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Asymptotic states in long Joseyhson junctions in an external magnetic field
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Asymptotic states in long Josephson junctions are investigated in an external magnetic field. We show

that a choice of the solution of the stationary Ferrell-Prange equation can be carried out with use of an

asymptotic solution of the sine-Gordon equation and that an evolution to that stable solution occurs by
passing through metastable states, which is determined with a form of quickly damped initial perturba-
tion. The boundary sine-Gordon and Ferrell-Prange problems were carried out with a numerical simula-

tion. An approximated expression for the vortex and antivortex states is obtained in the case of large
values of an external magnetic field.

The problem of magnetic field penetration in long
Josephson junctions is in a sense a classical one. ' Nev-
ertheless, interest in it has not abated. ' For example,
in long Josephson junctions a dynamical chaos was
discovered. ' A long Josephson junction is a very
good system to study Josephson vortex (fluxons, solitons)
motions and vortex interactions. ' '

It is well known that a weak magnetic field penetrates
exponentially in a long Josephson junction. In a strong
magnetic field a state of the long Josephson junction
arises that is characterized by the appearance of a
Josephson vortex. An equation that describes this
phenomenon is nonlinear and in a general case it is the
driven damped sine-Gordon equation. In a stationary
case we have the nonlinear Ferrell-Prange equation and
one would think the stationary states of a long Josephson
junction represent solutions of the above equation, al-
though it turned out that the Ferrell-Prange equation has
more than one solution and the number of them increases
by increasing the total length L of the long Josephson
junction. Consequently, the problem of the selection of
solutions arises. Considering this problem from the ther-
modynamic point of view one can affirm that a solution is
realized which corresponds to a minimum of the thermo-
dynamic potential. However, the situation turns out to
be more complicated. In fact, if we suppose that the
minimum of the thermodynamic potential is satisfied
with some solutions of the stationary equation, then this
criterion for selection of the solutions turns out to be
insufficient. Apparently this is precisely what takes place
in our case. In the present work it is shown that the
problem of the selection of solutions for the stationary
Ferrell-Prange equation is unequivocally solved in the
following way: An asymptotic solution of the nonstation-
ary sine-Gordon equation is found that coincides with the
solution of the stationary Ferrell-Prange equation by
t~~, and what is more either asymptotic solution,
which is realized, depends on a form of rapid damped ini-
tial perturbation or on a way of switching on an external
magnetic field. This exceptionally important role of ini-
tial perturbation that appears as a trigger mechanism is
obviously explained by system nonlinearity.

We consider a long Josephson junction in an external

y is the dissipative coeScient per unit area, 4o is the flux

quantum, j, is the critical current density of the super-
conductor, d=2AL+b, AL is the London penetration
length, b is the thickness of the dielectric barrier, and C is
the junction capacitance per unit area.

Conditions corresponding to the presence of the exter-
nal magnetic field can be modeled by the following
boundary conditions:

y„(x, t )i„,=q „(x,t ) ~„ i =H,„,(O, t) =H,„,(L, t) .

(2)

Here and below the magnetic field is normalized to
4ol2n. k,jd, and the total length of the junction L is nor-

malized to A,z.
First of all we consider an asymptotic solution (by

t~ 00) of Eq. (l) with the boundary conditions (2) and

suppose that lim, „,H„, ( tO=)H. oAt first sight the
problem is trivial, since, because all asymptotic solutions
will be stationary on account of dissipation, they will be
satisfied with the stationary Ferrell-Prange equation with
the corresponding boundary conditions:

yo„„(x) =sinyo(x),

po (x)~ =0 90 (x)~ =L HO
(3)

magnetic field H,„, perpendicular to the junction. The
Josephson phase variable q(x, t) in a long Josephson junc-
tion is satisfied with the one-dimensional sine-Gordon
equation

y«(x, t ) +2y p, (x, t) y,„(x,—t ) = —sing(x, t ),
where x is the distance along the junction normalized to
the Josephson penetration length A,z,

C p
1/2
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t is the time normalized to the inverse of the Josephson
plasma frequency coJ,
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However, numerical simulations of the boundary prob-
lem (1), (2) and (3}show that not all solutions of the prob-
lem (3) are asymptotic solutions of the problem (1), (2) or
in other words we can say that not all solutions of the
problem (3} are physically observed. For example, for
small external fields Hp & 1 there exists a solution of the
problem (3) that corresponds to an observed dumping of
the magnetic field into a junction. Simultaneously with
that solution another solution of the problem (3) exists
that gives very strong growth of a field in the same direc-
tion into a long Josephson junction. To cut off "nonphys-
ical" solutions supplementary considerations are attract-
ed in the form of a condition of the minimum of a ther-
modynamic potential, as was mentioned above.

The results of problem (1},(2) simulations showed that
"nonphysical" solutions are never realized in the asymp-
totic approximation. The reason for the lack of asymp-
totic "nonphysical" solutions is their instability relative
to small perturbations.

We show that the stationary solution yo(x }of the prob-
lem (3) is stable then and only when all values of the spec-
trum E are positive, i.e., E;„&0, for the boundary prob-
lem

—u„„(x)+u (x )cosyo(x }=Eu (x),
u„(x)l.=o=u„(x }I.=g =0 .

To prove this assertion we shall linearize the sine-
Gordon equation in the vicinity of stationary solution
yo(x); i.e., we shall suppose p(x, t) =go(x )+8(x, t),
where 8(x, t) is an infinitesimal perturbation. We obtain
the equation for the function 8(x, t }from the sine-Gordon
equation taking into account the Ferrell-Prange equation:

8«(x, t) +2y 8, (x, t) 8(x, t) = 8—(x, t)co—spo(x ),
(5)

8„(x)i„o=8„(x)i„L=0 .

We can obtain a general solution of the boundary Eq. (5)
by means of the expansion of the function 8(x, t) in a
series in terms of a complete system of eigenfunctions of
the Schrodinger operator with the potential cospo(x):

8(x, t)= pe "u„(x),

where A,„and u„(x) are eigenvalues and eigenfunctions of
the Schrodinger operator of the problem (4), respectively.
Substituting expansion (6) into Eq. (5) and taking into ac-
count Eq. (4},we get for A,„

damp exponentially. It is clear that the condition

E„;„&0is the condition of the stable solution of the
problem (3) with any values y & 0.

One can call unstable solutions pro(x) of the problem (3)
metastable, since they may be long-lived. Analysis of the
spectrum problem gives information about the survival

time of metastable states. Let Rei,„&0; then

r=(Rel,„) ' makes sense of the characteristic decay
time of the metastable state. The corresponding eigen-
functions u„(x}are perturbations that destroy the meta-

stable states.
A detailed analysis of the problem (1},(2}, (3), and (4) is

failed to be carried out by analytical methods. The nu-
merical simulation results of this problem showed the fol-
lowing.

(1}The number N of stable and metastable states, i.e.,
the number of solutions of the problem (3), increases with
increasing L. For example, with Ho &2 for L =2m,
N=4, for L =20, N=8.

(2}From all solutions of the problem (3) approximately
half of the states are stable. For example, with Hp =3 for
L =2m, 2 states out of 4 are stable; for L =20, 3 states
out of 8 are stable; for L =40, 11 states out of 18 are
stable.

(3} The numerical investigations of the sine-Gordon
Eq. (1) showed that either stable state [stable solution of
the problem (3}] is realized depending on the method of
superposition of an external field in a long Josephson
junction. In other words, an established magnetic field
and currents in the junction remember" how an external
magnetic field was started.

For the case Hp =2, L =2m switching on the
magnetic field in the form H,„,(0, t) =H,„,(L, t) =Ho
[1—aexp( —t/ 5) csot] leads to the system coming to one
or another state (Fig. 1) depending on the controlling pa-
rameter a. So with 0~ a ~ 0.36 state 4 is realized in Fig.
1; with 0.37 & a &0.74 the one fiuxon state 6 is realized;
with a ~ 0.75 the two Quxon state 8 is realized.

It turns out that the transition to one of the stable
asymptotic states occurs through the metastable states.
For example, with a =0.74 state 6 arises from the meta-
stable state 7; with a =0.75 state 8 arises from the same

3.0 q

s
P..5

2.0

(7)

It is clear that if even one of the numbers A,„has a posi-
tive real part, then the infinitesimal perturbations 8(x, t)
will increase exponentially in the course of time and, fur-
ther, if all A,„have a negative real part, then the perturba-
tions damp exponentially. Since the Schrodinger opera-
tor is a Hermitian operator in a space of functions which
have a derivative on the ends of intervals equal to zero,
its eigenvalues E„are real. It results from expression (7)
that A,„can have a positive real part only with E„&0.
Thus with E„&0 all A.„&0 and perturbations 8(x, t)

1.0 —.
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FIG. 1. Solutions of boundary problem (3) for the case
HO=2, L=2m. . Solid line (4,6,8), stable states; dashed line

(1,2,3,5,7), metastable states.
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inetastable state 7 (Fig. 1). This property of the system is
not characteristic for the case Ho =2, corresponding to a
separatrix. For other values of HO the same property
takes place. In Fig. 2 the evolution of the magnetic field
is shown for the case HO=2 with different values of the
parameter a into the junction.

In our opinion the conclusion is the most important.
Thus, an asymptotic state of a magnetic field, realized in
a long Josephson junction, depends essentially on a
method of switching on an external field, which is a
direct result of the sine-Gordon equation. The asymptote
of problem (1), (2) taking into account the method of
switching on an external field does select one of the stable
solutions of the stationary Ferrell-Prange equation. It is
possible that this property of the solution is general
enough for nonlinear systems. With the condition of
minimum thermodynamic potential all stable solutions of
problem (3) are satisfied apparently.

We should like to note another interesting fact follow-
ing from the numerical simulation of problems (1), (2)
and (3). Among all the stationary solutions there exists
one which corresponds to the maximum of a magnetic
field and the another that corresponds to the minimum of
a magnetic field. In Fig. 1 these are states 8 and 6, re-
spectively. The states are stable. State 8 in this figure is
called a vortex; state 6 in the same figure is called an an-
tivortex. For these states we can obtain an approximate
formula solving problem (3) by means of the iteration
method

)o I

yo(x)= lim yo (x)
kaz oo

q,'"„„'(x)=sing(')" "(x),
(k) I

— (k) I
—rr

%Ox ~x =0 POx ~x =L ~~0

Suppose q&0 '(x)=Hox+a, where a is some kind of con-
stant. Then

yo„"„(x)=sin(Hox+a),
( 1)I ( 1)i z7

POx ~x =0 %0x ~x =L ~~0

Integrating (8), we find

H(&)=~(&)(x)

1 H0L
Ho+ cos Hox-

HO 2

HoL
cos

2

FIG. 2. Evolution of magnetic field for the case HO=2,
L=2m with different values of parameter a. (a) a=0.2, (b)
a =0.5, and (c) a =1.0.

(10)

In formula (10) the + sign corresponds to a vortex state;
the —sign corresponds to an antivortex state. Expres-
sion (10) is correct in the case of large fields. Comparison
of the values, obtained by means of formula (10), with re-
sults of numerical simulation shows that they practically
do not differ for HO =10 .

In conclusion we note that a swing of deflections of the
field H"'(x) from Ho makes =2/Ho and this swing de-

creases by increasing the external field. In other words
one can say that the number of stationary states per unit
of field increases. In turn this circumstance may lead to
the small fluctuations of the external field Ho to cause a
"jump" from one stable state to the other. We hope to
discuss this problem in detail in our next work.
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