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Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate
the superfiuid density of a two-dimensional superBuid on large-size square lattices L x L up to
400 x 400. This technique allows us to approach temperatures close to the critical point, and by
studying a wide range of L values and applying finite-size scaling theory we are able to extract
the critical properties of the system. We calculate the super6uid density and from that we extract
the renormalization-group P function. We derive finite-size scaling expressions using the Kosterlitz-
Thouless-Nelson renormalization group equations and show that they are in very good agreement
with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We
also find that the universal discontinuity of the super8uid density at the critical temperature is in
very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments.

I. XNTRODUCTION

The singular behavior in the thermodynamic functions
of liquid 4He close to the superfluid transition can be un-
derstood in terms of a complex order parameter g(r)
which is the ensemble average of the helium atom bo-
son creation operator. This ensemble average is de6ned
inside a volume of size much greater than the inter-
atomic distance but much smaller than the temperature-
dependent coherence length. In order to describe the
physics at longer length scales, which is important very
close to the critical point, we need to consider spatial Buc-
tuations of the order parameter. These fluctuations can
be taken into account by assigning a Landau-Ginzburg
free-energy functional 'R(@(r)) to each configuration of
g(r) and performing the sum of e +~"s+ over such con-
6gurations. The power laws governing the long distance
behavior of the correlation functions and the critical ex-
ponents associated with the singular behavior of the ther-
modynamic quantities close to the critical point are in-
sensitive to the precise functional form of 'R[g], and they
are the same for an entire class of such functionals. The
following Landau-Ginzburg free-energy functional can be
used to describe the fluctuations of the complex order pa-
rameter g:

Another form of the Landau-Ginzburg &ee energy is the
planar x-y model which is expressed as

(2)

where the summation is over all nearest neighbors; s =
(cos8, sin8) is a two-component vector which is con-
strained to be on the unit circle. The angle 8 corresponds

to the phase of the order parameter g(r). It can be shown
that the model (2) and the Landau-Ginzburg free energy
(1) belong to the same universality class.

The idea of a spatially varying order parameter is
crucial in order to understand the critical properties of
helium films. For example, in two dimensions, macro-
scopic order in the sense of a nonzero average of Q(r)
is eliminated by thermal fluctuations. Namely the de-
struction of the order is due to phase fluctuations of the
local order parameter. In a film, we are interested in
two-dimensional (2D) transitions occurring at temper-
atures below the corresponding three-dimensional (3D)
A critical temperature Tp, where amplitude fluctuations
around the Ginzburg-Landau minimum are small. How-
ever, a constant phase change costs no &ee energy, be-
cause of Goldstone modes. Such long-wavelength fluctu-
ations have very small &ee energy and in two dimensions
they destroy the long-range order. On the other hand,
con6gurations which correspond to the well-known vor-
tices are responsible for the phase transition in thin films
of liquid 4He. These con6gurations play the key role in
the Kosterlitz-Thouless2 theory where the transition can
be understood in terms of unbinding of quantized vortices
of opposite sign.

The two-dimensional z-y model has been studied both
analytically and numerically (see for example Refs. 2—
11). First of all, Kosterlitz and Thouless (KT) included
the contribution of vortex excitations by mapping the
model to a two-dimensional gas of interacting vortices
and by using an approximate renormalization-group the-
ory. Due to the nonperturbative nature of the topological
KT phase transition it is difEcult to develop an analyti-
cal method which allows us to calculate the corrections
to the KT calculation. Numerical simulation studies (see
for example Ref. 9) seem to indicate that the KT theory
is both qualitatively and to a good degree of approxima-
tion quantitatively accurate. However, early Monte Carlo
studies were hindered by the so-called critical slowing
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down where the autocorrelation time for local-updating
schemes grows very rapidly with the system size as one
approaches the critical region. Thus, with local-updating
Monte Carlo methods one can only study small-size sys-
tems close to the critical region. More recently a
nonlocal-updating scheme, the so-called cluster Monte
Carlo, has been proposed which very effectively deals
with the problem of critical slowing down. This method
has been used to test the Kosterlitz- Thouless scenario by
calculating the correlation length in the 2D z-y model.

In this paper we carry out a detailed 6nite-size scaling
analysis of the super8uid density p, (T, L) in pure 2D he-
lium films of size L x L with respect to L using the cluster
Monte Carlo updating technique. The superfluid density
is directly accessible to experiments and is character-
ized by interesting scaling behavior with 61m thickness.
There are some earlier studies ' ' of the superfluid den-
sity (helicity modulus) in the z-y model using the lo-
cal Metropolis Monte Carlo method. In this paper we
shall perform a thorough study of this quantity on large
enough size lattices, and by deriving 6nite-size scaling
forms we are able to extrapolate to the infinite-size lat-
tice. In order to calculate the superfluid density in large
finite-size films close enough to the critical point we use
the cluster Monte Carlo method. ' We first calculate
the renormalization-group P function from the finite-size
scaling of the superHuid density. The calculated P func-
tion is then used to collapse our calculated p, (T, L) for
all L on one universal curve. Our results obey finite-
size scaling using values for the critical exponents close
to those calculated by Kosterlitz and Thouless. We have
used the KT theory and the renormalization-group equa-
tions for the superfluid density and chemical potential
obtained by Nelson and Kosterlitz to derive the depen-
dence of the superfluid density on L below and at the
critical temperature. Our results obey faithfully these
6nite-size scaling laws and we use them to extrapolate
to the infinite-size lattice at all temperature values used
to calculate the superfluid density. We obtain an accu-
rate value for the ratio p, (T,)/T, of the discontinuity of
the superfluid density at the critical point which within

our error bars is in very good agreement with the value

obtained by Nelson and Kosterlitz and with the experi-
mental results.

The x-y model can also be used to describe certain
spin systems where the superfluid density corresponds
to the spin stifFness. In fact, all our results obtained in
this paper can find applications in describing the criti-
cal properties of such spin systems or any system whose

critical properties can be described by a two-component
order parameter and can be mapped to the x-y model.

In the next section we discuss the calculation of the su-

perfluid density p, (L, T) using the cluster Monte Carlo
method. In Sec. III, we discuss the finite-size scaling
above the critical temperature T, and the calculation of
the renormalization-group (RG) P function. In section
IV, we use the RG equations to derive a finite-size de-

pendence of p, (L, T) and we use that to extrapolate our
numerical results to the infinite-size lattice. In the last
section we draw some conclusions and discuss future ex-

tensions of this work.

II. FORMULATION AND MONTE CARLO
CALCULATION

Within the formalism of the x-y model the physical
quantity that corresponds to the superfluid density is the
helicity modulus T(T). The helicity modulus was intro-
duced by Fisher, Barber, and Jasnow in order to de6ne
the coherence length in superfluid helium. Let us con-
sider liquid helium confined in a cylindrical domain of
cross-sectional area A and length H. We twist the order
parameter in the upper boundary layer by a small an-

gle P with respect to the lower boundary. The helicity
modulus measures a change in the free energy due to this
twist and is defined as

T(T) = liin [F(T,P) —F(T, O)],
2H

where F(T, P) and F(T, O) denote the free energy of the
system with the twist and without it, respectively. Since
a superfluid Bux is introduced by the twist, a connection
to the superfluid density can be established,

(4)

where m is the mass of the helium molecule.
The definition (3) can be rewritten as

H 82F(T, P)
A,Hmoo x4 0(P

by taking into account the fact that the free energy does
not depend on the "handedness" of the applied twist.
Another way of writing the above equation is

O'P(T, k)
t9k2

where k = P/H and denotes the wave vector of the twist
and P(T, k) is the free-energy density. The last definition
can be easily applied to any dimension. By working in
a rotating reference frame in the spin space and using

(6), one finds"*"

where V is the volume of the lattice, e„ is the unit vector
in the direction of the applied twist, and e;~ is the bond
along the direction connecting the lattice sites i and j.
As we work only on L x L lattices, i.e., in an isotropic
system, we will omit the vector notation for the helicity
modulus in the following. The above thermal averages
are calculated as follows:

(0) = Z f dp; 0[8]exp(—PW).
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O[8] expresses the dependence of the observable 0 on the
configuration (8;) and the partition function Z for the
model is given by
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FIG. 1. The helicity modulus T(L, T) as a function of T
for various lattices L x L. The error bars are omitted because
they are smaller than the size of the symbols.

2= d8; exp-
t

where P = I/k~T. These expectation values were
computed by means of a Monte Carlo simulation us-

ing Wolff's cluster algorithm, which effectively deals
with the problem of critical slowing down. We calcu-
lated the superfiuid density on lattices of sizes I x L
with periodic boundary conditions (BC's) where I
20, 30, 40, 60, 100,300, 400. For a given temperature we

performed of the order of 104 steps to reach thermaliza-
tion and of the order of 106 measurements. Our calcula-
tions were carried out on a heterogeneous environment of
workstations which include Sun, IBM RS/6000 and DEC
alpha AXP workstations and on the Cray-YMP super-
computer and took several months of CPU time.

Our results for the helicity modulus as a function of
temperature T (in units of J) for various size lattices are
summarized in Fig. 1. Notice that the finite-size effects
are very strong. It is clear from this figure that in order
to obtain an accurate value for T, and an accurate value
for the universal discontinuity of T(T,)/T„we need a
careful finite-size scaling analysis. The dashed line is our
extrapolated values for T(L -+ oo, T) and the approach
leading to that will be discussed in the next two sections.
The finite-size dependence of T(L, T) is difFerent above
and below T,. Above T„ the infinite square lattice value
of T is zero; however, the correlation length grows in a
very singular way as known &om the Kosterlitz- Thouless
theory:

((T) oc exp[B(T —T,) ~ ], (1o)

thus, finite-size efFects become important for T & T'
where

which explains the very slow approach of T(L, T) to its
infinite-L value above T,. Below T, the finite-size effects
on T are weaker, but the value of the n»versal discon-
tinuity strongly depends on the value of T,. In the next
section we discuss the finite-size scaling above T . In Sec.
IV, we discuss the finite-size efFects below T and how to
extrapolate our results to the infinite-L limit and obtain
a value for T .

III. P FUNCTION AND FINITE-SIZE SCALING
ABOVE T,

The helicity modulus T(L, T)/J for a 2D z-y model
is dimensionless and, thus, should be kept constant un-

der scaling transformations. Namely, the P function can
be obtained by defining a function T = F(L) such that
'f(L', +(L')) = 'f(L, I'(L)) = T„where T„ is a constant,
a physical value of the helicity modulus. The P function
is defined as

dT
P(T) = —lim (12)

For large enough L, where finite-size effects infiuencing
the calculation of the P function are small, the Kosterlitz-
Thouless theory suggests the following form of /3(T):

P(T ) T,) = c(T —T,) +",
P(T & T.) = o.

Inserting this ansatz for P(T) into the expression (12)
and integrating we obtain

B
(T —T,)" z) (14)

where z is a constant of integration depending on the
value of T used to define the scaling transformation. Here
we have defined B = I/(vc) where B is the same constant
as that in the expression (10) for the correlation length;
this is required as we explain next in order to obtain
consistency between Eqs. (10) and (14). Equation (14)
defines the scale transformation which leaves the physical
observables invariant. If the helicity modulus is consid-
ered as a function of z, then all curves for various large
enough lattice sizes should collapse on the same universal
curve. This conclusion can also be reached in a different
way: The various values of the dimensionless observable

T/ J for difFerent lattices L x L as a function of the ratio
L/((T), where ((T) is the Kosterlitz- Thouless correlation
length given by Eq. (10), should collapse onto the same
universal curve. The same will happen if one plots the
calculated values of T(L, T)/J as a function of the vari-
able z = ln[L/((T)]. Notice that the latter is identical to
the expression (14).

The P function can be determined as follows. '~ For
a pair of lattices Lq, L2 let us consider the calculated
T(Li, T) and T(L2, T) for all values of T. Choosing a
value T for the helicity modulus we can determine two
pairs (Ti, Li) and (Tz, L2) such that T = T(Li, Ti) =
T(L2, T2). Using these two points we calculate a value
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of the P function at T = (Ti + Tz)/2 as follows: 0.8

P(T) =-
ln(L2) —ln(Li)

(15)
0.6

By choosing a diferent value of the helicity modulus we
can obtain a new value for P(T) at a different value of
T. Figure 2 shows the P function obtained from the
pair L~ ——300 and L2 ——400 for several values of T
as explained above.

We then fit the calculated P(T) to the form given

by the Kosterlitz-Thouless expression (13) using c, T„
and v as fitting parameters. The result of the fit is
c = 1.10(52), v = 0.56(28), and T, = 0.883(16). The
errors of the fitting parameters were determined using
the method described by Toussaint in Ref. 12. Possible
correlations between the fitting parameters have not been
taken into account by our fitting procedure. If we now
plot the two curves T(Li) T) and T(Lz) T) as a function
of the variable z = lnL —B/(T —T,(L))" [i.e. , we plot
T (Li, T) versus ln Li —B/(T —T,)" and T(Lz, T) versus
ln Lz B/(T —T,)"on—the same plot] they should collapse
on the same curve. This is demonstrated in Fig. 3. We
have repeated this procedure for all the pairs (Li, Lz) =
(30,40),(40,60),(60,80),(80,100),(1G0,300),(300,400) and
the results for the fitting parameters e, T„and v are given
in Table I. The values of the parameters v = 0.75 6 0.21
obtained for (Li, L z) = (60, 80) are significantly difFerent
from the value of v obtained from the other lattices [i.e.,
v 0.55). However, it has a large error bar, and within
error bars agrees with the value of v obtained &om the
other lattices. For large enough values of (Li, L2) the
results of these different fits should be the same, and as
can be seen &om Table I the values of these parameters
are approximately the same. However, a more careful ob-
servation tells us that the pseudocritical temperature T„
obtained from difFerent lattice pairs, has a slight mono-
tonic increase with system size. Again, here, the results
for T, obtained from the (Li, Lz) = (60, 80) do not fol-
low this monotonic increase. However, T, for this case
has relatively large error bars and the values obtained
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FIG. 3. The helicity modulus T(I,T) as a function of z for
the 300 x 300 and the 400 x 400 lattices.

for v and T, within one standard deviation overlap with
those obtained for the other points. In fact, we fixed
the value of v = 0.50 for this case and we obtained an
equally good quality fit with a value of T, = 0.865(10)
which is consistent with a monotonically increasing T,
with system size.

In the short report of Ref. 22 we used all the values
of the P function obtained from all pairs of lattices with
L & 10G to fit them to one P-function curve given by
(13). This gives an average value of T, and ignores this
slight but systematic increase of T with size. If we ig-
nore this dependence of T, on the size we can collapse our
calculated values of T(L, T) for all size lattices by finding
one set of parameters that fit all the data for P(T) ob-
tained &om the lattices considered here. This, however,
ignores the systematic dependence of the pseudocritical
temperature on the size of the lattices used to extract the
P function and thus yields a poorer determination of the
critical temperature as compared to the estimate of T,
obtained by using the largest possible L. Thus, the con-
clusion of this study of the finite-size scaling of T(L, T)
above T, is that the most accurate lower bound for T, is
the one obtained for the largest size lattices used in this
work and it is T, = 0.883(16). Next, however, we shall
study the scaling of the superHuid density below T, and
we shall provide a more accurate way to estimate T, .

0.000—
TABLE I. Fitted values of the parameters (13) of the P

function (15) for each lattice pair.
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FIG. 2. The P function obtained from the 300 x 300 and
400 x 400 lattices and from various values of T.

Lg, L2
30,40
40,60
60,80
80,100

100,300
300,400

0.906(93)
0.891(64)
1.12(25)
1.15(36)
1.00(15)
1.10(52)

0.535(82)
o.s02(s8)
0.75(21)
0.56(23)
0.550(99)
0.56(28)

T
0.8509(81)
0.8621(49)
0.846(16)
0.875(16)
0.87S7(S7)
0.883(16)
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Iv. FINITE-SIZE SCA.LINC BELOM T,:
THE RATIO T/Y

TABLE III. Calculated values for K(L, T) for difFerent

temperatures and lattice sizes.

Let us consider the dimensionless ratio

K(L, T) = T/T(L, T). (16)

In Table II and Table III the values of K(L, T) for difFer-
ent temperatures below T, and various lattice sizes are
given. We wish to extrapolate our. calculated values to
the limit L m oo. For that we need an extrapolation
formula and we shall derive one using the RG calculation
of Nelson and Kosterlitz. These RG equations are

T
0.8783
0.8772
0.8760
0.8696
0.8547
0.8333
0.7407

80
1.3677(17)
1.36252(42)
1.3574(17)
1.33104(41)
1.27453(38)
1.20530(14)
0.980244(78)

300100
1.3718(26)
1.36634(42)
1.3609(27)
1.33287(41) 1.33924(41)
1.27567(38) 1.27853(57)
1.20563(17) 1.20808(35)
0.980373(78)

K(L, T)

400
1.382(17)
1.37642(86)
1.371(15)
1.34006(62)
1.27949(77)
1.20703(52)

( ) 4s2(IT)

= [2 —wK i(l, T)]y(l, T),

(17)

K(0, T) = T/T p,

y(0, T) = yp exp[—~/K(1, T)]. (19)

The precise values of the constants To, yo, and e are of
no importance to us here. The solution to (17) and (18)
can be written as

z —lnz —2x y =C, (20)

where z = 2K/m' and C is a constant depending on the
initial conditions. The topologically "ordered" phase is
given by the set of curves, for which y ~ 0 but z & 1.
The critical temperature is the largest temperature where
this condition can be fulfilled. For the corresponding
curve the constant C = 1 and T, is obtained via z„
which itself solves

TABLE II. Calculated values for K(L, T) for diferent tem-
peratures and lattice sizes.

where l = ln L, and ln y is the chemical potential for cre-
ating a single vortex. We wish to solve these RG equa-
tions for a finite length scale L on a square lattice. The
solution for finite L will correspond to a square of size
L x L with &ee BC's. The infinite-L value of the su-
perHuid density is clearly independent of the BC's. In
addition, we believe that di8erent BC's will only give a
difFerent value for the constant prefactor of the leading
finite-L correction, but the same exponent of the leading
L-dependent correction.

To solve Eqs. (17) and (18) we chose the initial condi-
tions to be3

z, —1 —lnz, = 2n exp( —2/z, ). (21)

with

z=z+z, (23)

z —C —lnz=0,

and expanding in z up to the second order, we have

(24)

2(1-z)
1 —c exp [4/(I/z —1)]

z(t, T,) =—1/2
l + c'

(25)

(26)

Here c, c' are constants of integration. In terms of
K (T)—:K(L ~ oo, T) and L these equations take
the form

K(L M oo T) K (T) ~

1 + 4(~ gx @pi ~)

t' 2(1 —K (T)/K, ) i

(27)

K(LT) =K,
i

1—( 1/2
lnL+ c') (28)

Here K, = n/2 for the Kosterlitz-Thouless-Nelson ap-

We set yp = 1 and x = m/2 (see also Ref. 4).
Now, let us find the solution z(l, T) close to the critical

temperature T, in the limit I -+ oo. From (17) and (20)
we obtain

dz—= 4(z —t" —ln z).
dl

Introducing

T
0.8783
0.8772
0.8760
0.8696
0.8547
0.8333
0.7407

20
1.33549(61)
1.33130(61)
1.32693(80)
1.30467(39)
1.25691(37)
1.19457(34)
0.97839(13)

30 40
1.34840(83) 1.35610(84)
1.34374(62) 1.35119(62)
1.3391(10) 1.3463(14)
1.31553(40) 1.32093(40)
1.26491(37) 1.26886(38)
1.19939(17) 1.20215(35)
0.97930(13) 0.97982(13)

K(L, T)

60
1.3637(13)
1.35852(63)
1.3534(15)
1.32697(20)
1.27226(38)
1.20407(17)
0.980244(91)

T
0.8783
0.8772
0.8760
0.8696
0.8547
0.8333
0.7407

K(L = oo, T)
1.3902(22)
1.3849(9)
1.3788(50)
1.3448 (7)
1.2803(3)
1.2083(2)
0.98045(5)

1.266(043)
1.309(32)
1.34(12)
1.350(53)
1.211(40)
1.565(99)
1.115(75)

Kc
1.5984(78)
1.5885(54)
1.583(27)
1.5800(78)
1.5926(44)
1.5300(82)
1.4331(4)

TABLE IV. Fit results to Eq. (27) using K, and c as fitting
parameters.
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FIG. 4. T/T(L, T) as a function of L at T = 0.8547. The
solid curve is the fit to (27).

FIG. 5. T/'r(T) at I = oo as a function of T. The solid
curve is the fit to (30).

proach. The leading correction due to finite L below T,
is given by

K(L -+ oo, T) = K (T)(1+D[1—K (T)/K, ]

x L 4(Kc/K (T)—1)&

g) 29)

ferent temperature values, we used the form

T ) 1/2

K (TmT)=K, 1 —b~1 ——
~T) (30)

TABLE V. Fit results to Eq. (27) taking K, = n'/2.

K(L = oo, T)
1.3962(88)
1.3876(12)
1.381(37)
1.3456(6)
1.2810(3)
1.2077(1)
0.98033(5)

T
0.8783
0.8772
0.8760
0.8696
0.8547
0.8333
0.7407

C

1.37(11)
1.393(32)
1.a8(73)
1.410(47)
1.384(27)
1.156(26)
0.263(18)

where the constant prefactor D depends on the BC's.
Notice that the L-independent factor [1 —K (T)/K, ] is
needed in order to obtain the same extrapolated value at
T, if one takes the infinite-L limit first and the T ~ T,
limit afterwards or vice versa. For the values of L and T
used in our calculation the two forms (27) and (29) are
very close because L ( '/' (+) ) )& ].. Thus
calculation we have obtained the same values for the ex-
trapolated K (T) within error bars by using either form.
In the tables we have chosen to give the results obtained
with (27).

First using Eq. (27) with K, as a fitting parameter we
can extrapolate to the L + oo limit for a given T. Figure
4 shows a typical fit. In Table IV the results of our Gts
to the form (27) are presented. We find an average value

K, = 1.558+0.059. Since this value of K, is, within error
bars, the same as the one obtained by Nelson-Kosterlitz,
we fixed the value of K, = vr/2 and performed another set
of extrapolations to the L ~ oo using (27) with c as the
only fitting parameter. The results of this fit are given in
Table V and the extrapolated values of K(L ~ oo, T) are
the same within error bars as those obtained by letting
K, be a free parameter.

After having determined the values for K (T) for dif-

TABLE VI. Fit results to Eq. (30). y is computed per
degree of freedom.

Data points
7
6
5

K, 6 T 2

1.6163(31) 0.9390(33) 0.8984(5) 0.69(71)
1.5673(82) 0.890(13) 0.8924(10) 0.77(82)
1.622(57) 0.958(96) 0.8982(61) 0.2(10)

to fit our values for K (T) in order to deterxnine the
discontinuity and the value of T„using K, and b as free
parameters in the fit. This form can be derived from
the Nelson-Kosterlitz RG equations where the values for
K, = vr/2 and b 0.5. Table VI gives the results of
three difFerent fits. The first fit includes all seven data
points for K (T) given in Table IV. This fit is shown in
Fig. 5. In the second fit we have excluded the point that
corresponds to the lowest temperature. In the third fit
we have excluded the two points that correspond to the
lowest two temperature values. All three Gts give within
error bars the same values of K„b, and T, . Note that
K, = vr/2 cannot be ruled out within error bars.

Since within our error bars K, = x/2 in agreement
with the RG equations we repeated the procedure de-
scribed above by fixing the value of this parameter to
vr 2. The results of this fitting procedure are given

'
given in

able VII. Here we Gnd that the fit which includes the
temperature T = 0.7407 is much worse (compare the
values of g2 in Table VII) than the other two fits. There-
fore we believe that Eq. (30) is not a good approxima-
tion for T 0.75. Thus our fits give values of K, very
close to 7r/2 and all our values of T, are given in the
range T, = 0.895 6 0.004 Thus, our values for the critical
temperature are in good agreement with other critical
temperature estimates [see for example Ref. 11, where
T, = 0.894(5) is given].
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TABLE VII. Fit results to Eq. (30) by taking K, = s'/2.
is computed per degree of freedom.

Data points
7
6
5

6
0.91736(15)
0.8999(10)
0.9000(32)

+C

0.89016(4)
0.89220(13)
0.89219(24)

x'
63.13(63)
0.01(71)
0.02(82)

K(L, T) at T, for various values of L, obey reasonably
well the form (28). Fitting K(L, T,) to the expression
(28) yields K, m/2 and c' = —1.18 6 0.26.

V. SUMMARY

We have thoroughly investigated the finite-size scaling
properties of the superfluid density of liquid helium in
a pure two-dimensional geometry above and below the
critical temperature. We found that the ratio T/'r feels
very strong 6nite-size e6'ects. By solving the RG equa-
tions (17) and (18) for finite L we were able to find the
leading finite-size correction below and at T,. Our nu-

merically calculated values of T/T faithfully obey these
finite-size scaling forms and thus we can safely extrapo-
late to the infinite-size lattice. The obtained values for
the ratio T/T within error bars were found to be in very
good agreement with the Kosterlitz- Thouless-Nelson the-
ory and experimental results.

Having been able to keep the 6nite-size eKects due to
the finite L under control, we now plan to study films of
finite thickness, namely, of size L x L x H where L ))H.
We need to remove the finite-size eH'ects due to 6nite L
and then study the 6nite-size scaling of the superfluid

density with H. Ft.om theoretical and experimental in-
vestigations (see for example Refs. 14, 15) we are led to
the conclusion that at a certain crossover temperature all
helium 6lms start behaving as two-dimensional systems.
In a film geometry the dimensionless ratio T/T has to
be replaced by the dimensionless ratio T/(TH). Since it
is expected to exhibit 6nite-size eHects with respect to
the planar extensions of the film, it will be necessary to
extrapolate to the infinite plane. The finite-size scaling
should be governed by Eq. (27) and (28). The infinite
planar size values of T/(TH) should behave according to
Eq. (30). We are in the process of extending our work to
such finite-thickness helium films and we shall discuss our
finding in relationship to the experimental findings.

We would like to add a final comment. We have shown
that because of the expression (11) for the temperature
T* above T„where the KT correlation length becomes of
the size of the system, significant finite-size effects such
as those shown in Fig. 1 appear in the measurement of
the superfluid density. In fact, because of this very weak
dependence of T' —T, on L, finite-size effects in real 2D
helium 6lms should be observable for very large planar
6lms. For example, taking L as large as 100 cm we find
that T'/T, —1 10 —10 s and this seems larger than
the experimental resolution.
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