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Superconductivity in a quasi-one-dimensional spin liquid
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The single-rung t-J ladder is analyzed in a mean-field theory using Gutzwiller renormalization of the
matrix elements to account for strong correlation. The spin-liquid (resonance valence bond) state at
half-filling evolves into a superconducting state upon doping. The order parameter has a modified d-

wave character. A lattice of weakly coupled ladders should show a superconducting phase transition.
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There is a striking difference between the properties of
a chain and a ladder (double chain) antiferromagnetic
(AF) s= —,

' Heisenberg model. Whereas the chain has

power-law decay of the AF correlations, the ladder has a
purely exponential decay and a finite energy gap in the
spin-excitation spectrum, i.e., a spin gap (see for example
Ref. 1). If, as is the case for other spin-gap systems, the
spin gap persists to finite doping, then the possibilities for
superconducting fluctuations are greatly enhanced in
ladder systems. Recently we pointed out that compound
Sr2Cu406 offers the possibility of realizing a lattice of
weakly coupled ladders. ' This compound is a member
of the homologous series Sr„,Cu„+,02„, which differ
from known high-T, cuprates through the presence of a
parallel array of line defects in the CuOz planes. In this
letter we examine the properties of undoped and lightly
doped ladders described by a t-J model within a mean-
field approximation which uses a Gutzwiller renormaliza-
tion factor to approximate the local constraint. Super-
conducting correlations of a modified d-wave symmetry
are predicted. The system of weakly coupled chains
offers an interesting example of a short-range resonance
valence bond (RVB) state in a system intermediate be-
tween l and 2 dimensions.

The basic model we apply is the t-J model on the
ladder with the Harniltonian

and
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where f„=2 and fr =1 and N is the number of lattice
sites. The summation over k is restricted to —m & k„&m

and k equals to 0 (bonding) or n(antibonding). . In (2)

and analogous g, and gJ on the rungs with ( ) and

( )o the expectation values in the projected and

unprojected state, respectively. These g factors are deter-
mined by the ratio of the probabilities of the matrix ele-
ments in the projected and unprojected states. The re-
normalized coupling constants are then defined by
J =J gJ and t =tg«.

Using the fermion representation for the Heisenberg
term in (1), we introduce two types of mean fields,

y, = (c;+l, ,c;, , )o and b,„= (c;+l, &c;,&)o, and

(c l c p )p and b,lt=(c, , &c, 2&)tl, a bond and pair-

ing mean field, respectively. The t-J model is then re-
duced to a renormalized Hamiltonian with the constraint
released

+ g[J g S+, , S;,+J S;, S;2],
a =1,2

where i runs over all rungs and a over the two legs, 1 and
2. The constraint g, c...c...~ 1, projecting out all the
doubly occupied states on each site, is implied. We ex-
amine this model within the mean-field theory used by
Zhang et al. for the two-dimensional (2D) square lattice.
The constraint is taken into account approximately by a
Gutzwiller-type renormalization of the coupling constant
along the chain,

s„=—2+f (t + —,'J y )cosk —p,
a

with p as the effective chemical potential. We calculate
the Gutzwiller renormalization factors by including the
correlations of the probability between the two nearest-
neighbor sites, which improves the approximation of
Ref. 6. They are given by
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where n is the electron density and 5=1—n is the hole-
doping concentration.

The mean-field Hamiltonian has to be solved self-
consistently together with the mean-field-dependent
Gutz wilier renormlization factors. Additionally, the
chemical potential is chosen to give the correct electron
concentration, n =1—5=( &; )0. Numerical solutions of
these mean fields as a function of doping concentration
are plotted in Fig. 1 for realistic parameters, t ty and
J Jy 0 3t Within this mean-field treatment the ex-
citations are described by the effective quasiparticle Ham-
iltonian obtained by standard Bogolyubov transformation
of &M„, %«=Q„~, ,E„y„~y«with the spectrum

Ez =c&+hz. The quasiparticles define the ground state
by the condition yk ~4o) =0. For finite b, i, these excita-
tions have always a finite gap.

We begin at half-filling where this system reduces to a
Heisenberg ladder. This case was considered by various
groups for different couplings along the chains J„and
rungs Jy. ' ' In the limit J »J &0 the ground state
consists essentially of singlet dimers on each rung leading
to a spin-liquid (singlet) ground state. The lowest spin
(triplet) excitation is obtained by replacing one singlet by
a triplet dimer with an excitation energy —J —J . By
numerical diagonalization and dimer mean-field treat-
ments it was demonstrated that the spin-liquid ground
state persists even for J —J with a spin gap of 0.4—0.6J
for J=J„=Jy. '

The mean-field solution at half-filling independent of
the coupling constants satisfies the relation
L+Lz Ay +pz py 0 This state is similar to the d-wave RVB
in the square lattice, where the pairing mean fields 5
differ by a phase ~ in x and y direction. It is also identical
to the Aleck-Marston flux phase' with half integer flux
quanta as follows from a SU(2) symmetry. Upon doping,
the flux phase and the d-wave RVB state differ. In the
case of the square lattice, the d-wave RVB state is found
to have lower energy than the staggered flux phase. " We
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expect the similar result for the ladder, and will not dis-
cuss the flux phase here.

Turning to the spin excitation (singlet-triplet) we find
that it is not well described by the simple quasiparticle
Hamiltonian &«given above. The spin gap is generally
too large (=2J for J, =J ). Additionally the excitation
energy has several minima at the momenta q =(0,0),
(O, m. ), (m, O), and (m., m. ), while in the theories mentioned
above the only minimum lies at q=(m. , n. ).

We can remedy this flaw in our treatment partially by
taking the residual interaction among quasiparticles into
account. Most easily the spectrum of the spin excitations
can be obtained from the dynamical (transverse) spin sus-

ceptibility, g(co, q)=((S:q,Sq )) . We use the equation
of motion to determine g(co, q) on the level of RPA in-

cluding the residual interaction. In Fig. 2 we show the
spectrum Imp(co, q) at q=(m, n) for both the simple
mean-field and the random phase approximation (RPA)
corrected result with J =J . The RPA shows a sharp
excitation peak at =0.15J and a broad continuous spec-
trum between about 2J, -3J„which is the strongly
suppressed remainer of the continuous excitation spec-
trum of &«. The analysis of the full q dependence shows
that the minimal excitation is obtained at q=(m, m). The
corresponding binding energy is rather large bringing the
excitation gap down to a value of 0.15J which is only
slightly smaller than the one found in other calculations
(=0 5J )

As a consequence of the local constraint the singlet di-
mer on a rung is a coherent superposition of pair states
in the bonding [c;+,=(cubi, +c;2, )/&2] and the anti-

bonding [c;,=(c;, , —c, z, )/&2] state, i.e., avoiding

double occupancy the rung state

(1/ 2)(c;+tc;+i —c;—tc;—i )IO~

gains the maximal exchange energy. In other words, the
splitting of the bonding and antibonding band, which
would appear in a band-structure description, is absent in
the presence of the local constraint so that they are equal-
ly filled at half-filling.

-0.40
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. The mean fields as a function of the doping concen-
tration for J„=J~ =J=0.3t.

FIG. 2. The spectrum of the spin excitations for
J„=J~ =J=0.3t and q=(m. ,n. ). The solid line denotes the exci-
ton spectrum obtained from RPA and the dashed line the
mean-field quasiparticle spectrum neglecting the interaction
among the quasiparticles. The sharp exciton mode at co=0.15J
contains practically all weight of the excitation spectrum.
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To get an intuitive understanding of the properties of
this sharp excitation found in RPA let us consider the
problem in the strong-coupling limit, J »J . In the
mean field a triplet excitation creates two quasiparticles
which may be considered as spinons freely moving and
destroying each one singlet dimer. The energy loss is
3J /2, neglecting the kinetic energy contribution. These
two quasiparticles can form a triplet dimer on a rung
with the lower energy J . Thus, there exists an effective
attraction between them leading to a bound exciton state
within the quasiparticle excitation gap. This interaction
has only an attractive triplet channel if one of the two
quasiparticles is in the bonding and the other in the anti-
bonding band. Furthermore, the kinetic energy of the
triplet dimer is given by J„cosq which is lowest at

q =m.. Hence, we interpret the sharp excitation in the
RPA calculation for J„=J as an exciton with lowest en-

ergy at q = ( m, m ) and the reduced continuum above
-2J„as a spinon continuum (Fig. 2).

Upon doping holes the two quasiparticle bands which
are degenerate at half-filling split. The antibonding band
is raised and the bonding band slightly lowered relative to
the chemical potential. As holes are doped the kinetic
energy can be lowered if they occupy preferentially the
antibonding band. In this way the antibonding band is
gradualy emptied down to a critical doping 5„where
eventually only the bonding band is occupied. The loss of
antibonding electrons leads to a gradual decrease of the
pairing amplitude b, which disappears eventually at 5, .
The long tail of finite b, down to 5, may be an artifact of
our approximation.

The behavior of 6 yields a monotonic decrease of the
quasiparticle excitation gap described by &,s; On the
other hand, the spin-excitation band formed by the triplet
exciton is shifting nonmonotonically with doping leading
to an increase in the spin gap at small doping (see Fig. 3,
for coupling constants t„=t =t and J„=J~=J=0.3t).
With the shift of the Fermi levels in the antibonding band
the optimal relative momentum q for a triplet exciton of
two quasip articles deviates gradually from m. Since
q„=n. yields the strongest attraction this deviation weak-
ens the interaction and decreases the binding energy.
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FIG. 3. The spin gap as a function of the doping concentra-
tion for J =J~ =J=0.3t. The solid line denotes the bottom of
the quasiparticle spectrum and the dashed line the gap of the ex-

citon state.
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FIG. 4. The superconductivity order parameter versus the

doping concentration for J„=J~ =J=0.3t.
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The resulting increase of the spin gap for small doping
shows that here hole doping suppresses antiferromagnetic
correlation and stabilizes a spin-liquid state. Also results
of exact diagonalization confirm this tendency. '

The BCS superconductivity order parameter is given

by the pairing mean field multiplied by the Gutzwiller re-
normalization factor g, as shown in Ref. 6. In Fig. 4 we

show the two components of bsc~=h~g«. There is a
phase difference of m. between 5sc, and hsc~, reminding
one of d-wave pairing, although d-wave is a misnomer in

this low-symmetry system.
In summary, our mean-field theory of the t-J ladder

model gives a description of the doped spin-liquid system.
The spin-liquid state persists for a finite-doping region
away from half-filling and seems even to become more
stable with weak doping. Although mean field is certain-
ly not a good concept for quasi-1D systems, we have seen
that qualitatively reasonable results are obtained. We
may expect that weak interchain (intraplanar and inter-
planar) coupling would lead essentially to a 3D situation
stablizing the mean-field solution. The superconductivity
obtained in this theory is intimately connected with the
existence of a spin-liquid state (see also in Refs. 2 and 13).
Considering their energy scales we observe that at light
doping the spin gap is by far larger than the supercon-
ducting pair-correlation energy. Beside the triplet exci-
ton mode discussed here we expect in the doped region a
low-lying collective (sound) mode in connection with the
superconducting order will occur. '"

Our result suggests that also for chains extended in y
direction having 4, 6, or a larger even number of parallel
chains would qualitatively be very similar. Although the
spin gap must be diminished with growing system size, as
recent mean-field calculations show, the concept of the
doped spin-liquid system is still applicable. In this sense
the superconducting state would continuously tend to a
real d-wave state, if we would extend the lattice in y
direction approaching in this way the 2D square lattice.
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