J as the "relativistic" three-vector cur-
rent with (J,J") being the spatial current and J being
the particle density. Consider the divergenceless current
configuration represented by the closed loop in the z-~
plane shown in Fig. 2. The physical interpretation of
this is that at time 7i a boson hops from position xq
to position x2 creating an instantaneous burst of spatial
current. This represents a tunneling event in which we
assume the barrier is high enough that the tunneling time
is small compared to the separation between time slices
in our lattice and hence the event can be treated as in-
stantaneous. This approximation affects the ultraviolet

exp(K cos 8)
1 2exp — 0 —2' m

2K

(2.28)

To determine K we require that the range of the func-
tions on the two sides of Eq. (2.28) (as 8 varies from 0
to m') be the same (the precise angular dependence of the
two sides will be different but this is presumably irrele-
vant). Using the Poisson summation formula, Eq. (2.20)
one finds, for AT m 0,

Time

—K /2
2

(2.29)
Xy

J=(J,J",J ) . (2.30)

where K is given by Eq. (2.15). Inserting Eq. (2.28) into
Eq. (2.19) and Fourier transforming one can carry out
the (8) integrations exactly. Their effect is to enforce
conservation of integer-valued currents defined by

Space

FIG. 2. Typical closed loop of integer-value currents on the
links of the space-time lattice. A particle hops from xq to x2
at time &I, diffuses until time 72 when it annihilates the hole
it left behind.
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details of the calculation but is irrelevant to the universal
zero-&equency behavior. The two vertical lines represent
timelike components of the current indicating that there
is now a missing boson at xq and an excess of one boson
at x2. After some additional random motion, a boson
hops back to the original site, leaving the system in the
vacuum state at time v2.

Notice that for this special case of particle-hole sym-
metry, the action cost is iadependent of the sign of J .
Recall also that the fact that any integer value of J
is allowed (including large negative ones) is due to the
fact that J represents the deviation of the boson num-
ber from its mean value (which is taken to be large and
positive).

Our interpretation of the current is con6rmed by con-
sideration of the efFect of an external vector potential
which modi6es the potential energy of the quantum ro-
tors to

Z=) exp —) ) (J~, ~)
lJ} I (r,~) p=~,y, ~

We note that

(
. blnZ

J(", )
—— i „,v=z,—y,

(r,v)

(2.35)

(2.36)

which means that J," must thus be the full, physical,
gauge-invariant current, not simply the paramagnetic
piece of the current.

From our interpretation that J is the particle density
it is now straightforward to include both disorder and a
value of the chemical potential which gives a noninteger
density, and one finds (see the Appendix for details)

—ET(IJ, + Vx, )1( ) (2.37)

We now assume, as in Eq. (2.23), that the universality
class is unchanged if we make the couplings isotropic, i.e.,

I
Z = ) exp ( ——) —J(, )

—(p, + v, )1(, )
( )

(2.38)

where we have used Eq. (2.33),

V = t ) —) cos (8(, )
—8(,+„)+ A,"), (2.34)

(r,~) v=x, y

where A," stands for the line integral of the vector poten-
tial along the link &om site r to its neighbor in the vth
direction. Making this substitution modifies Eq. (2.32)
with the result

PP=
U
Vrvr=U' (2.39)

and K is a dimensionless coupling constant which has
to be adjusted to bring the system to the critical point.
Varying K corresponds to changing the ratio t/U in the
boson Hubbard model, Eq. (2.2), keeping p/U and b, /U
6xed. Noting the invariance of the action under

p, +v

;J +1,
; @+v+1, (2.40)

(2.41)

Evidently, when v, = 0, integer values of p, can be ab-
sorbed into the de6nition of J(, „), and so the model
reduces to the (2+1)D Villain model, which is in the
same universality class as the (2+1)D XY model. These
points are, however, just special multicritical points and
the generic behavior is not that of the KY model.

We have already noted that the time component, J(,
of the link variables corresponds to the particle density
or boson occupation number. Long-range Coulomb forces
can then be introduced in the following way:

I= av+Hc,
Q 2

IIc = ) .).(J(,, )
—zzo) G(r —r')

(r,r')

x(J(,, )
—no) .

(2.42)

(2.43)

Here e* is the effective boson charge, no, which repre-

we take for simplicity the "largest possible" disorder by
choosing P, = 1/2, b, :—b, /U = 1/2. The average parti-
cle density is then 1/2. Note that this choice of paraine-
ters has a statistical particle-hole symmetry since, upon
ensemble averaging, the Hamiltonian is invariant under
the transformation J ~ —J, although the presence of
the random potential destroys microscopic particle-hole
symmetry. We have argued above that lack of micro-
scopic particle-hole symmetry changes the universality
class from that of the (2+1)D XY model, and so one
can ask whether having statistical particle-hole symme-
try changes the universality class &om that of the generic
Bose glass to superfluid transition. At least in one dimen-
sion, the answer is no, as shown by Fisher, and we shall
assume that the same is true in d = 2.

We have thus arrived at a representation of the orig-
inal quantum problem, involving integer link variables.
Noting that the J represent the boson density, it can
be thought of as an imaginary time "world-line" path-
integral representation of the problem, simplified to the
extent that it treats just the phase fluctuations of the
underlying Hamiltonian.

The partition function, Eq. (2.38) can be written in
terms of an efFective (2+1)D classical Hamiltonian or ac-
tion, given by



12 122 WALLIN, SQRENSEN, GIRVIN, AND YOUNG

sents the compensating background charge, is the aver-
age particle density, and G is the Coulomb interaction. In
our simulations with long-range interactions, the particle
number was always kept constant, as opposed to the case
where only short-range interactions were present where
we always allowed the particle number to Quctuate. Cal-
culations of the Coulomb interaction, G(r) must allow for
the finite lattice size and periodic boundary conditions.
We do this by the usual Ewald method. ' Another way
is by a lattice Green's function

~, related to the lattice spacing AAT, in the time direc-
tion by a = 2x/(hb, w), and so we can relate ( more
precisely to ( as

l(l'
~, (6)

(3.3)

where b is a microscopic length of order the lattice spac-
ing, a.

=2K cos(k r)Gr 2.44
L ~ [4 —2cos(k )

—2cos(k„)j )

where k = (2vr/L)(n, n„), with n, n„= 0, . . . , I —1.
The term with k = 0 is removed to ensure charge neu-
trality. For large distances and large lattices the Ewald
sum and the lattice Green's function become almost iden-
tical and approach 1/r. However, close to the origin the
two forms are somewhat different. If the critical proper-
ties are universal, they should not depend on the specific
form of the potential close to the origin. We use this as
a test of our computer codes and of the universality of
our results. Indeed as we shall see the two forms yield
equivalent results.

III. SCALING THEORY

In order to better understand the universal features of
the phase transition it is very useful to consider the scal-
ing behavior of various physical quantities in the regime
of the diverging correlation length. Such considerations
not only tell us why the conductivity is universal but will

tell us how to analyze experimental and Monte Carlo data
to determine that one is actually in the critical (scaling)
regime.

Prom now on, we shall denote the number of time slices
by L, rather than M, and so the space-time lattice is
of size L x L x L . Periodic boundary conditions will be
applied. Note that the ground state energy density of the
original 2D quantum problem is related to the free energy
density of the (2+1)D equivalent classical problem since

A. StifFness

First we discuss the scaling theory describing the sin-

gular behavior of the &ee energy density near the critical
point. From Eq. (3.1) one sees that f/h has dimensions
of inverse (length" x time). Hyperscaling"s states that
multiplying the singular part of this free energy density,

f„by the (2+1)D correlation volume, (~(, one obtains
a constant, A, say, of order unity as the critical point is

approached, i.e. ,

(3.4)

7'0 = 8/(aL) . (3.5)

In this section, we will frequently give results for arbi-
trary space dimension, d, even though we are ultimately
interested in the case of d = 2. One can consider A

to be a critical amplitude for a dimensiontess quantity
(or combination of quantities) which is finite at critical-
ity. According to two-scale factor universality, " such
quantities are not only constants, but are also universal.

We next discuss the scaling of the extra free energy cost
to impose a twist on the phase of the condensate. We will

use this to locate the critical point, K„ to high accuracy.
The extra free energy density is related to the super-
fIuid stiffness, also called the helicity modulus, which
is proportional to the superQuid density of the system. A
uniform twist in the phase of the order parameter can be
introduced by applying a twist of size 0 at the bound-

ary, in (say) the z direction. This will then give rise to a
phase gradient

(3.1)f = —lirn ln Z = ——ln Tre
kBT ~ H-

T-+0 aL 2

The (zero-&equency) stiffness, p, is then defined
by81, 82,54

where H is given by Eq. (2.42), V = (aL) L Awh is
the "volume" of the (2+1)D space-time system, with a
the lattice spacing in the spatial directions, and hA~ the
lattice spacing in the (imaginary) time direction.

Since space and time are not equivalent, we have two
correlation "lengths, " ( in the space direction and ( in
the time direction. These two correlation lengths will
diverge with different exponents at the critical point and
we can de6ne the dynamical exponent, z, through the
relation

(3.2)

where b measures the distance from the critical point, A,
i.e. , b = (K —K )/K, . There is a microscopic frequency,

(3.6)

and so

(aL)z 02f.
h 002 (3.7)

(3-8)

where t is another universal constant. Consequently,

r- —(8+z—2)
p (3-9)

Since 0 is dimensionless, p has dimensions of inverse

(length x time). Hence using hyperscaling and two-

scale factor universality we obtain
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which is a generalization of the Josephson scaling relation
for the classical transition, p, = (m/h)2'
The difference is that d is replaced by d+ z for the quan-
tum transition. This replacement also holds for other hy-
perscaling relations (i.e., those scaling relations involving
the space dimensionality). bf = r.—(B 0)'; (3.15)

where n is the boson density and p the chemical poten-
tial. We can write an expression equivalent to Eq. (3.6)
for the compressibility by noting that the Josephson
relation (for imaginary time) is hp = 88/Bv, and so

B. Conductivity

We can extend the notion of a superfluid stiffness, p,
to a frequency-dependent stiÃness, p(iu„), where ur„=
2z'nk~T/5 is the Matsubara frequency. The conductivity
is then related to p(iur„) by the Kubo formula 4

i.e., we apply a twist in the (imaginary) tirue direction
instead of along one of the space directions. Note that it
is the total compressibility which enters this expression.
Following the arguments that led to Eqs. (3.8) and (3.9)
one 6nds

0(iur„) = 2vrGq
p(i(u„)

(3.10)
fb)—(( = —(~,

~

—
i

=const, (3.16)

where Gq = Rq, with Rq defined in Eq. (1.1), is the
quantum of conductance. The quantity p defined in the
previous section is given by p = p(0). We emphasize
that p is the stiH'ness and not the resistivity. Close to
the critical point we can generalize Eq. (3.8) to finite
&equency by the following scaling assumption:

p(i~-) = (' '(. 'p(~(-) . (3.ii)
Since the argument of the scaling function p is dimen-
sionless, and so has no nonuniversal metric factors asso-
ciated with it, the entire scaling function p(x) is univer-
sal. Clearly, p(0) = C, the same universal constant that
appears in Eq. (3.8). Furthermore, since p(iur„) is finite
at 6nite &equency even at the critical point, one must
have, for large x, the asymptotic behavior

and so

(-(d-z) (3.17)

~(k) k (3.is)

Fisher et al. have argued that z = d at the Bose glass
to superfluid transition and so the compressibility is 6-
nite at criticality. We shall see that our numerical results
support this. Note that even in this case, the compress-
ibility is nonuniversal at criticality, because the nonuni-
versal factors b and u, appear in Eq. (3.16). One can also
determine the form of the wave-vector-dependent com-
pressibility at criticality, following the scaling arguments
that we used above to determine the conductivity. One
6nds

(d+z —2) /z (3.12)

where D is again universal, in order that the dependence
on $ and ( cancels at criticality. Substituting this into
Eq. (3.10) and noting Eq. (3.3), one has, at criticality,

/' ~ ) (d-2)/z
o' = liin cr(i(u„) = 2mDoqb

~

—
~

. (3.13)
ca)~ ~0

Immediately we see that when d = 2 all microscopic
lengths and &equencies drop out, and so the dc conduc-
tivity is universal at the critical point, given only by
fundamental constants and the universal dimensionless
number D. The universality of the dc conductivity is
analogous to the universal jump in (5/m) p, /k~T, at
the finite-temperature Kosterlitz transition. In fact this
quantity corresponds, essentially, to Eq. (3.10) with Ru
replaced by k~T .

Strictly speaking Eq. (3.13) only refers to the singular
part of the conductivity. However, since we approach an
insulating phase where the conductivity must be zero, the
conductivity cannot have an analytic part at the critical
point.

C. Compressibility

The compressibility, e, is defined by

IV. QUANTITIES OF INTEREST AND
FINITE-SIZE SCALING

In this section we show how to calculate the quantities
of interest &om the Monte Carlo simulations, and we
discuss the finite-size scaling techniques which we will
need. Having demonstrated in the last section that the
lattice spacings, a and AALU, do not enter expressions
for universal quantities, such as the conductivity at the
critical point, we set these lattice spacings (and li) to
unity &om now on.

To perform the quenched disorder averages it is neces-
sary to first do a "thermal" average over the J variables,
denoted by (. ), for a fixed realization of the quenched
disorder potential, and then average observables over the
quenched disorder v„which we indicate by [.. .

j

A. StifFness

To calculate the uniform stiffness, p(0), note from
Eq. (2.34) that a uniform twist in the x direction becomes
equivalent to considering the system in the presence of
an external vector potential of the form

Bn Bf
Op, Op

A, =BOb
(3.i4)

From Eqs. (2.34), (3.7), and (4.1) one finds that

(4.1)
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(4.2)

Near the critical point, the correlation length is much
larger than the size of the system, and so finite-size effects
will be important. We therefore need to derive a finite-
size scaling form for the stiffness. The basic finite-size
scaling hypothesis is that the size of the system only ap-
pears in the ratio L/g, and, for quantum problems, the
corresponding ratio in the time direction, L /( . Thus
we have

our model. The superfIuid stiffness arises due to macro-
scopic condensation of ring exchanges of global currents
carrying nonzero winding number, and the critical point
is where the gain in free energy from the "entropy" of the
ring exchanges matches their energy cost. In the presence
of macroscopic ring exchanges which wind around the
sample, the free energy is sensitive to Aharonov-Bohm
flux (boundary condition twists) and hence the system
exhibits off-diagonal long-range order in the conjugate
phase variable.

B. Conductivity

&(0) = E.
'"+' "P(L/4 L-/(-)

which can be more conveniently expressed as

(4.3)

(4.4)

The frequency-dependent stiffness involves the Fourier
transform of the current-current correlation function

(4.8)

where P and p are scaling functions. It is thus essential
to work with system shapes for which the aspect ratio

c=L /L' (4.5)

(4.6)

so that; the stiffness is simply proportional to the mean-
square winding number

(4.7)

is a constant; otherwise the scaling function p depends
on two variables and is complicated to analyze. If this is
done, L"+' p is independent of L at the critical point
b = 0. Furthermore, in the disordered state, the system
is insensitive to changes in the boundary conditions if the
size is bigger than the correlation length, and so L"+' p
will decrease (exponentially) with increasing L. By con-
trast, in the ordered state, p tends to a constant, and so
L"+' p increases with increasing L. Thus, the critical
point is located at the intersection of curves for L"+' 2p

as a function of coupling K for different lattice sizes. One
can then determine v from Eq. (4.4) by requiring that the
data for different sizes (but fixed aspect ratio) collapse on
top of each other in a plot of p(0)L +' 2 against Li~"b.
Note that in order to choose the sample shapes in the sim-
ulation, we need (unfortunately) to have already made a
choice for z.

Since the current is divergenceless, we can divide the
configurations into different topological classes according
to the winding number of the boson world lines around
the torus of size L in the space direction

where, with the lattice spacings in the space and time
directions set to unity, the Matsubara &equency is given

by cu„= 27m/L, and 7 is now an integer, 1

L, denoting a particular time slice. In these units, the
conductivity is still given by Eq. (3.10).

C. Compressibility

From Eq. (3.14) it follows that the zero wave-vector

compressibility is given by

"(0)=LL [(+) P&)] (4.9)

where Nb is the total number of particles,

(4.10)

(4.»)

The last term in Eq. (4.9) involves the square of a ther-

mal average. This term is thus likely to give systematic
errors if determined within one replica, and so we eval-

uate it as [(X )(Xp)], where the indices refer to two

different replicas.
If global moves are not included, the boson density is

a constant, and consequently K, as defined, is zero. How-

ever, the wave-vector-dependent compressibility r(k) is

nonzero, and one can obtain4s estimates of r = r(0) by

taking the limit A: m 0, even when global moves are not
performed.

The finite-size scaling form for the compressibility fol-

lows from arguments similar to those used above for the
stiffness and is

It is instructive to comment on the analogy to the Feyn-
man ring exchange picture of super8uidity in liquid he-
lium. Rather than viewing a nonzero winding of a boson
world line as an event involving a single boson, we can
view it as formed by adding up a chain of hops of many
bosons. This is closely analogous to a Feynman ring ex-
change, and adds some perspective on the transition in

D. Correlation functions

Consider the following correlation function

C(r, r', T, 7.') = [(e' " " ~)]~~, (4.12)
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where the 8's are operators for the phase of the bosons,
and e' ~ ~ = e e' e . We shall see that this corre-
lation function gives information on a third critical ex-
ponent, i), defined in Eq. (4.18) below, in addition to the
exponents v and z already discussed. Due to transla-
tional invariance, C(r, r', r, r') = C(r —r', r —r')

We shall here only consider two basic types of corre-
lations: the equal-time correlation function where v =
O, r = (z, 0), and the time-dependent correlation func-
tion at time r and r = 0. By redoing the argument
which led from Eqs. (2.4) to (2.32) for the correlation
function rather than for the partition function, one 6nds
that the equal-time correlation function can be expressed
as C+( ) = C(r = o ) = ((e*""""')I-. (4.14)

where "path" is any path on the lattice at 6xed 7. con-
necting two points a distance r apart along the x di-

rection. For each link on the path v = x or y, de-

pending on whether the link is along the x or y direc-
tion. The simplest case, which was used in the simula-

tions, is the straight line path, in which case all the link
variables in Eq. (4.13) are J . A very similar result is

found for the usual Villain model. Since the Hamilto-
nian is invariant under a sign change of J, it follows that
C, (r) = C ( r)—

We now turn to the time-dependent correlation func-
tion

1(„C(r)= exp ——
~

J(", )+ —
~

r Fpath - av

(4.i3)

Physically this is the Green's function for creating a par-
ticle at imaginary time 0 and destroying it at time v.
This correlation function can be expressed in terms of
the link variables in the following form:

i (1
exp —— —+J(, )

—p, ~

j K(2C+(r) =
~ bypath

Q2

(J~
~

—~o)G(~ —~') +, ) (a(o) —a(~)I Ir av

(4.15)

In this expression, "path" is the straight line path between two points with the same space coordinate, r, starting at
imaginary time equal to 0, say, and ending at a later time ~. A more general expression for a path wandering in the
space directions can also be derived.

One can also consider

C (r) [(e
—i[s.(v)-8, (0)l)] (4.16)

which is the Green's function for creating a hole at imaginary time 0 and destroying it at r. In terms of the link
variables

C (r) = exp ——
~

——J(, )
—P,, i

v bypath

Q 2

):( (. .)
— .) ( — ') —,):( (o) — ( )) ~

r r . av

(4.i7)

C( ) = '"' '+"'f( /(! /(!') (4.18)

which defines the exponent g. If r approaches zero but

Except when there is statistical particle-hole symme-
try, " C~(r) j C (r). However, one can show that
C+(r) = C (L —r), which corresponds to the equiva-
lence between a particle traveling forwards in time and a
hole traveling backwards. This will be useful in the simu-
lation because the statistics get worse with increasing r,
and so, for r ) I /2, it is better to compute C (L —r)
than C+(r). As required, the correlation functions are
periodic, i.e., C(r) = C(7 + L ) for both C and C+.

Following Ref. 10 we now make the assumption that
the long-distance, large-time behavior of the correlation
functions will be given by the scaling form

w remains 6nite, the correlation functions must remain
6nite and nonzero. Thus we obtain

C(r =0,r) =r ("+ '+~)~ g(r g-) . -

At the critical point we should therefore have

(4.ig)

C(r)-r"
C (r)-r (4.20)

where

y~ =I+z —2+'g
q

y = (d+z —2+q)/z. (4.21)

Thus the power law falloff of the correlation functions at
criticality determines both g and z provided the correla-
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tion functions can be evaluated for large enough system
sizes that finite-size corrections are unimportant.

V. MONTE CARLO METHODS

To satisfy the zero divergence criterion in Eq. (2.31)
our basic (local) Monte Carlo move consists of changing
all the link variables around one plaquette simultaneously
in the manner shown in the lower left corner of Fig. 3,
thus changing the local current. Two of the link variables
are increased by one, the other two decreased by one. An
equivalent move going in the other direction is also used;
i.e. , the plusses and minuses are interchanged. In addi-
tion, we need to include nonlocal moves to fully equili-
brate the system. The global moves consist of changing
by +1 a line of link variables stretching all through the
system. Nonlocal moves are included in all three direc-
tions b = z, y, w, except when the model has long-range
interactions, in which case no global moves in the time
direction are performed in order to keep the particle num-
ber constant. Global moves in the time direction amount
to either introducing or destroying a boson. It is easy
to see that global moves in the space directions corre-
spond to a change in the winding number, defined
in Eq. (4.6). The nonlocal moves we use are illustrated
in Fig. 3. One Monte Carlo sweep of the lattice consists
of a sweep of local moves followed by a sweep of global
moves.

Due to the continuity equation, Eq. (2.31), the sum of
J, at a given time slice, P, J, , is always the same for

any value of v; albeit this constant may vary as a function
of Monte Carlo time because of global moves in the time
direction. Likewise, the sum of J in any y-7. plane will

be the same for all such planes at a fixed Monte Carlo
time, and similarly for the sum of the J".

Expectation values of observables have to be computed
by quenched disorder averaging, which is known from the
study of spin glasses to have many potential pitfalls.
Close to the critical point we typically have to average
over from 200 to 1000 different realizations of the disor-
der, and somewhat fewer away from the critical point. It
is crucial to carefully assure that the J variables are
thermally equilibrated. The equilibration time at the
critical point for our update scheme varies with system
size L as kg L'M, where zMC is the Monte Carlo
dynamic exponent. For the short-range interaction case
we have determined zMg —6 so that extreme caution
is required in attempting to equilibrate large lattices. We
take an approach similar to what has been done for spin
glass systems. Two identical replicas are run in paral-
lel for a given realization of the disorder. We define the
"Hamming" distance between replicas n and P as

-2
h p(t) = ) J(, ) (&p+ t) —J(", ) p(tp+ t)

(r, v. )

(5 I)

where tp is the number of Monte Carlo sweeps (MCS)
used for equilibration, and t is the number of subse-

quent MCS. We also define a "Hamming" distance for
one replica at two different Monte Carlo times,

h (t) = ) J(, ) (t + tp) —J(",
) (tp)

(r,~)

- 2

(5.2)

+1
+$

Time

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

+Ij( ')(I

-1

-1

i)t+I

+1

Space

FIG. 3. Schematic picture of a local move (lower left cor-
ner), and global move (right side of the picture). In the local
moves changes of +1 are attempted in the currents circulating
around a plaquette. In the global the current is changed by
+1 along straight lines across the system, thereby changing
the winding number, if the line is along a space direction, or
the boson number if the line is in the time direction. The
numbers indicate how the link variables are changed. Many
local moves will change the current around an arbitrary loop
as indicated in the upper left corner. A global move which de-

stroys a boson is shown, and also another global move which
increases the winding number along the x direction by one.

We determine [h &(tp)] „and [h (tp)] for a se-

quence of values of tp increasing exponentially, tp

10,30, 100, 300, 1000, . . ., up to tp ——Tp, and so Tp is
both the number of MCS for measurement and the num-

ber of MCS for equilibration. If tp is suKciently large
that the system has equilibrated, one has [h" &(tp)]
[h" (tp)], and we made sure that this condition was ful-

filled, at least for tp = Tp. To achieve equilibration we

took Tp to be of order 3000 for the smaller system sizes
but found that we needed up to 30 000 for the larger sizes.
Since the different disorder realizations give statistically
independent thermal averages, we can estimate the sta-
tistical error from the standard deviation of the results
for different samples. Note that there are big sample
to sample fluctuations, and so it is necessary to average
over a large number of samples. In order to study as
many samples as possible within the available computer
time, we only run each sample for the minimum number
of MCS necessary to get a few statistically independent
measurements. This is why the number of sweeps for av-

eraging is the same as the number used for equilibratior

VI. SHORT-RANGE INTERACTIONS

In this section we shall assume that no long-range
Coulomb interactions are present. Furthermore, we shall
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always take the random chemical potential to be specified
by

(6.1)

As a test of our program we checked that we were

able to reproduce the results of Ref. 54 in the absence of
disorder and with p, = 0. We found complete agreement
between the two simulations.

z=d.
Fisher et al. also argue that

9&2 —d,

(6.2)

(6.3)

on the grounds that the density of states should diverge
as the transition is approached &om the Bose glass side.
In addition, since the correlations must decay with dis-
tance at criticality, it follows &om Eq. (4.18) that

d+z —2+g)0. (6.4)

Note that since z & 0 one can have a negative g even
in two dimensions. There is also a general inequality
applicable to random systems,

2v&—d' (6.5)

The reason for this choice of p is that we want to be
as far away as possible &om any Mott insulator phase,
and these are centered on integer values of p, for weak
disorder. The choice of 6 was influenced by the need to
make the disorder not too small (otherwise the effects of
disorder would only be seen for large sizes which we are
unable to simulate) and also not too large, because this
effectively makes U small, and so, again, the asymptotic
behavior may only set in for large sizes. In the absence
of more detailed information, it seems sensible to make
all the important couplings of comparable size. We again
emphasize that universal quantities like the critical con-
ductivity are independent of these details.

Some inequalities involving the critical exponents v, g,
and z have been obtained. First of all, Fisher et al. have
argued that the compressibility is finite at the transition
and so

A. Equilibration

We test for equilibration using the method described
in Sec. V. As an example, Fig. 4 shows the Hamming
distance for the x and v link variables for a system of
size 8 x 8 x 16, at the critical point. We see that the
system equilibrates rather quickly in about 1000 MCS.
Also, we see that the x and w link variables equilibrate
in roughly the same time, as one would expect since they
are coupled through local moves.

B. Determination of the critical point

We start the analysis by locating the critical point.
Since, as discussed above, we assume that z = d = 2,
the relevant quantity to plot, according to the finite-
size scaling analysis in Sec. IV A, is p(0)L2. Results for
aspect ratio 1/4 are shown in Fig. 5. Since the criti-
cal point is located where the curves cross, the figure
demonstrates clearly that there is a transition close to
K = 0.25 between a superfluid phase for K & K, with
finite superfluid density, p, [remember that p, ~ p(0)j,
and an insulating phase for K & K, with zero super-
fluid density. Our best estimate of the critical coupling
is K, = 0.248+ 0.002. A substantial amount of computa-
tion went into the production of this figure. Close to the
critical point 1000—2000 disorder realizations were per-
formed, with, for the largest size, an equilibration time
of Tp = 10000 followed by 10 000 MCS for averaging with
a measurement every 10 MCS.

Simulations with aspect ratio 1/2 were also performed
and the same critical coupling was found, as expected
since this is a bulk property.

which is a generalization of the Harris criterion. The
value of the dimension that should be inserted into this
expression is the number of dimensions in which the sys-
tem is random, i.e., the space dimension d and not d + 1
or d+ z.

As noted in the discussion below Eq. (4.5) we need to
know the dynamical exponent z in order to choose sample
shapes which allow a simple finite-size scaling analysis;
i.e., the samples should be of size L x L x cL, where c
is the aspect ratio. Most of the simulations were done
assuming z = 2, the value predicted by Fisher et al.
We have done additional simulations with shapes corre-
sponding to other values of z, but Gnd that the scaling is
much less good if z is significantly different &om 2. For
z = 2 we have taken two different aspect ratios 1/2 and
1/4, with the following systems sizes: 4 x 4 x 8, 6 x 6 x 18,
and 8x8x32 for aspect ratio 1/2, and 6x6x9, 8x8x16,
and 10 x 10 x 25 for aspect ratio 1/4. We were unable
to study larger lattices because the relaxation times were
too long.

0.4
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Monte Carlo Time

FIG. 4. The x and ~ Hamming distances for a system of
size 8 x 8 x 16, with short-range interactions at the critical
coupling K = 0.248. For each pair of curves, the upper one
is for h p and the lower one for h
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FIG. 5. p(0)L for the system sizes indicated, as a func-
tion of K for short-range interactions. From the intersec-
tion of the curves we estimate the critical coupling to be
K, = 0.248 + 0.002.

FIG. 7. The compressibility of the model with short-range
interactions as a function of wave vector, at the critical point,
K, = 0.248, for diferent system sizes. The solid lines are
spline 6ts to the data points, and k, = 2x.

C. Compressibility
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FIG. 6. The compressibility at zero wave vector, r(0), for,
different system sizes, as a function of K for short-range in-
teractions. The critical point is at K = 0.248.

We now turn to the compressibility. Figure 6 shows the
compressibility, as calculated from Eq. (4.9), for a range
of different couplings centered around the critical cou-
pling K, = 0.248, for lattices with aspect ratio 1/4. We
see that the compressibility remains finite through the
transition, including in the insulating phase, K ( K, .
This is consistent with the prediction that the insulating
phase should be a Bose glass with finite compressibility
in the presence of disorder. According to the scaling
theory, Eq. (3.17), a finite compressibility at criticality
implies z = If (= 2), as argued by Fisher et aLio By
contrast, simulations performed with no disorder and
Ii = 0, where the model becomes equivalent to a (2+1)D
XY model, find that the compressibility vanishes in the
insulating phase, consistent with its being a Mott insu-
lator.

Figure 7 shows the wave-vector-dependent compress-

ibility for the aspect ratio 1/4, at the critical point
K, = 0.248. Similar results have been obtained for the
aspect ratio 1/2. Clearly there is no dependence on the
wave vector as expected from Eq. (3.18) and the result
Z = G.

Prom the above we have established that the insulating
phase is indeed a Bose glass and not a Mott insulator, at
least for the strength of the disorder that we have been
considering here, 6 = 1/2. This is in agreement with
previous studies.

As further evidence of the existence of the Bose glass
we now turn to a discussion of the correlation functions
in the insulating phase. One ixnportant prediction of the
scaling theory is that the Green's function should vary
with a power of imaginary time,

(6.6)

rather than exponentially, as might have been expected.
Here pi(0) is the single-particle density of states at zero

energy. En order to check this prediction we did sim-
ulations deep in the insulating phase, K ( K, . Fig-
ure 8 shows the time-dependent correlation function,

C+(v) = C(r = 0, w), for a system of size 8 x 8 x 16 at a
coupling equal to K = 0.175, well below K, 0.248. The
right hand part of the figure is obtained by calculating
C (w), and using the relation C+(T) = C (L —7 ) dis-

cussed in Sec. IVD. For each disorder realization, 30000
MCS were performed, followed by another 30000 MCS
to do the thermal averaging, and finally we averaged over
100 different disorder realizations. The relatively elabo-
rate thermal averaging was done in order to obtain small
error bars at large w. The dashed line is a power-law fit
to the form 0.170(2)[v I I + (L —7.) I I] where
the numbers in parentheses indicates uncertainties on the
last digit. This fit used all data points shown and gave
a goodness of fit of 0.84 and y = 7.9. Here we define
the goodness of fit to be I'((N —2)/2, gz/2), where N
is the number of data points and 1 is the .incomplete p
function. No sign of an exponential dependence on w was
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observed. The errors indicated are statistical and do not
include possible systematic errors. A fit at K = 0.15
yielded a similar value for the exponent of 1.05 + 0.04.
We conclude that the time-dependent correlation func-
tions clearly display power-law behavior in the Bose glass
phase and, furthermore, the associated exponent is close
to 1 as predicted by scaling theory.

FIG. 8. The correlation function (imaginary time Green's
function) for positive (imaginary) times, corresponding to
a boson propagating forward in time, for a system of size
8 x 8 x 16 with short-range interactions, at K = 0.175 which
is far into the Bose glass phase. The dashed line indicates a 6t
to the data of the form 0.170(2)(r ' + (L —r) ' ).
The data for r ) L /2 are actually the value of C (L /2 —r)
as discussed in the text. Thus the Green's function decays
with a power of time (rather than exponentially) in the Bose
glass phase, as predicted in Ref. 10.

(6.7)

This is easily seen to analytically continue to the Drude
form of the conductivity:

o((a+ ib) =
(1 —uurp)

(6.8)

50

to the conductivity, but our results are consistent with
their being very small. Of course, the conductivity is

frequency dependent and so will differ &om the univer-

sal value when ~ becomes comparable with some other
scale, such as the ultraviolet cutoff set by the lattice spac-
ing.

Figure 9 shows the resistance per square (which is the
same as the resistivity) plotted against frequency, sz eval-

uated from Eq. (3.10) for aspect ratio 1/4 at the critical
point K, = 0.248. Again considerable computation has
gone into the production of this graph in order to obtain
good statistics. For the two smallest system sizes about
2000 disorder configurations were generated while for the
largest size only 1000 were done. From 3000 to 10000
MCS were done for equilibration followed by the same
number of sweeps for measurements. The data collapse
is excellent.

To determine the universal conductivity we have to
analytically continue the MC data to real frequency and
extrapolate to u = 0. For typical quantum MC simula-

tions, this analytic continuation is extremely dificult to
perform. However, it turns out to be straightforward in
the present case, since the data for the resistivity varies
linearly at small u„, which implies

D. Conductivity

In the thermodynamic limit, I ~ oo, at vanishingly
small T (L ~ oo), and for ur„~ 0, the conductivity at
the critical point should tend to a finite, universal value,
o', as discussed in Sec. IIIB. In the simulation there
will be various corrections to this. First of all, one might
ask whether the order of limits T ~ 0 and cu„~ 0 af-
fects the value of o*, even in the thermodynamic limit.
For the case of no disorder and integer filling, where the
transition is to the Mott insulator, the answer is cer-
tainly yes. 4 In this case the conductance is finite if the
T ~ 0 limit is taken first whereas o* = oo if one first
takes the zero-frequency (dc) limit because a persistent
current can Bow in the absence of umklapp processes,
which vanish as T ~ 0. However, in the presence of
disorder, the dc conductivity is finite as T —+ 0 and so
we see no reason why the order of the limits, T ~ 0 and

-+ 0 should play a role for transition to the Bose glass
phase discussed here. We shall see that allowing for a de-
pendence on u /T oc u L does give a slighly better fit
for the case of short-range interactions, but the value of
o' is not changed significantly. Given the rather limited
range of sizes that we can study, we feel that the results
are consistent with there being no dependence on ur /T.
One might also be concerned about finite-size corrections
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FIG. 9. The resistivity in units of Rq = h/(2e), as a func-
tion of u /u, —aL (u, /&u„) for the model with short-range
interactions, where cu, = 2' and n = 0.179. The calculation
was done at the critical point, K = 0.248. The aspect ratio
was in this case 1/4, and the system sizes shown were as indi-
cated in the Ggure. The dashed line indicates a least square fit
to the points with abscissa less than 0.26 of the following form
7.84(7) + 34.9(5)[~„/~, —aL (~,/~„)] The correction . in-

volving the parameter a is proportional to T/w„as discussed
in the text. On physical grounds we expect that o. = 0 in
the thermodynamic limit, and indeed a fairly good 6t, with
almost the same value of the dc resistivity, is obtained with
n = 0.
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Thus the boson system at the critical point is neither
insulator nor superfIuid but rather a Drude metal. The
Drude parameter wo 1/w, is a nonuniversal relaxation
time controlled in our model by the ultraviolet cutofI'.

Assuming this linear variation of the resistivity with
w„, a least squares fit has a very small error. The main
source of error in the determination of the dc conductiv-
ity therefore comes from the uncertainty in the determi-
nation of the critical point. We estimated this error by
making the same linear fit to the resistivity data at the
ends of the interval given by the error bars of the criti-
cal coupling. From all our data for two difFerent aspect
ratios we finally estimate

this and other plots for different values of the aspect ratio
we estimate

v = 0.90+ 0.10 . (6.10)

F. Correlation functions

Interestingly, the inequality, v & 2/d (with d = 2 here)
derived by Chayes e,t al. is only just satisfied and may,
in fact, be an equality for this model. The equality,
v = 2/d, has been found for certain models of correlated
disorder.

0* = (0.14 6 0.03)Gq, R~ = (7.4 6 1.6)Rq . (6.9)

The universal conductivity has previously been cal-
culated for the case of no disorder and integer boson
filling, where the insulating phase is a Mott insula-
tor, rather than the Bose glass discussed here. In that
case o* 0.285Gq. Thus we find that even though the
present model is somewhat more realistic, including the
disorder takes us further from the experimental value
which is in the vicinity of unity. A suitably defined uni-
versal conductance can be calculated exactly in 1D (Ref.
54) both with and without disorder. The exact solution
in 1D shows that the ratio of o* in the dirty case and in
the pure case is exactly 3/4. This is of the same order of
magnitude as the ratio 0.14/0. 285 0.5 between the MC
results in 2D. Hence we see that the trend of decreasing
critical conductivity upon adding disorder is the same as
for the exact solution in 1D.

C (r) = c[r "*+(L —r) " j, (6.11)

which takes the periodic boundary conditions into ac-
count. For L = 8 the best fit had the form
0.18(1)(r '(') + (L —r) ' '(')). For L = 10 the fit

was 0.18(1)(r ' ( ) + (L —r) ( )). These fits are

So far, we have determined the universal values of v

and o*. We have also found that the finite-size scaling
works best with z = 2 and, according to the scaling the-

ory, our results for the compressibility agree with this. In
this subsection we conclude our discussion of the model
with short-range interactions by looking at the correla-
tion functions, which give us the value of the third expo-
nent, g, and another estimate for z.

The data for C (r) for sizes L = 8 and 10 with aspect
ratio 1/4 at K, = 0.248 are shown in Fig. 11. In order
to make full use of all the points we fit the correlation
functions to the following form:

E. Exponent u
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To determine the correlation length exponent we try to
collapse the data in a scaling plot of p(0)Lz versus bLi/",
based on Eq. (4.4). The plot is shown in Fig. 10, for which
the parameters used are K, = 0.248 and v = 0.9. From
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FIG. 10. Scaling plot of p(0)L versus bL ", for
short-range interactions, where b is the reduced coupling con-
stant (K —K,)/K, and L is the linear system size. The
parameters used in the plot are K, = 0.248, v = 0.90.

FIG. 11. The equal-time correlation function of the x-link
variables as a function of spatial distance r (= x) for

short-range interactions. The error bars increase with increas-

ing r because the calculation involves the average of the ex-

ponential of a "string" of link variables [see Eq. (4.13)j, which

can Buctuate hugely when the string is long. For this reason,
the data for r ) L/2 were determined from C (L —r) Two.
data sets are shown, for systems of size L = 8 and 10 with

aspect ratio 1/4, at K = 0.248, which is the critical point.
The dashed line indicates fits to the data. For L = 8 the fit

is 0.&8(&)(r ' I I + (L r) ' I I). For L = 10 the —fit is

0.»(1)( ' ""'+(L — )
' "'").
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c[~" +(L--~) "1 (6.12)

and we find for L = 6 the optimal fit has the form
0.266(4)(r ( ) + (L —r) ( )). For L = 8 the best
fit has the form 0.256(4)(r ( )+ (L —w) ( )) We
see that the exponent governing the power-law behav-
ior is about 1/2 of the equivalent exponent in the space
direction, indicating from Eq. (4.21) that the dynami-
cal exponent z must be close to 2. Combining all our
estimates for z we find

indicated by the dashed lines in Fig. 11.
In order to obtain iI and z from Eq. (4.21) we also

need to obtain results for the time-dependent correla-
tions. Since p, = 0.5 there is statistical particle-hole sym-
metry and so C (v) = C+(r) F. igure 12 shows the
results at the critical point K, = 0.248 for an aspect ra-
tio of 1/4, where the data for v ) I /2 were obtained
from C (L —w). The linear sizes were L = 6 and 8. We
fit to the form

(7.1)

but, in addition, take the charge of the bosons to be
nonzero. Most of our studies used

1e*
2

(7.2)

but we also have some results for e' = 1/4 as a check
that the strength of the Coulomb term is irrelevant. The
long-range interactions force us to keep the total boson
number fixed, since it has to be compensated by a (fixed)
background charge to avoid an energy which is infinite in
the thermodynamic limit. We do not, therefore, allow
global moves in the time direction (the r-link variables).

As in the section above on short-range interactions we
first discuss what inequalities and estimates there are for
the exponents. The result z = d, quoted earlier is only
applicable to short-range interactions. For a 1/r poten-
tial, Fisher, has argued that

z = 2.0+0.1. (6.13) z= l. (7.3)

g = —0.1 6 0.15 . (6.14)

This agrees with the inequality Eq. (6.3) iI & 2 —d (= 0),
which is possibly satisfied as an equality. Noting that v
is given by Eq. (6.10) and o' by Eq. (6.9), this concludes
our discussion of the universal properties of the short-
range model.

VII. LONG-RANGE COULOMB INTERACTIONS

Our estimate for iI obtained from Eq. (4.21), including
results from the two aspect ratios, is

A simple way to see this is to compute the character-
istic energy, b,s, given by the potential energy at r = (,
i.e. , b,s = G(r = () ( i, where G is the 1/r Coulomb
potential. If this is the relevant energy scale in the prob-
lem, then As ( ' with z = 1. This argument is trivially
generalized to interactions falling off with some arbitrary
power of the distance, G(r) r ", and leads to z = A.

We expect that this is valid for A smaller than d, the
value for short-range interactions, and that for larger A,
the dynamical exponent sticks at its short-range value,
z = d. Based on scaling of a renormalized charge Fisher
et al. derive the inequality

We shall now include long-range Coulomb interactions.
Throughout this section we again take z&1) (74)
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FIG. 12. The correlation function (Green's function) for
positive times for short-range interactions for systems of size
6 x 6 x 9 and 8 x 8 x 16, i e., with aspect ratio 1/4. The
calculation vras performed at the critical point, K, = 0.248.
The dashed line indicates Sts to the data. For L = 6 the fit
is 0.266(4)(~ ' ~'l + (L —~) ' l'l). For L = 8 the 6t is
0.256(4)(7' ' +(L—v) ). The data for v ) L /2 is
actually the value of C (L /2 —~), as discussed in the text.

and an argument that the second sound velocity should
not diverge at the critical point gives, quite generally,

z&1. (7.5)

pi(s) (7.6)

ES obtain a bound on the density of states for small c,

Hence there is quite strong evidence that z = 1 for the
1/r interaction. This is convenient for the Monte Carlo
work, because, although the computer time per update
increases by adding the long-range interaction, the num-
ber of lattice points is not so large as for the short-range
case because we only have to scale L with the first power
of L, rather than its square.

In the section above on short-range range interactions,
the inequality g & 2—d was discussed. This was derived
with the assumption that the density of single-particle
states in the Bose glass phase is finite at zero energy,
an assumption which is no longer correct with I/r inter-
actions. In a classical model, called the "Coulomb
glass, " Efros and Shklovskiiss s (ES) argue that the
single-particle density of states, pi(s), vanishes at s = 0,
due to the Coulomb gap. " Assuming that
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pg(s) & Cs" (7.7) 0.3

so that

a&d —1. (7 g)

The value of a in 2D does not seem to be precisely
known.

Since the Coulomb glass model is classical, the statis-
tics of the particles does not matter, and so Eq. (7.8)
should be applicable to the Bose glass phase, provided
quantum Huctuations are unimportant in this region, as
is argued for the electron case. ' It is then straightfor-
ward to determine the long-time behavior of the Green's
function in the Bose glass phase. For v ) 0 we have
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FIG. 13. p(0)L for the system sizes indicated, as a function

of K. The system sizes indicated correspond to an aspect ratio
of 1. The critical point, determined from the intersections, is
K = 0.240 6 0.003. The Ewald-sum form of the Coulomb
potential was used with e' = 1/2.

The same argument, together with Eq. (4.21), indicates
that at criticality pq(s) s(" +")/'. We now assume,
following Fisher et aL~o, that pq(e) at small s grows as
the critical point is approached, in order to match onto
the b-function density of states in the superconducting
state. In other words, the density of states exponent is
smaller at the critical point than in the Bose glass phase,
i.e. , (d —2 + q)/z ( a or

e' = 1/4. The two forms of the potential are different
on short length scales, and the values of e' are there-
fore not directly comparable. Although we do not have
enough data for the largest size, 12 x 12 x 12, to perform
a conclusive analysis, we can determine the critical cou-
pling to be K, 0.275, somewhat higher than for the
Ewald form, with reasonable certainty.

7f +2 —d+QZ ) (7.10)

which, as expected, reduces to Eq. (6.3) for a constant
density of states, a = 0. The bound v ( 2/d, Eq. (6.5),
should also be valid in the case of long-range interactions.

|A'e now discuss the results from the simulations. Since
there are strong arguments, discussed above, that z = 1,
we work with systems with shape L x L x L with L =
6, 8, 10, and 12. In most cases we perform 3000 MCS for
equilibration followed by 3000 MCS with a measurement
every 10 MCS. Close to the critical point the number
of sweeps was generally larger for the larger sizes. The
number of disorder realizations varied from 200 to 1000.
As was the case for short-range interactions we carefully
check for equilibration by computing the "Hamming dis-
tances" discussed in Sec. V.

B. Conductivity
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Following the approach used above for the short-range
case, we plot, in Fig. 14, the resistivity, R& in units of
Bg, against &equency at the critical point, K, = 0.240.

A. Determination of the critical point

Since z = 1, it follows kom the discussion after
Eq. (4.5) that we should look for the intersections of data
for p(0)I against K for different lattice sizes. Our results
are presented in Fig. 13 for the case of the Ewald-sum
form of the potential with e* = 1/2. Clearly the lines
cross close to K = 0.240 and, more precisely, we estimate
the critical coupling to be K = 0.240+0.003, quite close
to the value for the short-range case. Since all four sizes
intersect very close to the same point, Fig. 13 provides
strong evidence that z = 1, in agreement with the scaling
arguments.

An equivalent analysis can be performed with the
Green's function form for the potential, Eq. (2.44), with

I I I E I Ill I I I I I I I I I I I I I I I I I I I I I I I
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FIG. 14. The resistivity in units of Bo = h/(2e), as a
function of u /&u„where cu, = 2n. The calculation was done
at the critical point, K = 0.240. The aspect ratio was in
this case 1, and the system sizes shown were as indicated
in the figure. e* = 1/2 was used along with the Ewald
form for the potential. The dashed line indicates a least
squares 6t to the points with abscissa less than 0.44 of the
form 1.82(2) + 17.84(7)~„/cu, .
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This data is for e' = 1/2, with the Ewald method used
to evaluate the Coulomb potential. The collapse of the
data is excellent, without any correction involving T/u„,
which was used for the short-range case. This implies
that we can interchange the two limits ~ ~ 0, and T ~ 0
as expected. As for the short-range case, the data varies
linearly with ~, implying a Drude form for the con-
ductivity. Making a least squares fit to the data with
u„/u, & 0.44 we find Rz/Rq= 1.82(2).

We can now try to investigate the universality of Rz
by studying the model with e' = 1/4 and the potential
evaluated by the Green's function method. Figure 15
shows the resistivity at the critical point K, = 0.275,
along with the data already presented in Fig. 14. We see
two interesting things. First, the actual form of the resis-
tivity as a function of &equency is clearly different in the
two cases. However, the extrapolation to zero &equency
is the same within the uncertainties. For the Green's
function potential the best fit is Rz/Rq = 1.91(7), again
for points with abscissa less than 0.44. The agreement
between the zero-frequency limit of the two sets of data
in Fig. 15 provides strong support for the resistivity being
universal at the transition.

We have also studied the effect of the aspect ratio on
the resistivity. This is important because the aspect ra-
tio is related to quant&ties relevant for experiments, as
we shall now show. An important concept in mesoscopic
physics is the phase coherence length (;„,. This length
is expected to diverge as T ~ 0, and so, at critical-
ity, should be proportional to the Bose glass correlation
length, (, making the usual assumption that there is only
one divergent length scale. To determine how ( varies as

5 I I I I I I I I I
i

I I I I I I I I I
i

I I I I1

~ Gx6xe

cr 10—

3

a function of T L note that &om finite-size scaling,
the finite-size relaxation time ( at criticality should be
proportional to L and so characteristic lengths should

scale as ( '. Consequently f;, T ~/', which means
that the aspect ratio can be expressed as

(7.11)

i.e., it is proportional to a power of the ratio of the phase
coherence length to the lattice size. Experiments are gen-
erally carried out in the range L » (; „and so one
should view the conductivity as arising &om incoherent
self-averaging of domains whose size is (;„,. In the oppo-
site limit, L « (; „we expect large variations from sam-

ple to sample ("bosonic universal conductance fiuctua-
tions"), and the average conductance will not necessarily
be the same as that obtained in the regime L » (;,.
Thus, the conductivity at zero &equency but finite tem-
perature is given by a scaling function, a(1/TL'), where
the argument is proportional to the aspect ratio. The
experimental situation corresponds to the limit of zero
aspect ratio, whereas the simulations are done for a fi-

nite value.
We have therefore performed calculations for two other

aspect ratios, 1/2 and 3/2 respectively. In both cases we

used the Ewald form of the potential with e' = 1/2. In
order to obtain scaling plots for aspect ratios different
&om 1 it is necessary to include corrections of the form
1/L2. Including this correction term, our estimates for

R& agree with those for aspect ratio unity, within the
errors. Thus any dependence of Rz on aspect ratio seems
to be quite small.

In conclusion, we estimate the universal conductivity
at the critical point from all our data to be

R~ ——(1.82 6 0.20)Rq, o'* = (0.55 6 0.06)Gq . (7.12)

No dependence on the aspect ratio, the microscopic form
of the potential, the strength of the Coulomb interaction,
or particle density was observed.

C. Wave-vector-dependent compressibility

S.o'
' ' I i i & i i i i i i I

0.2 0.4

FIG. 15. The resistivity in units of Ro = h/(2e), as a
function of ru /w„where ur, = 2m. For the upper curve
the Green's-function form of the potential was used with
e' = 1/4, and an aspect ratio of 1. The calculation was
done at the critical point for this potential, K = 0.275. The
dashed line indicates a least squares fit to the points with ab-
scissa less than 0.44 of the form 1.91(7)+ 21.5(3)u /~, . The
lower curve is the results from the Ewald form of the poten-
tial from Fig. 14. Although the results for the two forms of
the potential difFer at 6nite frequency, they appear to extrap-
olate to the same value in the dc limit, as expected since the
dc resistivity is predicted to be universal.

Because of the long-range interactions, the system is
incompressible. As a result the wave-vector-dependent;
compressibility should vary at criticality as r(k) k
from Eq. (3.18) with z = 1. Figure 16 shows the data at
the critical point K = 0.240, for aspect ratio 1, and the
Ewald form of the potential with e* = 1/2. The solid
lines shown are cubic splines fitted to the data points.
The data for small k seems to be roughly linear, as ex-
pected if z = 1 but one would need substantially smaller
wave vectors to draw a firm conclusion.

Similar results results were obtained for aspect ratios
1/2 and 3/2.

D. Exponent v

To determine the correlation length exponent we try to
collapse the data in a scaling plot of p(0)L versus bL~/",
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occur in certain models with correlated disorder, and it
would be interesting to see if it is a rather general prop-
erty at quantum transitions with quenched disorder.

Since this work was completed, two groups have re-
ported results for the short-range model which differ &om
ours. Batrouni et al. have performed world-line quan-
tum Monte Carlo simulations directly on the boson Hub-
bard model. They find o' = (0.45 + 0.07)Gg, but do
not report values for the exponents. We do not have
an explanation for this discrepancy, though we note that
their data for L2p(0) do not splay out in the insulating
phase, K ( K„as do ours (see Fig. 5), which makes the
location of the critical point harder.

Results which are totally different &om ours and also
different &om those of Batrouni et al. have been found
by Makivic et al. who performed world-line quantum
Monte Carlo simulations on a hard-core Bose system with
short range interactions finding u* = (1.2+0.2)Gq, with
z = 0.5+0.05 and v = 2.2 +0.2. The value of the dynam-
ical exponent z found by Makivic et aL is surprisingly
small; we are not aware of any other situations where
z ( 1. The finite-size scaling analysis was therefore per-
formed with samples which were small in the ~ direction,
and so one might be concerned that the system is close
to the classical transition, and the full quantum regime
might not have been reached. This concern is reinforced
if one notes that the critical coupling differed by a factor
of 2 for the two temperatures that were studied. Makivic
et al. propose that the difference between their results
and ours is that amplitude fiuctuations, neglected in our
model but included in the boson Hamiltonians, are rele-
vant, and so the two models are in different universality
classes. While this idea certainly cannot be ruled out,
we do not yet feel that it has been conclusively demon-
strated. First of all, the only evidence for it is the numer-
ical results, about which we have some reservations dis-
cussed above. It would be more compelling if there were
additional evidence, such as a calculation of the exponent
for amplitude fIuctuations, showing that it is indeed rel-
evant in the renormalization group sense. Furthermore,
this explanation does not explain the differences between
the results of Makivic et al. and those of Batrouni et
al. and Runge, which also included amplitude fluctu-
ations.

For the future, it would be very interesting to study
the field-tuned transition ' by Monte Carlo simula-
tions, since this is expected to be in a different uni-
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APPENDIX

In this appendix we derive Eq. (2.3?) which gives the
action in the presence of disorder and a finite chemical
potential, both of which break particle-hole symmetry.
Starting with the boson Hubbard model in Eq. (2.2) we

form the coherent state path integral

Z= D@e (AI)

where the action is given by

versality class &om the disorder-tuned transition dis-

cussed here. The problem is that one needs to find a
representation of the problem in terms of a real classical
(D+1)-dimensional effective Hamiltonian which incorpo-
rates both the magnetic field and lack of microscopic
particle-hole symmetry. Unfortunately, the phase rep-
resentation, Eq. (2.27), though it can be generalized to
include a field and is still real for the particle-hole sym-
metric case, is complex in the absence of particle-hole
symmetry, and the link representation used here becomes
complex in the presence of a field, as can be seen &om
Eq. (2.35). We are therefore unaware of any representa-
tion of the problem suitable for Monte Carlo simulations.

P
S= d~ 4,'0 4, + —4, —p+v, —zt 4, —t 4,*C, +4,*,4,

r (r,r')
(A2)

in which the 4, (w) are complex classical fields. Next we write 4 in terms of its amplitude and phase,

4, = ~p, e' (A3)

and expand p, about its equilibrium value, n„

pr = ~r+~pr ~ (A4)

Close to the critical point, the phase 8 will be slowly varying in position and imaginary time. We expand the action
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up to second order in small quantities regarding {9 Ct and bp as first order and 1 —cos(8, —8, ) as second order. The
result is

(3 I U
S = d7. ) n—, —(t(i+ v, —zt)n, —2t ) gn, n,

r (r,r'}

U+— 6p~ —2t
2 ' 2+nn,r (r,r')

1 f{ip,')' fbp, ') '
(nr) &nrt )

&r' ~ +r+) bp, i8-8, +n, U —p —v, +zt —2t ) — bp, + — hp,
&r 2 r'

r (r,r')

+2t ) 2/n, n, [1 —cos(8, —8, )] —i ) n, 8 8, &,
(r,r') r

(A5)

where we have used f Bp, /87. = p, (p) —p, (0) = 0 be
cause of periodic boundary conditions in the r direction.
The terms involving t in line 1 of Eq. (A5) cancel for
a pure system. With disorder they just give an unim-
portant additive constant. For a pure system, the terms
involving t in line 2 give rise to an additional contribu-
tion to U and also a nearest-neighbor interaction energy.
With disorder, random components of these occur too.
All these extra terms could have been included in the
original boson Hamiltonian without changing the univer-
sality class. They do not change the symmetry, as long as

I

the model has a random site energy, and so would be gen-

erated by a renormalization group transformation even if
not included in the starting Hamiltonian. The terms pro-
portional to t in line 3 cancel for a pure system, and, with

disorder, just give an additional contribution to the ran-

dom potential. The coeScient of the cosine term in line

4 is random when the system is disordered. This corre-

sponds to a random hopping in the original Hamiltonian
which again does not change the symmetry and would

be generated by a renormalization group transformation.
Neglecting these irrelevant terms, the action becomes

U U
S = dv ) n, —{p, + v, )n, , +—hp, + hp, iB,B,—+ n, U —p ——v, )0 r

+2tno ) ]t —cos(B, —B, )] —i) n, s B,
)

.

(r, r') r
(A6)

Now complete the square on b'p, and redefine 2tnp to be t. This gives

(p+v )
2U

—i
' B,B, + (B B,)s h-t ) ]1 —cos(tl, —tt, )]I .

(r,r')
(A7)

Hq, =T+V, (A8)

foalT:—
2 ).~

—.
~8 ~

+i) ()(i+v, ) ~
~, (A9)i 88~$ A)98 )

Note that for the special case of v, = 0 and p/U an

integer, the term involving f 8 8, = 8, (P) —8, (0) does
not contribute because 8, (P) —8, (0) = 2' x integer.

Next form the path-integral representation of the
quantum rotor model,

V—:—) t cos(8, —8,t) .
(r,r')

(A10)

Following essentially the inverse of the steps that led from

Eq. (2.4) to Eq. (2.23) we find that the action is the

same as in Eq. (A7) above. Thus the long-wavelength

properties of the quantum rotor Hamiltonian, Eq. (AS),
should be the same as those of the boson Hubbard model,

Eq. (2.2).
Proceeding as before, but starting from Eq. (A8) rather

than Eq. (2.4), we arrive at the analog of Eq. (2.16),

Tj — ~r T~+ y exp
r

47V 0 t' 8 ')
h-thsv(p+v ) l BB I

B (vs))
2 802 &~8, )

(A11)
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Inserting a complete set of angular momentum eigenstates, we have

T~ = exp — J, ~1. —A~ p+ ~, J, ~~
67.U

(A12)

Next we plug Eq. (A12) into the analog of Eq. (2.19). Again making the Villain approximation and using the Poisson
summation formula, we arrive exactly at Eq. (2.37).
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