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Mesoscopic Josephson junctions in the presence of nonclassical electromagnetic fields
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Circular superconducting devices with mesoscopic Josephson junctions are considered in the presence
of a dc voltage bias Vo and of nonclassical electromagnetic fields. It is shown that when the voltage Vo is

an integer multiple of a certain value, the current through the junction has a dc component. This is

broadly similar to Shapiro steps in macroscopic Josephson junctions, but the details depend on the na-

ture of the nonclassical electromagnetic field. Coherent states, squeezed states, and number eigenstates
are considered and the corresponding Shapiro steps are studied in detail. The presence of thermal noise
in the nonclassical fields is also considered and its effect on the results is studied.

I. INTRODUCTION II. MKSOSCOPIC JOSEPHSON JUNCTIONS

Nonclassical light (squeezed states, number eigenstates,
etc.} have been studied extensively in the last few years
and produced experimentally in several laboratories (for
reviews, see Refs. 1). The emphasis in these studies is on
the properties which are due to the quantum nature of
light and which cannot be understood classically. In this
paper we consider the interaction of nonclassical elec-
tromagnetic fields with mesoscopic Josephson junctions.
The effect of classical electromagnetic fields on (macro-
scopic) Josephson junctions is of course well known. 2 In
the last few years mesoscopic Josephson junctions (with
very small capacitance C and at very low temperatures}
have been studied extensively. Here we study their
behavior in the presence of nonclassical electromagnetic
fields.

In Sec. II we study the Hamiltonian that describes
mesoscopic Josephson junctions. The phase 8 and the
charge q are dual quantum variables and therefore they
can feel the quantum nature of external nonclassical elec-
tromagnetic fields. In Sec. III we consider these junc-
tions with a dc bias voltage Vo and in the presence of
coherent states, squeezed states and number eigenstates.
It is shown that when the voltage Vo is an integer multi-

ple of a certain value, the current through the junction
has a dc component which could be observed experimen-
tally. This is of course similar to Shapiro steps in mac-
roscopic Josephson junctions, but we show that the de-
tails depend on the nature of the external nonclassical
field. For squeezed vacua for example, the voltage steps
are double in size than for other squeezed states. For
number eigenstates we do not get any dc currents at all.
The presence of noise in the external nonclassical fields
is also considered and its effect on the results is studied in
detail. We conclude in Sec. IU with a discussion of our
results. Details about the calculations are given in Ap-
pendix A, while Appendix B presents the units that have
been used.
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The factor 2 in the charge 2e comes from the Cooper
pairs. Ec,EJ are the Josephson and Coulomb coupling

In the last few years mesoscopic Josephson junctions
have been studied extensively. Most of this work con-
siders mesoscopic Josephson junctions with a dc current
bias and studies the Coulomb blockade of Cooper pair
tunneling. In this paper the behavior of these junctions
in the presence of nonclassical electromagnetic fields is

studied. The rnesoscopic nature of the junction is needed
in order to have a sensitive enough system which will feel

the quantum mechanical nature of the external elec-
tromagnetic field. More specifically the phase difference
8 across the junction should be a quantum variable.

The mesoscopic junction has a very small capacitance
C and operates at a very low temperature T. It is de-
scribed by the Hamiltonian (R=kii =c = 1 }:

(q+Q)'
H = +E (1—cos8)
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constants, respectively. In ordinary (macroscopic)
Josephson junctions E&~0 and EJ is much greater than

Ec I.n this case the first term in the Hamiltonian (1}is

negligible and 8 behaves as a classical variable. Mesos-
copic Josephson junctions have very small capacitance C
so that E& is not negligible. In this case the charge q tun-

nehng through the junction and the phase di8'erence 8
across the junction are quantum variables. The quantum
nature of these junctions is apparent at low temperatures.

T «f),=(EcEJ)'" .

In mesoscopic Josephson junctions used in connection
with the Coulomb blockade phenomenon, the constraint
Ez &Ez is also sometimes required, but this is not neces-
sary for our purposes.

Q is the external charge and it depends on how the
junction is coupled to the external world. When Q =0
the system is approximately a harmonic oscillator with
frequency Q. Caution is required when this approxima-
tion is used, in the sense that the (1—cos8) has an infinite
number of minima and instanton tunneling solutions be-
tween these minima might distort results obtained
through the harmonic oscillator approximation. The
eigenfunctions of Ho are periodic functions of e.

Hpy„g(8) =E„(Q)y„g(8),

y„g(8+2m)=y„g(8) .

(9)

(10)

i 8 i 8= exp Hp exp
2e 2e

Hi @„g(8)=E„+„g(8),

%„g(8)= exp y„g(8), (12)

Using Eq. (4} we see that Q can be absorbed in quasi-
periodic boundary conditions, and then it does not ap-
pear explicitly in the Hamiltonian:

H i
= ,'EcBg+EJ—(1——cos8)

III. SHAPIRO STEPS IN THE PRESENCE OF
NONCLASSICAL ELECTROMAGNETIC FIELDS

We consider a circular superconducting device with a
mesoscopic Josephson junction (Fig. 1}and we apply an
ac nonclassical magnetic field of angular frequency co&.

The Cooper pairs feel in this case both an ac vector po-
tential A; and an ac electric field E; induced by the mag-

netic field according to Faraday's law. Integration of A, ,
E, in a closed loop C gives the magnetic fiux P, and the
electromotive force VFMF, correspondingly. For nonclas-
sical fields' considered here p, VEM„(and also A;, E; ) are
dual quantum variables.

H =co,(a+a+ —,
' ),

where

(19}

[y+ ipit VEMF ]

tl VEMF]

[a,a+]=1 .

(20}

Using this Hamiltonian we find that in the Heisenberg
picture, VEMF, p evolve in time as follows:

VEM„(t)=2 '
co,i[ exp(ico, t)a+ —exp( i co,t)a]—,

P(t) =2 ' [ exp(icoit)a++ exp( icoit)a] .—
(21)

These equations are derived for a free electromagnetic
field. In the presence of electrons there are "back-
reaction" corrections which we neglect for mesoscopic
junctions with very small currents.

Apart from the nonclassical ac electromagnetic field,
we also impose a classical static electromotive force (volt-

age) Vp. This can be done in practice in various ways.
For example we can apply a classical magnetic Aux

VEMF t~l~p &

[4~ VEMF ]=ii
The Hamiltonian of the electromagnetic field in the

monochromatic case is the harmonic oscillator Hamil-
tonian:

V„g(8+2m)= exp i.7r

e
'Il„g(8) . (13)

$=Vpt .

In the Heisenberg picture the operators O, q evolve as
follows

I = B,ci= i [Hp, q] =——2eEzsin8=I, „sin8,

a, 8=t. [H, , 8]= iE,a,+2eV,„=—iE,Ds, —

where V, is the external voltage:

(14)

(15)

'=c
In the next section nonclassical external electromag-

netic fields together with a dc voltage Vo will be con-
sidered and the behavior of the above equations will be
studied.

FIG. 1. Circular superconductor with mesoscopic Josephson
junction. The classical magnetic flux P= Vot of Eq. (22) and the
nonclassical magnetic field P(t) of Eq. (21), are perpendicular to
the plane of the diagram.
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We study the case

co& »0, (23)

where Q is the angular frequency of the mesoscopic junc-
tion when it is approximated as a harmonic oscillator
[Eq. (7)]. In this case the Hamiltonian of the junction it-
self produces an evolution which is much slower than the
Hamiltonian describing the e8'ect from external fields.
For time intervals:

For simplicity we have moved the time origin by
vr/2'„so that a factor i which should be in (28) is elim-

inated. We now use Eq. (14}to calculate the expectation
value of the current in the junction, by taking the trace of
the operator I multiplied with the density matrix p
describing the nonclassical electromagnetic field:

(I}=Tr(pI) =I,„lm[Tr[p exp(i8(t) }]],
=I,„lm[ exp(ichor)Tr[pD [2' e exp(ice, t)]] ] . (30)

co& (5t (0 (24)

we can ignore the first term on the right-hand side of Eq.
(15):

B,8=2eV,„=2e(Vo+ VEMF} (25)

=co,r+2'"e exp(ice, r)a+

+2' e exp( iso, t)a +—const,

where

(26)

co0=2eVO .

Therefore

exp[i8(t)] = exp(iroot)D [2' e exp(iso, t)],
where D is the displacement operator

D( A) = exp[Ha+ —A "a] .

(27)

(28)

(29)

Taking into account Eq. (21) which describes the time
evolution of the free electromagnetic fields, we get

8(t)=2eVot+2e IVEMF(t)dt

It is seen that the density matrix p of the external non-
classical electromagnetic field controls the operation of
the junction in the sense that the (I ) and also all the oth-
er quantities somebody might wish to calculate, depend
on p. By changing p we change the state in which the
junction operates. Note that in the case of a macroscopic
Josephson junction with dc voltage bias, the phase 8 has
a definite value while the charge q has an indefinite value
and tunneling occurs randomly. In the case of mesoscop-
ic Josephson junctions with dc current bias, the phase 8
has an indefinite value while the charge q has a definite
value and tunneling occurs regularly. These are two ex-
treme cases to be compared and contrasted with the ex-
periment proposed here where suitable choice of p can
make the junction to operate in any desirable state inbe-
tween. Of course in practice somebody will have to use
one of the density matrices describing nonclassical fields
which are experimentally available. In the following we

consider nonclassical fields that have been produced ex-

perimentally by the Quantum Optics Community.
Using the results from Appendix A [Eqs. (A23), (A24),

(A25)], we conclude that for squeezed states:

(I}=I,„exp[—e cosh(r)] g g g Irr [—e sinh(r)]JA[2 ~
e~ A~cosh( —,'r)]

XJM [ —2 ~ e A
~
sinh( —,'r)]

X sin[ [coo+(2k +A+M)co&]&+K(2A, +}')

+A(A, —8„)+M(A,+8„+y)] (31)

for coherent states:

(I)=I„exp( —e ) g Jz(2 e~ A~)sin[(coo+Eco&}t K8&]-
k = —oo

and for squeezed vacua:

(32)

(I)=I„exp[—e cosh(r)) g Ix[—e isnh(r)]si n[(cg 0+2ICco, )t+K(2A+y)] .
k = —oo

(33)

It is seen from Eqs. (31},(32) that for squeezed states (with 3%0) and also for coherent states, when the dc bias volt-

age Vo is such that:

CO)

coo=La))~ VO=X
28

where N is an integer, we get Shapiro dc currents similar to those in macroscopic junctions. Their values are

(34)
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Id, =I,„exp[—e cosh(r)] g g Ix[—e sinh(r)]JA[2 ~ el Alcosh( —,'r)]
K = —oo A= —oo

X(—1) + + J 2x+„)[ —2 ~ elAlsinh( —,'r)]

X sin[ N—(A, +8„+y)
—(%+A)(y+28„)],

I&, =I,„exp( —e )( —1) Jz(2 elAl)sin(N8„)

(35)

(36)

for squeezed and coherent states correspondingly. The
interpretation of this result is that the electrostatic ener-

gy coo=2eVo that the Cooper pair loses during tunneling
is compensated by N photons. It is also seen from Eq.
(33) that for squeezed vacua, when the dc voltage Vo is
such that

(I ) =I,„exp[ —e coth( —,'Pc@&}]

X g Jx(2 ~
el Al }sin[(coo+Eco&)t E8&—]

K = —oo

(42)

CO)

a)o =2N 6) )~ Vo =N
e

(37}

where N is an integer we also get Shapiro dc currents.
They are given by the equation

Apart from a factor (which is less than one}, this is the
same result as in Eq. (32} for coherent states. Therefore
the existence of noise in the electromagnetic field is not
going to affect the Shapiro staircase. The voltage steps
will be exactly the same as in the noiseless case but the dc
currents will be smaller by a factor

Id, =I,„exp[ —e cosh(r)]I&[ —e sinh(r)] f = exp[e [1—coth( —,'Pc@,)]] (43)

Xsin[ —N(2A, +y)] . (38)

Note that the voltage jumps here are double in size in
comparison with the voltage jumps in Eq. (34). This
rejects the fact that

(2N+110;rye& =O, (39)

where l2N + 1 ) is an odd number eigenstate, and conse-
quently the electrostatic energy coo=2eVo that the Coop-
er pair looses is compensated by an even number of pho-
tons. It is clear from Eqs. (34), (37) that we can distin-
guish Shapiro steps due to coherent states from Shapiro
steps due to squeezed vacua by looking at the size of the
voltage steps in the two cases.

We see from Eqs. (35), (36) that the dc currents depend
on el A

l through Bessel functions. In the case of coherent
states [Eq. (36)], when el A

l takes values such that:

(40)

where j&M are the roots of the Bessel functions
(J&(j&M ) =0},the dc current becomes equal to zero.

For the density matrix of Eq. (A6) we get [using Eq.
(A27)]

(I)=I„exp( —e )sin(toot) g p&L&(2e ) .
N=O

(41)

It is clear that in this case there are no Shapiro dc
currents. Number eigenstates [Eq. (A7)], thermal states
[Eq. (A8)], and coherent states with randomized phase
[Eq. (A9}], are all special cases of the density matrices
(A6} and therefore they also do not produce Shapiro dc
currents.

We next consider the density matrix (Alo) describing
coherent states with thermal light and using Eq. (A30) we
prove:

and therefore it will be more diScult to observe them.
The results of Eqs. (34), (37) which indicate that the ra-

tio Vo/co, depends only on fundamental constants, could
be useful in metrology. In this direction it is very impor-
tant that these results are not going to be affected by the
presence of thermal noise in the nonclassical electromag-
netic fields.

We also consider the density matrix (All) describing
coherent states with partially randomized phase and us-
ing Eq. (A31) we prove:

(I ) =Tr(pI) =I,„exp( —e ) g J&[2 el A
l ]

N= —oo

d6I„
X f p(8& }sin[( c+ooN &)tot N8& ] . (44)—2'

It is seen that Eq. (34) of the voltage steps is not
affected by the fact that the phase of the coherent state
might be partially randomized. Only in the case of
coherent states with fully randomized phase, the Shapiro
dc currents disappear altogether.

IV. DISCUSSION

Mesoscopic Josephson junctions are very sensitive de-
vices that can respond to the quantum nature of external
nonclassical electromagnetic fields. In this paper we have
studied their behavior in the presence of a dc voltage bias
Vo and various types of nonclassical fields. The basic
idea is to treat the I,8 of Eq. (14) as quantum mechanical
operators. The phase operator 8 is then expressed in
terms of the electromagnetic field operators in Eq. (26),
and the expectation value of the current (I ) is given in
Eq. (30}as the trace of the density matrix p multiplied by
the operator I„sin8. We have shown that in the case of
coherent states and squeezed states (with A %0}and for
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values of the voltage Vo given by Eq. (34},the current has
a dc component that could be observed experimentally.
For squeezed vacua the same result holds, but the voltage
steps are double in size [Eq. (37)]. For number eigen-
states or pure thermal noise there are no dc currents for
any value of the voltage Vo. The case of coherent states
with thermal noise has also been considered and it has
been shown that the voltage steps of Eq. (34) are not
affected by the noise, but the value of the dc current is re-
duced by the factor of Eq. (43). The results of Eqs. (34),
(37) could be useful in metrology. The ratio Vo/co, de-

pends only on fundamental constants and is not affected
by the presence of thermal noise in the nonclassical elec-
tromagnetic fields.

In this paper we have concentrated on the quantity
& I & and more specifically on its dc component because it
can be observed experimentally providing a confirmation
of the theory. Another interesting question would be to
study the statistics of the electron tunneling and see how
it is related to the statistics of the photons in the nonclas-
sical electromagnetic field. It is well known that coherent
states of light exhibit Poissonian statistics, squeezed
states exhibit sub-Poissonian statistics (at least for some
values of the parameters) etc. How the statistics of pho-
tons in the nonclassical light affects the statistics of elec-
trons tunneling through the junction is an interesting
question that should be explored.

The above results have been presented in the context of
Josephson mesoscopic junctions described by the Hamil-
tonian (1), but they could be generalized for other mesos-

copic junctions. There has been a lot of research in this
area in the last few years and the purpose of this paper is
to present some interdisciplinary research which exploits
the quantum nature of the nonclassical electromagnetic
fields studied in quantum optics, in order to control the
behavior of mesoscopic quantum devices.

APPENDIX A

In this appendix we consider several types of nonclassi-
cal electromagnetic fields described by density matrices p
and calculate the trace which appears in Eq. (30):

We also consider states described by the density ma-
trices

p= X p~l» & NI,
N=O

&IN=1 o —SN(1

(A6)

where IN & are number eigenstates and pz some probabil-
ity distribution. Special cases of these states are the fol-
lowing:

(i) The number eigenstates

p=l»&NI .

(ii) The thermal states

p,„=[1—exp( —Pco, ) ) exp[ —Pc@,a +a]

(A7)

=[1—exp( —Pco, )] g exp( Pco,N—)IN &&N
N=o

(A8)

(iii) The "coherent states with randomized phase"

d8„
p= J'

ll ~
I exp(i8~ ) & & I

~
I exp(i8~ ) I2'

I

gl2x= exp( —I&I ) g, IN&&NI .
N=O N.

(A9)

We consider coherent states with thermal noise, de-
scribed by the density matrix

p=D( A)p, hD+( A)

=[1—exp( —Pro&)] exp[ —Pro|(a+ —A ')(a —A)]

(A 10)

and "coherent states with partially randomized phase, "
described by the density matrix

d0q
p =I p (8„)I I

~
I exp(i8„) & & I

A
I exp(i8„}I,2'

Tr [pD [g exp( i'& t) ]], (Al) (Al 1)

I
A;r Ay&= (Sr Ay)IA &=S(ry)(, }D(A}lo& (A2)

where g is a real number. We use the notation and some
of the formulas of Ref. 8. We first consider squeezed
states:

d0„f p(8„)=1 . (A12)

We calculate Eq. (Al) for all these density matrices.
We start with squeezed states and use the relations:

Ordinary coherent states are a special case
(r =y =A, =O) of these states:

l~ &=D(&)lo& . (A4)

S(rye)= exp[ ,'r, e 'r(a+) + ,'re'ra —] e—xp(isa+a) . —

(A3)

S+(ry A)aS (rye)=pa , +va,
S+(rye, )a+S(rye)=v*a +@*a+, ,

p= exp( —iA, )cosh( —,'r),

v= —exp[ i (A, +y)]—sinh( —,'r)

(A13)

(A14)

(A15)

(A16)

The squeezed vacuum (A =0) is also another special
case

to prove

& A;ry A ID [(exp(ice&t)]l 3;ry A& = exp[ —Y+iX],

lo;rye&=s(rye)lo& . (A5) (A17)
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X =2g ~
A

~
[cosh( —,

' r )sin(co, t +I,—8„)
—sinh( —,

' r )sin(co, t +A, +8„+y )],
Y =

—,'g [cosh(r)+ sinh(r) cos(2'&t +2k, +y)],
8„=arg(A) .

Using the formulas

(A18)

(A19)

(A20)

exp[i' sin8] = g JN( A) exp(iN8),
N= —oo

(A21}

exp[ A cos8]= g IN( A ) exp(iN8),
N= —oo

(A22)

where JN(A), I&(A) are Bessel and modified Bessel func-
tions, respectively, we expand this result into

exp( —Y+iX)= exp[ —
—,'g cosh(r)] g g g Itt[ —

—,'g sinh(r)]J&[2$~ A~cosh( —,'r)]
K= —oo A= —oo M= —oo

XJ~ [—2g A
~
sinh( —,

' r ) ]

X exp[i'(2', t+2A+y}+iA(co, t+A, —8„)
+iM(ra&t +A, +8&+y)] .

In the special case of coherent states Eq. (A17) reduces to

( A ~D [g'exp(iso, t)] ~
3 ) = exp[ ,'g—+—i2(~A ~sin(co, t —8„)]

(A23)

= exp( —
—,'g } g Jx(2$~ A~ }exp[i'(co,t —8„)]

K= —oo

In the special case of a squeezed vacuum Eq. (A17) reduces to

(0;rye ~D [g'exp(iso&t)]~0;rye, ) =expI —
—,'g' [cosh(r) —sinh(r} cos(2'&t+2A+y+m)] j

(A24)

= exp[ —
—,'g cosh(r)] g Ix[—,'g sinh(r)] exp[iE(2', t+2A, +y+n)] .

K = —oo

For number eigenstates we get

(N~D [(exp(iso, t)]~N) = exp( ,'g )L~(g )—, —

(A25)

(A26)

where LN are Laguerre polynomials. The matrix elements appearing in (A26) have been calculated in Refs. 10. Using
this result we calculate the quantity of Eq. (Al) for the density matrix (A6):

TrIpD [/exp(iso, t)]j = exp( —
—,'g ) g p~L~(g ) .

N

We can now calculate this quantity for the thermal states of Eq. (A8)

(A27)

Tr[p,„D [(exp(iso, t}]j = exp( —
—,'g )[1—exp( Pro, )]—g exp( Pcs,N)L&(g —)= exp[ ,'(cot—h(—,'P'to, )]-

N

(A28)

and also for the coherent states with randomized phase of Eq. (A9).

g 2N

Tr[pD[gexp(ice, t)]j = exp( —
—,'g )exp( —

~
A )g, L~(g' )= exp( —

—,'g )Jo(2(~ A~),
N

(A29)

where Jo is a Bessel function.
In the case of coherent states with thermal noise [Eq. (A10)] we get

Tr[pD [/exp(iso, t)] j =Tr[D ( A)p, „D+(A)D [g exp(iso, t)] j

= exp[i2$~ A~sin(co, t —8„)]Tr[p,hD [/exp(iso, t)] j

= exp[i2$ A~sin(co, t —8„)]exp[ —
—,'g coth( —,'Pco, )]

= exp[ —
—,'g' coth( —,'18', )] g Jx(2$ A~) exp[i%(co, t —8„)].

K= —oo

(A30)
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In the case of coherent states with partially randomized phase [Eq. (A11)] we use Eq. (A24) to prove:

dO„
Tr[pD[g'exp(iso, t)]j =f p(0„)exp[ —

—,'g +2(~ A~sin(to, t —0„)]
00 de~= exp( —

—,'( ) g Jx(2$~ A~ ) exp(iKco, t)f p(8„)exp( i—KO„) .
K = —co 27

(A31)

APPENDIX 8

In the system of units that we use Ez =A= c = 1 and
all quantities are expressed in appropriate powers of eV.
The charge of the electron is dimensionless and is equal
to

4m

137

The following relations help the conversion from the
ordinary units:

1 A=1230 eV,

1 V=3.3 eV,

1 0=2.6X10 ',
1 %'b=5X 10'

1' K=0.86X10 eV,

1 em=0. SX10 eV

1 sec=1.53X10' eV
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