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Large tensions in random elastic networks
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The probability density of large tensions in a random spring network is shown to behave asymptotical-
ly as p( T) -exp( —AT' ). This result follows from the assumption that large tensions are found at the
center of funnel-shaped defects. The probability of finding a defect of a given size then controls the dis-
tribution of large tensions. The exponent a (0 & a ~ 1) is determined analytically by solving the bihar-
monic equation for a critical defect. Numerical simulations of random elastic networks are consistent
with the analytic results and show explicitly that the largest tensions are found in funnel-shaped defects.

I. INTRODUCTION of the network L, as

Mechanical failure of disordered materials is initiated
in regions of high stress so it is of great practical impor-
tance to understand the distribution of stresses in random
elastic systems. In recent years several simple models
have been introduced to study electrical and mechanical
breakdown in disordered systems. ' Beale and Srolo-
vitz, extending the random fuse model' to elastic sys-
tems, considered a random triangular spring network
with a critical strain above which each spring irreversibly
breaks. As the network is stretched, breakdown first
occurs at the spring carrying the largest tension. The dis-
tribution of large tensions thus plays a central role in un-
derstanding breakdown in this model.

In this paper, we study random triangular networks
composed of linear, central-force springs with two spring
constants, 1 and K, with 0&K &1. The fraction of stiff
springs is p and we consider values of p away from the
percolation threshold. Each spring has a natural length
of unity. A small uniform tensile strain is applied at the
ends of the network. This paper addresses the following
question: Given a random elastic network, what is the
probability density for large tensions occurring in a
bond'? Determining this distribution leads to an interest-
ing theoretical problem combining classical elasticity
theory and the statistics of rare events.

The random resistor network is the scalar version of
the random spring network and the present study is
based on methods previously developed for resistor net-
works. A random resistor network consists of a lat-
tice with a fraction p of resistors having conductance 1

and a fraction (1—p) having conductance G with
0~ G & 1. The key idea in analyzing both the spring net-
work and resistor network is that the distribution of large
stresses (currents) is dominated by rare regions in which
the springs (resistors) happen to be configured to concen-
trate stress {current) in a given bond. Such regions are re-
ferred to as critical defects and are analyzed by continu-
um methods.

For finite-size networks, the expected largest stress
(current) is controlled by the expected largest defect in
the network. For resistor networks, ' the expected larg-
est current in the network, (i,„),increases with the size

(i,„)—i,„,( lnL)

where i,„,is the average current in the lattice. The ex-

ponent a depends on 6 and the dimension d of the net-
work and is bounded by 0 & a ~ 1. For the case of bond
dilution (G =0) in d =2, Li and Duxbury showed that
the critical defect is a line of missing conductors and
found

a= 1 (G =0) . (1.2)

Machta and Guyer, studied the case where all conduc-
tors in the network are nonzero and showed that the crit-
ical defect is a funnel-shaped region with large conduc-
tances in two quadrants and small conductances in the
other two quadrants. They find that

a= (0(G (1),1 —v (1.3)

where v satisfies

v= —tan '[G' j
4
7T

for d =2 and,

(1.4)

(1—G)P,P', + —(Q„P', GP, Q„')cot =—02 7Tv (1.5)

p(i) —exp( —Ai '
) (1.6)

with a given by Eqs. (1.3)—{1.5). The theoretical predic-
tion, Eq. (1.6), is consistent with numerical simulations '

although it is not possible to reach the true asymptotic
1arge current tail of the distribution. The crossover to
the asymptotic form is discussed in Ref. 8.

In this paper, we generalize the approach of Refs. 5

for d =3 with P„and Q Legendre functions of the first
and second kind. Equations (1.4) and (1.5) are obtained
by solving Laplace's equation with boundary conditions
determined by the funnel-shaped critical defect. Based
on these results the asymptotic distribution of currents,
p(i), in random resistor networks was shown to take the
form,

0163-1829/94/49{1)/120{9)/$06.00 120 1994 The American Physical Society



LARGE TENSIONS IN RANDOM ELASTIC NET%FORKS 121

and 6 to study the distribution of large tensions in two-
dimensional random spring networks (with 0&K & 1) un-
der tensile strain. %'e argue that the critical defect is
again funnel shaped and find that the distribution of large
tensions takes the form of Eq. (1.6) with tension replacing
current and a determined by eigenvalues of the bihar-
monic equation rather than Laplace's equation.

The paper is organized as follows. In Sec. II the criti-
cal defect is described and analyzed using continuum
elasticity theory. In Sec. III the distribution of large
stresses is derived from the behavior of critical defects
and their probabilities. In Sec. IV we report on a numeri-
cal study which confirms several features of the theory.
Additional details not covered in this paper may be found
in Ref. 9.

II. ANALYSIS OF THE CRITICAL DEFECT
USING CONTINUUM ELASTICITY THEORY

The central assumption of this study is that the large
tensions in a random elastic network are found in local
regions which are most effective in concentrating stress at
a single spring. For a given stress, the configuration of
springs with the highest probability of occurrence which
produces that stress is referred to as a "critical defect".
Since the probability of occurrence of a local
configuration is determined by the size of the
configuration, one can also view the critical defect as the
configuration of a fixed size which is most eScient at con-
centrating stress. Large critica1 defects occur rarely in
random networks but create large tensions and the bal-
ance between these opposing trends determines the distri-
bution of large tensions. For large critical defects, con-
tinuum mechanics may be used to obtain the relation be-
tween the maximum tension in the defect and the size of
the defect.

We assume that the critical defect is funnel shaped
with stifF springs in the top and bottom regions of the
funnel and soft springs in the two side regions as shown
in Fig. 1. It is intuitively clear that large stresses are fo-
cused through the stiff springs and that the tension will

be largest at the central spring in the configuration. For
example, this is the principle by which the diamond anvil
works. Using continuum mechanics we wil} determine
the optimum opening angle 5 for the funnel defect.

Et is not obvious that this funnel shape is the most
effective shape for its size in concentrating stress. Our
justification for this assumption is based on the simpler
case of the random resistor network where it is shown
analytically that the funnel shape is in fact the critical
defect. This conc1usion is backed up by numerical stud-
ies. ' ' Numerical work presented in Sec. IV supports
this picture for the random elastic network. However, in
the absence of a proof, our result for a should be inter-
preted as a lower bound although we believe it is exact.

In the continuum treatment, the defect is a rectangular
bimaterial plate divided into sectors, see Fig. 1. Each
sector is isotropic and has a finite Young s modulus of ei-
ther E & or E & . This defect is embedded in an environ-
ment having the sample average Young's modulus. To
connect the elastic continuum with the triangular spring
network, we note that E =E

& /E & and that the
Poisson's ratio P should be constant everywhere in the
continuum with 0&P &0.5. A small coplanar external
force is applied through the bus bars, see Fig. 2. The
continuum is in static equilibrium in the linear regime.
We expect the stress to diverge as a power 1aw near the
center of the funnel defect. We seek to determine how
the divergence of the stress depends on the opening angle
of the funnel 5 and the materials parameters.

Planar deformations of the defect are analyzed using
the technique of Airy's stress function. " The stress func-
tion is a solution of the biharmonic equation, V 4=0.
Within each sector, the stress function takes the form'

4=r +'tA;sin(A+1)8+B; cos(A, +1)8

+C;sin(A, —1)8+8;cos(A. —1)8j, (2.1)
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FIG. l. Analysis of the continuum funnel defect. The origin
of the coordinate system is at the center of the defect. The
opening angle of the funnel is denoted by 5. The four regions in
the defect are labeled to facilitate the discussion.

FIG. 2. A two-dimensional elastic network with a funnel de-
fect depicted in it. The Young's modulus of the dark gray re-
gion is one, the Young's modulus of the light gray region is E,
and the white region has the effective Young's modulus of the
full network. The entire network has Poisson's ratio P. One
funnel defect is enclosed in a I X/ region. A small force, eopla-
nar with the network, is applied vertically through a pair of
horizontal bus bars.
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where (r, 0) are polar coordinates as defined in Fig. I, A, is
the eigenvalue to be determined from the analysis and

[ A, ,B, , C, ,D, ] are constants in the ith sector.
The stress field is obtained from the stress function

via'

u„= [ —A, (A, +1)sin(A, +1)0
2p;

—B,(A, + I) cos(A, +1)8

B@
oee

Br

184 1 B4
0 +

r B0

1 B4 1 B4
cr„e +-

r Brd0 r~ B8

(2.2)

+C, ( —A.
—1+m)sin(A. —1)0

+D, (
—A. —1+m ) cos(A, —1)8]

ug= [
—A, (A, + I) cos(A, +1)8

2p]

(2.5)

so that

o„„=—Ar '[A;(A, +1)sin(A, +1)0

+B;( A. + 1)cos(X+ 1)0

+ C, (A, —3)sin(A, —1)8

+D;(2,—3) cos(A, —1)8],
o.gg=A(A, +1)r '[A, sin(A, +1)8+B;cos(A, + l)8 (2.3)

+B,(A. +1)sin(A. +1)8

—C;(A, —1+m) cos(A, —1)8

+D;(A. 1+m)sin—(A, —1)8] .

At the bonding edge of each pair of adjacent sectors,
the normal and tangential components of stress and dis-
placement have to match. ' For instance at the bonding
edge at 0=5/2,

+C, sin(A, —1)8+D, cos(A, —1)0],

o „g=—A,r '[ A;(A, + 1) cos(A, +1)8
—B,(A, +1)sin(A, +1)0

+C;(I,—1) cos(A, —1)8

—D, (A, —1)sin(A, —1)0],

2p;
o- — 1 ——V 4I

rr 4

Qe Qe 1 BQ„+
Br r r BO

1
~re ~

Pi

(2.4)

where m =4/(I+P), p, is the shear modulus of the ith
sector, u„and ue are displacements in the radial and an-
gular directions, respectively. Inserting Eqs. (2.1) and
(2.3) into Eq. (2.4) and integrating from the center of the
defect, yields the displacement fields,

where o.„eis shear stress, o.,„ando.
&e are normal stress in

the r and 8 directions, respectively.
Note that the stress field varies as r ' and diverges at

the center of the defect if the real part of the eigenvalue is
less than one, i.e., Re[A, ] & 1. On the other hand, the dis-

placernent field at the center of the defect must be zero,
thus, Re[A, ] &0. ' We refer to the smallest eigenvalue (or
the A, having the smallest real part if A, is complex) as the
dominant eigenvalue. The dominant eigenvalue deter-
mines how stress is concentrated at the center of the de-
fect and ultimately controls the tail of the distribution of
large tensions in random elastic networks.

The displacement field is derived from the stress func-
tion' as

ogg(0 )=ogg(0+),

o „g(8 ) =o „g(8+),
ug(8 ) =ug(8+ ),
u„(8 )=u, (8+),

(2.6)

where 6 is the opening angle of the funnel defect, see Fig.
1. There are 16 such bonding conditions, four at each
bonding edge, and there are 16 unknown constants, four
from each sector, i.e., I A;,B;,C;,D; with i =1,2, 3,4].
This system of 16 homogeneous equations of 16 un-
knowns in matrix form is Mx=0 and for a nontrivial
solution, the determinant of M must vanish. This con-
straint yields the compatibility equation which deter-
mines X.

Symmetry about the horizontal and vertical axes of the
funnel defect (see Fig. 1) permits one to consider a small-
er system of equations. Since there are no shearing
stresses or normal displacements along the two axes, i.e.,
o „g(8)=0 and ug(8) =0 at 8=0', 90', 180', and 270', we

may study only one-quarter of the defect (i.e.,
0'~ 0~ 90'), which involves only four unknown constants
(two from each side of the bonding edge at 0=5/2) and
four bonding conditions. Therefore, the compatibi1ity
equation can be derived from a 4X4 determinant.

The compatibility equation involves four elastic con-
stants (two from each distinct elastic phase, for instance,
Young's modulus and Poisson's ratio). However, each
sector in the funnel defect is isotropic and the external
stress is applied only along the bus bars. Furthermore,
the funnel defect is under planar deformation. Thus, the
compatibility equation can be written in a much simpler
form in terms of two composite (or Dundurs') parame-
ters. ' ' For this case of equal Poisson's ratio in the two
phases, the Dundurs' parameters (o, b) are given by
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2b=a 1——
m

(2.7)

where m =4/(1+P) and the ratio of shear moduli of the
two phases p=E& /E& =K. In terms of the Dundurs'
parameters a and b, the compatibility equation (which we
derived from the 4X4 determinant with the aid of
Mathematica' ) is

2Q—
A, (a b) — +A, 2ab sin5 +sin(A5)+cot(Arr/2) cos(A5)

sin (An/2) sin (An. /2)

—2(a —b)cot(Am /2}sin5[ cos(A, 5)—cot(A, m. /2)sin(A5) ]—a

+b2sin5 — —2 sin(A, 5)—2 cot(A, n /2) cos(A,5)
sin5

sin (Am. /2)

sin 5

sin (Am/2)

+A, jb [( cos(A5) —cot(An. /2)sin(A5)) —1 —2sin5(sin(A5)+cot(An. /2) cos(A5))]

+a2[sin(A5}+cot(Am. /2) cos(A5)]2+2ab sin5[sin(A5)+cot(A~/2) cos(A5)]
—2(a —b)cot(An /2)sin5[ cos(iN) —cot(Am /2)sin(A5) ]—cot (An. /2) ]

+o [sin(A5)+cot(An/2) cos(A5)] +b2[( cos(A5) —cot(Am/2)sin(A5)) —1]—cot (Am/2)=0 .

(2.8)

We solved for A, numerically at various opening angles
for different values of P and E. Figure 3 displays the
dominant eigenvalue versus the opening angle for P =0.4
and j:=0.1, 0.5, and 0.9. Notice that the dominant ei-
genvalues are real at all opening angles. It should be not-
ed that the eigenvalue approaches one, the homogeneous
limit, as the opening angle approaches 0' and 180'. Also,
the eigenvalue exhibits a minimum at about 60', i.e., the
stress near the center of a funnel defect is largest when 5
is about 60'. This largest stress increases as E decreases,
i.e., as the difference in strengths of the bimaterial in-

I

creases. However, the largest stress (or the minimum
dominant eigenvalue) is a very weak function of P, see
Fig. 4. The largest stress occurs at an angle which de-
pends only on P and increases slowly from approximately
59' as P decreases, see Fig. 5.

A weak dependence of the dominant eigenvalue on
Poisson's ratio is also noticed in a previous study on
stress singularities at interface corners in bonded dissimi-
lar isotropic elastic materials, see Ref. 18.

One interesting observation is that although the eigen-
values [i.e., the solutions to Eq. (2.8)] are complex in gen-
eral, the dominant eigenvalue A, (that is, the one which
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FIG. 3. Dominant eigenvalue versus opening angle. The
dominant eigenvalues at various opening angles are plotted for
P =0.4 and K=0.1, 0.5, and 0.9. The eigenvalues exhibit a
minimum at an opening angle of about 60'. [For a uniform tri-
angular net, P =

3 (Ref. 17).]

FIG. 4. Dependence of minimum eigenvalue on K and P.
The minimum eigenvalue is plotted against the ratio of Young's
moduli for two different Poisson's ratios. The dependence on P
is much weaker than that on Ir .
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Assuming that large tensions are almost always found
at the center of critical defects, the density of large ten-
sions, p( T) is given by the density of defects of size t
where the variables are related by Eq. (3.1),

p( T)d T=F ( 1 )dl (3.3)

with

lnp(T) ——3 (T/T,„,)' (3.4)

A tension T which is found at the center of a critical de-
fect of size l may also be found in larger regions however
the probability of such regions is exponentially smaller
[see Eq. (3.2)] and these regions leads to subdominant
corrections to the leading behavior of p(T). Ignoring
subdominant terms and combining Eqs. (3.1)—(3.3) we ob-
tain

FIG. 5. Dependence of the critical opening angle on
Poisson's ratio. The critical opening angle 6 is the angle at
which the minimum eigenvalue occurs.

2

2V'3

has the smallest real part, 0 (Re[A] (1) is real. On the
other hand, all the eigenvalues for the random resistor
network, see Eqs. (1.4} and (1.5), are real.

III. PROBABILITY DENSITY FOR LARGE TENSIONS

In this section we obtain the asymptotic behavior of
the probability per spring of finding a tension T. The key
assumption in this analysis is that a given large tension is
almost certainly found in the associated critical defect for
that tension. The critical defect is defined as the
configuration with the highest probability of occurrence
which produces the given tension. In a random network
the highest probability of occurrence is associated with
the smallest number of specified bonds so we are really
asking for the smallest defect capable of producing a
given tension. The continuum analysis indicates that the
critical defect is funnel shaped with an opening angle of
about 60' and that the stress diverges near the center of
the defect as r '. For a spring lattice this divergence is
cut off at the length of the spring q. Thus, the estimate
for the tension T(1) in the central spring of a funnel de-
fect of size /is

1 —k
IT(t)-cT,„, (3.1)

F{l)-e {3.2)

with c' a constant.

where T,„,is the average tension in an oblique spring and
c is a constant of order unity.

The next ingredient needed for obtaining the distribu-
tion of large tensions is the statistics of defect sizes. The
probability per unit that an I X 1 tan(6/2) region is
configured as a funnel with 5 =60 is given by
[p (1—p)]' 'q '. This is roughly the probability densi-
ty F(1) for a given bond to be at the center of a funnel of
size 1,

and A. obtained from Eq. (2.8}. Although the above re-
sults depend on several unproved assumptions, we believe
that both the form of the asymptotic behavior and the
value of a given by Eq. (3.4) is exact.

The expected largest tension (T,„)in a finite-size
network of size L is estimated as the tension whose prob-
ability equals the inverse of the number of bonds in the
network, thus

( T,„)—T„,( lnL)' . {3.5)

IV. NUMERICAL SIMULATION

In this section, we study the distribution of tensions in
a spring network and explore the configuration of springs
around the largest tensions using numerical simulations.

We simulated two-dimensional triangular networks of
size 99X99 with periodic boundary conditions in the
direction transverse to the applied force. We used p =0.8

and three values of K; 0.25, 0.5, and 0.75. A small ten-
sion (in the linear regime) was applied to the bus bars of
each network. We used the method of successive relaxa-
tion' to compute the equilibrium position for each node.
The solution was considered accurate when the magni-
tude of the total force at each node was below 1X10
Using a Cyber 205 supercomputer, relaxation of a net-
work typically took 20 sec.

For each value of K, we computed the tensions in each
spring for 50 networks. To avoid edge efFects, we exclud-
ed the six rows of oblique and the six rows of horizontal
bond tensions adjacent to each bus bar in collecting data.
With the remaining bond tensions, the probability density
of bond tensions was constructed for each value of K. All
the bond tensions were normalized with respect to T„„
the average tension in an oblique bond. The probability
distributions are displayed in Fig. 6. Note that if K =1,
the distribution consists of delta functions at T =0 and
T = T„„respectively,corresponding to horizontal bonds
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and oblique bonds. As E decreases, the peaks broaden
and overlap.

To test the theoretical predictions, we determined an
effective value of the exponent a by fitting the tail of the
distribution of tensions to the form

lnp( T) ——A ( T/T,„,)' + b (4.1)

3

2-

0.0 0.2

H 8a
I I

. se~ I
'
~

0.4 0.6 0.8 1.0 1.2 1.4

2.5

2.0-

(b)
K=0.5

1.5-

1.0-

0.5-

0.0
0.0

H ~~~8
0.5

n
I ~ ~ ~

1.0 1.5 2.0

K=0.25

1.0-

0.5 "

0.0
0.0 0.5 1.0

8
0 6"% . ~

1.5 2.0 2.5

FIG. 6. Distribution of tensions in an ensemble of 50
configurations of 99X99 networks with a given EC, where p is
the density of tensions of magnitude T. (a) K =0.75, (b)
E =0.5, (c) E =0.25.

with A, a, and b as fitting parameters for a least-squares
fit. For E =0.75, we grouped tensions into uniform in-
tervals of size 0.03 and considered the largest 1.14% of
the tensions. For E =0.5, we chose an interval size of
0.07 and the largest 0.78% of tensions; for E =0.25, we
chose interval size of 0.11 and the largest 0.125% of ten-
sions. To display the fit as a straight line, we plotted
in[lnb +ln(1/p) ] versus lnT for each value of E in Fig. 7.

In Fig. 8 the effective values of a obtained from the
data and the theoretical values of a are plotted versus E.
The theoretical values are obtained from Eqs. (2.8 and
3.4) with 5=60' and P =0.4. (The Poisson's ratio for a
uniform triangular network' is —,', so it might be prefer-
able to have chosen P =

—,
' for comparison between theory

and simulation. However due to the weak dependence on
P, this would make almost no difference. )

The effective exponent obtained from the simulations is
close to but larger than the theoretical value. We believe
that this is because the sampled tensions are not in the
asymptotic regime. It is not computationally feasible to
probe very large tensions because the distribution decays
very rapidly so that an enormous number of samples
would be needed to see a small number of large tensions.
However, as is the case for the resistor network, ' the
effective exponent for relatively small values of a is
surprisingly near the theoretical asymptotic value.

In additional to the direct test of the theoretical predic-
tions, we also examined the key assumptions underlying
the theory. The first assumption is that the magnitude of
the tension in a given spring with a large tension is deter-
mined by the configuration of the neighboring springs.
To test this assumption, we computed the tension in each
spring in the network and found the spring having the
largest tension together with its local environment so
long as the local environment did not intersect the
boundary. The local environment was chosen to be
13X 13, see Fig. 9. We performed this study with
E =0.75. The spring which has the largest tension is
slanted either upward and to the left or upward and to
the right. The right slanting central bond is marked with
a black circle in Fig. 9. Once the large tension was select-
ed, its local environment was cut out from the network.
We refer to this local environment as a "hot environ-
ment. " Next we selected from the rest of the network the
smallest oblique bond tension (which is not adjacent to
one of the 10 largest tensions). We refer to the local envi-
ronment of this oblique bond as the "cool environment. "
We cut out the cool environment and used it to fill the
hole in the network left behind by the hot environment.
The hole left behind by the cool environment was then
filled by the hot environment.

This "cut-and-swap" procedure created a different glo-
bal environment but maintained a similar local environ-
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ment for the hot bond. We recomputed the tension in
this hot bond by recomputing the tension in each spring
in the rearranged network and found that the hot bond
had virtually the same tension as it did originally. The
cut-and-swap procedure was applied five times to the hot
environment in the network, each time with a different
cool environment from the same network. In this
manner, we studied the largest tensions from five different
networks and observed a maximum change in tension
magnitude of 1.7%%uo. (For comparison, the median of ob-
lique bond tensions is more than 13% below the large
tensions studied here. ) Having established that it is the
local environment which determines the bond tension, we
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FIG. 7. 1n[lnb + In(1/p j] versus 1n T for several values of E
The slope of this plot is equal to 1/n, see Eq. (4.1). (a) K =0.75,
(b) K =0.S, (c) K =0.25.

FIG. 9. The funnel defect. The stiff and soft springs in the
defect are, respectively, denoted by thick and thin bonds. This
defect is embedded in a background, indicated by dotted bonds,
of randomly distributed stiff and soft springs. The applied force
is in the vertical direction. In this illustration, the largest ten-
sion is found at the right slanting bond which is marked with a
black circle.
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can now study the critical defect in more detail.
We investigated the critical defect by examining the

distributions of stiff and soft springs in the neighborhoods
of hot bonds. Fifty networks were studied with E =0.75.
In each network, the local environments of the ten hot-
test bonds were cut out. Some of these hot bonds slant to
the left, while the rest slant to the right. The hot bonds
which slant to the left were rotated with their environ-
ments about the vertical axis by 180 so that now all hot
bonds slant to the right. The hot bond was chosen as the
origin of the coordinate system in each hot environment
and all of the hot environments were projected onto a
two-dimensional plane. For each bond location, we
counted the number of hot environments which have a
stiff spring at that bond. The fraction of hot environ-
ments which have a stiff spring at each bond is displayed
in Fig. 10. The a priori expected fraction of stiff springs
at each bond is equal to p which is 0.8 in this study. An
excess of stiff springs at a bond is represented by a black
circle at the bond; an excess of soft springs at a bond is
represented by a gray circle. A larger circle indicates a
greater excess and the absence of a circle indicates values
close to 80%. The hot bond is always a stiff spring and is
represented by a black square. The funnel shape is
roughly apparent in Fig. 10 and the opening angle is ob-
served to be about 60'.

The predicted funnel shape is symmetric about the

direction of the average strain but the observed funnel
has an asymmetry which we believe is due to the oblique
direction of the hot bond. We believe that this is a local
effect and would not affect the global shape of the very
large defects associated with very large tensions.

V. DISCUSSION

We have studied the distribution of large tensions in
random spring networks and have shown using both ana-
lytic arguments and numerical simulations that the tail of
this distribution decays as an exponential of a power.
The power law is controlled by an exponent a which is
determined by the divergence of stress approaching the
center of a funnel-shaped critical defect. We find good
agreement between the theory and the simulations.

The "Lifschitz-type" statistical arguments used here
depend on the presence of large critical defects. For un-
correlated randomness we are able to estimate the proba-
bility of a critical defect of a given size. Although this
probability diminishes exponentially with size, it controls
the large tensions in the system. Real materials generally
display correlated randomness which may lead to
modifications of the results found here.

The random spring network under tensile loading and
the random resistor network turn out to be very similar
systems. The large stresses or currents are controlled in
each case by funnel-shaped defects. The difference be-
tween the two cases is that the opening angle of the fun-
nel for the resistor case is 90', while it is close to 60' for
the elastic case. The analysis for the elastic case is more
mathematically complicated and depends weakly on an
additional parameter, the Poisson's ratio. Nonetheless, at
the end of the calculations, the values of a as a function
of the ratio of spring constants or conductances are
surprisingly close to one another. This is illustrated in
Fig. 11 where the eigenvalues v and A, are plotted against
G and K, respectively. We do not know whether this
quantitative similarity between the two cases is accidental
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FIG. 10. Funnel defect observed numerically. The distribu-
tion of springs in the neighborhood of a hot bond obtained from
an average of 500 hot bonds. The largest tension is located at
the bond with the black square. The ensemble averaged frac-
tion of stiff springs at each bond is represented by the size of the
associated circle as indicated above. The externally applied ten-
sion is along the vertical axis.
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128 SIU-KAU CHAN AND J. MACHTA 49

or reflects a deeper connection between Laplace's equa-
tion and the biharmonic equation. An examination of the
three-dimensional case would be of practical value and
might shed some hght on this question. It would also be
interesting to examine the case of shear loading.

We have restricted this study to the linear regime. As
one probes further into the tail of the stress distribution,
this requires smaller and smaller applied strains since it is

not the average stress but the maximum stress which
determines whether the system is in the linear regime.
Strictly speaking then, the theory applies to the case of

infinitesimal strain. It would be interesting to extend
these ideas to include nonlinearities.
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