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We consider general anisotropic nearest-neighbor magnetic exchange in the pyrite structure where
the magnetic ions occupy the fcc sites. We show how the Dzyaloshinsky-Moriya interaction can
stabilize the anticollinear spin configuration observed in MnTez when T is slightly below TN. As an
alternative explanation, we also consider the most general symmetric anisotropic nearest-neighbor
coupling allowed in the pyrite structure. For MnS2, we construct a model which is consistent with the
observed centering, slightly above T~, of the diffuse neutron scattering around an incommensurate
position. We also discuss the spin arrangement observed in MnSez when only bilinear spin-spin
exchange is present.

I. INTRODUCTION

There have been several experimental studies of the
properties of the magnetic semiconductors MnTe~, MnS2,
and MnSe~. An antiferroxnagnetic order was found in
these pyrite compounds in early neutron-diffraction mea-
surements by Hastings et al. The structure develops
from the type-III ordering of the fcc system in MnS2 to a
type-I structure in MnTe~ through an intermediate-type
order in MnSe2. The nature of the phase transitions, as
well as the spin structures, has been investigated in de-
tail by neutron-difFraction ' 8 and Mossbauer measure-
ments. These experiments have revealed several unusual
features in the magnetic behavior.

To explain these features, which are described below,
we were led to consider how the geometry of the pyrite
structure, illustrated in Fig. 1, affects the spin-spin in-

FIG. 1. The pyrite structure. Solid circles denote Mn++
cations which form an fcc lattice. Open circles correspond
to anion pairs whose axis is along one of the four body di-
agonals; the groups along the same diagonal are located in a
simple cubic lattice. Note the threefold axis (1,1,1) of rota-
tion sy~~etry about the manganese ion at the origin; every
manganese site has a threefold axis along one of the body
diagonals.

teractions. We have studied in detail the general form
of the anisotropic nearest-neighbor spin-spin exchange.
Although it was pointed outo long ago that anisotropic
interactions, such as the Dzyaloshinsky —Moriya (DM)
exchange, ' can be present in the pyrite structure, the
forces have not been analyzed any further. More com-
plicated four-spin exchange interactions have been in-
voked in order to understand the observed features.
Our work shows, however, that physically more appeal-
ing anisotropic nearest-neighbor interactions can explain
several unusual properties of manganese pyrites.

Recent neutron-diffraction measurements have estab-
lished that the type-III structure in MnS2 is collinear
whereas Mossbauer experiments have shown that the
type-I configuration of MnTe2 is anticollinear. While
the stability of the collinear structure in MnS2 can
be attributed to thermal and quantum-mechanical
Buctuations, it is unknown why the same mechanism is
not operational in MnTe2. We find that this can be un-
derstood by considering anisotropic exchange: The spin
structure is more easily affected by anisotropic interac-
tion in type-I configurations since the magnetic and the
chemical ~m~t cells are identical, unlike in type-III con-
figurations.

Chattopadhyay et al.s have observed that the dif-
fuse neutron scattering in MnS2 is centered at an in-
commensurate position tl —(s/a)(1, 0.44, 0) above the
Neel temperature TN although type-III ordering with

Q = (m/a) (1, 2, 0) is found below T~. These experimen-
talists suggested that this could result &om anisotropic
exchange interactions in analogy with the behavior of
UAs, as observed and analyzed by Sinha et al. To
demonstrate that this can, indeed, be the case, we con-
sider a model for which, owing to a DM interaction,
the mean-field approach suggests incommensurate Q =
(m/a)(1, 0.44, 0) order. It is crucial to introduce the low
pyrite symmetry to the model since it is impossible to
obtain an analogous result, including anisotropy, only in
terms of the general nearest-neighbor and next-nearest-
neighbor interactions with the fcc symmetry. Apart from
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this important de'erence it is plausible that the behavior
of MnS2 can be understood with the scenario of Sinha et
al.

While the structures in MnS2 and MnTe2 are of well-
known principal types of magnetic order in an fcc lat-
tice, the structure of MnSe2 is unconventional and can-
not be stabilized by the use of an isotropic nearest- and
next-nearest-neighbor exchange interactions. We con-
sider the possibility to stabilize this kind of structure by
the use of anisotropic nearest-neighbor interaction, but
6nd it difBcult to obtain agreement with all observed fea-
tures of the magnetic structure. We give a summary of
various possible explanations.

Our interest in this subject was drawn by some
similarities between the observed magnetically ordered
structures of MnSe2 and of nuclear spins in copper at
nanokelvin temperatures. In small external fields, the
copper nuclei also simultaneously display antiferromag-
netic Bragg reHections at two positions in k space, corre-
sponding to the type-I and the k = G/3 ordering vectors
within G = (m/a)(2, 2, 0). Anisotropy of spin-spin inter-
actions is crucial in determining the spin con6gurations
of copper as well.

The organization of our paper is as follows. The gen-
eral form of the nearest-neighbor interaction in the pyrite
structure is described in Sec. II. The results are applied
to MnTe~, MnS2, and MnSe2 in Sec. III. Section IV
summarizes our work. Finally, the details of the com-
putational method used in the mean-6eld calculations,
as well as considerations on the magnetic structure of
MnSe2, are presented in two appendixes.

II. ANISOTROPY
IN THE PYRITE STRUCTURE

For the Hamiltonian we assume

where, by de6nition, S; A;~ . S~ = Sz A~; S;. We also

have S; A; "S~ = S~ A; "S,, where A; is the transpose of

A; .. Thus A; = A;. The spin-spin interaction matrix
A; can, in particular, contain an antisymmetric part,
i.e., the Dzyaloshinsky-Moriya (DM) exchange. ii We also
discuss the general anisotropic symmetric interaction.

Consider the bond ij between nearest-neighbor Mn++
ions. We can write the positions I(") of the Te, S, or Se
anions as

RA,. -R
A

2x—

for r"~„=Rr",~,
for r~„= Rr~, .

X,, i = as;, /~2+ b(t;, + ~2u;, )/(2y 3),
X, = as,~/~2 —b(t, ~ + ~2u;~)/(2~3),
X, = —as;~/~2+ b(t,~ + ~2s;~)/(2~3),
XI, l = —as;, /~2 —b(t;, + ~2s;, )/(2~3).

(4)

Here 6 is the distance between the nuclei in the anion

This equation states the constraints imposed by crystal
symmetry on the Hamiltonians which are bilinear in S;;
as such Eq. (3) is the cornerstone of our analysis of Eq.
(1). If det R = 1 we have pure rotation and Eq. (3) is
evidently true; when det R = —1 we have assumed that
A; can, in principle, be written in terms of polar vectors
without the use of quantities, such as a x b - c, which
depend on left or right handedness. Usually one can re-
strict the possible form of A;. because all matrices R
must give identical A „. In the pyrite structure, how-
ever, there is, owing to the low local symmetry, only one
matrix R which transforms two given nearest-neighbor
spin-spin bonds to each other. Thus A; is of general
form. It contains a symmetric and an antisymmetric part
with six and three parameters, respectively.

It is useful to define the interaction matrix A, in terms
of parameters which are more directly related to the lo-
cal symmetry than the components of A; . In order
to accomplish this, we characterize each bond ij by a
local orthonormal basis (s;~, t,~, u,~) which is selected
so that the basis for the bond qr is (s~„,t~„,u~„)
(Rs, ~Rt;~, Ru, ~ ). We def.ine the basis (s,~, t;~, u,~) rel-
ative to the local geometry as shown in Fig. 2. Vec-
tors (s,~, t;~, u;~) are defined so that they are eigenvec-
tors of the interaction matrix A; for ideal fcc symme-

try, u, ~
= kr;~ and, if r,~

= (1/~2)(1, 1, 0), we have

t,~
= +(0, 0, 1) and s,~

= +(1/v 2)(1,—1, 0); see Fig. 2.
However, the geometry of the pyrite structure makes it
possible to assign for these vectors a well-de6ned direc-
tion which is determined by the nearby anion pairs.

More explicitly, we list the vectors X, of Eq. (2) for
the nonmagnetic anions shown in Fig. 2:

X "l = (r;+r )/2+X, (2)

For two nearest-neighbor bonds, ij and qr, the sets
(X;. ) and (X~„jof all positions of the X ions are re-(@) (k)

lated by an orthogonal matrix R: (X~~ l) = (Rx,
in particular, r~„= Rr";~ or r~„= Rr~,. where r";~

(r~ —r;)/~r~ —r;~. Note that R may contain an inversion.
One can now write the transformation rule for the matrix
A;. as

FIG. 2. Nearest-neighbor bond in the pyrite structure.
Numbers 1—4 refer to Eq. (4). See text for detailed discus-
sion.
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pairs, and a = ao/2. These equations are valid for all
spin-spin bonds in the pyrite structure. In particular, the
signs of vectors s;j, t;j, and u;j are well defined because
the replacements s;j ~ —s;j, etc. , are not equivalent to
permutat1ons of vectors X; . .

cipal axes of the interaction matrix can difFer &om their
orientations in fcc systems. For example, 812 rotates the
eigenvectors of A; in the plane of s,j and t;j.

III. APPLICATIONS

A. Dzyaloshinsky-Moriya interaction A. MnTeq

as
We can write the DM interaction A; = (A; —A; )/2

A;, = (r;, u;, ) Di(u;,.s;, —s;;u,, )

+D 2(u ijt' j—tiju'j) + Ds(s'jt'j —t'jsij) . (5)

This is the most general A; for which (A; ) = A;
and which is consistent with Eq. (3). The order of sub-
scripts ij is irrelevant for all other vectors on the right-
hand side except r";j. The DM interaction can also be
written as

In the pyrite structure, Fig. 1, the Mn++ cations with
magnetic moments are located in an fcc lattice, but the
chemical unit cell contains four magnetic ions dividing
the system into four simple cubic sublattices. In this case
(see Appendix A) it is easy to understand that there can
be a direct coupling between Fourier components which
difFer by the vectors

Ki ——(m'/a) (1,0, 0), K2 ——(s'/a) (0, 1,0),
Ks ——(n /a) (0, 0, 1),

S; A; S =D, S xS ~,

where D;j is a vector coupling constant,

D,j = r";j x (Dis,,
+D2t,j) + Ds (r";j x s;j) x u;j x t;j .

(6)

where the fcc lattice constant ao ——2a. Since type-I con-
figurations contain Fourier components with these wave
vectors, it is likely that the structure is of the multi-k
type. Indeed, according to Mossbauer experiments, 2 the
spin configuration of MnTe2 is

1
S; oc [y cos(Ki r;) + s cos(K2 r;) + xcos(K2 r;)j

3
All terms in this equation have an odd number of cross
products; therefore, since s;j, t;j, u;j, and r";j are po-
lar vectors, D;j is an axial vector. For example, in P-
MnS which has zinc-blende structure, we would have

D;j = Dr;j x d,j, where d;j is determined by the use of
a geometric rule1~ in analogy with vectors s;j, t;j, and
u~j.

We note that the DM exchange vanishes for next-
nearest-neighbor (NNN) pairs ij in the pyrite structure
because there is an inversion symmetry about (r;+rj)/2:
We can use R' = —R as well as R in Eq. (3) and we find
A „=A „because A, = A; .

B. Symmetric anisotropic exchange

The symmetric part A;. = (A; +A; )/2 of the nearest-
neighbor (NN) interaction A; is

A A

A'j 1sjsj +P2tjtj +P3ujuj

+Si2(sij tij + tij sij ) + 822(tij uij + llij tij )

+Ssl (uij sij + sij uij )

(10)

at temperatures immediately below T~', this is the "anti-
collinear" type-I configuration. This structure minimizes
the dipolar energy for type-I order since the spin compo-
nents are perpendicular to the corresponding wave vec-
tors, as was found already in the first powder neutron-
difFraction experiments. The spins in this structure are
parallel to the axes of the threefold rotation symmetry;
see Fig. 1.

There are many ways to stabilize the structure defined
by Eq. (10) using anisotropic nearest-neighbor coupling.
For simplicity we ignore the pseudodipolar part of the NN
interaction; i.e., we take P1 ——P2 ——P3 ——J1 & G. We also
include isotropic ferromagnetic NNN coupling: J2 ( 0. In
this case we find that the configuration specified by Eq.
(10) is the classical ground state of the spin system if we
assume, for example, a DM exchange with

D1 + 0 ) D2 + 0 ~ D3 & 0

We obtain this result for symmetric anisotropic interac-
tion as well, when (e.g.)

S12 0 S23 0 S31

Equation (3) is again guaranteed by the definition of vec-
tors s;j, t;j, and u;j. The isotropic nearest-neighbor cou-
pling constant can be defined as Ji ——(Pi + P2 + Ps)/3,
and deviations of P1, P2, and P3 &om J1 gives the pseu-
dodipolar part of the interaction. In fcc systems, P1, P2,
and Ps specify completely the nearest-neighbor coupling.
However, the low symmetry of the pyrite structure allows
the three other quantities S12, S23, and S31, and the prin-

and find, therefore, that these two types of anisotropy
give rise to qualitatively similar efFects.

As an example, we study the model with J1 ———20J2 ——

50Di ) 0 using the Monte Carlo (MC) simulation;
we employ the inethod of Ref. 20. We define S(q) =
N i~2 P,. S(r;) exp( —iq . r;) and calculate the MC av-

erages (~S(K ) ~ ) ~ decreasing the temperature gradu-
ally. 3000 MC updates per spin (MCS) were performed
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between changes in temperature; the averages were cal-
culated over the last 2000 MCS. Results for a classical
system of N = 4096 spins are shown in Fig. 3(a): A
triple-k structure of Eq. (9) emerges below TN. For ref-
erence we present in Fig. 3(b) analogous results for the
isotroPic model with Jz ———20' & 0 and Dz ——0. In
this case the system orders with a collinear single-k state
below TN.

Comparing the results of Figs. 3(a) and (b) we find
that the DM interaction, Dz ——0.02Jz, increases T~ by
10%, i.e. , quite substantially. The DM coupling is prob-
ably particularly effective in this respect as it completely
removes the continuous degeneracies of the model. In
fact, it has been argued that the observed critical expo-
nents would be described by using the simple cubic Ising
model.

The ratio of the Curie-Weiss constant 8 and the Neel
temperature T~ can be compared against the mea-
sured data. Taking into account the quite large value
of TN TN, which can be inferred from Monte Carlo

0.6-

0.5

simulations, ~ ~ one finds that the values of 8/T~ for
MnTe2, MnS~, and MnSeq can be understood, at least
qualitatively, by employing the isotropic model. How-

ever, in order to explain the observed spin structures one
has to consider other types of spin-spin interactions.

For our model (Dq ——0.02Jq) we have kIjT~/ Jq = 0.65
and k~8 = 4Jq + 2', and we obtain 8/T~ —6.0; here

the effect of Dz is zero on the asymptotic value of 0. The
ratio 8/T~ in this model is close to the experimental
value'4 8/T~ = 6.1.

With Dz ——0.02Jz, the effect of temperature is simply
to scale the expectation values of (S;); the spin struc-
ture below T~ is always given by Eq. (10), which is in
contrast to the experimentally observed deflections from
the configuration given by Eq. (10) well below T~. This
effect has been discussed previously introducing a phe-
nomenological model which includes a four-spin inter-
action and a trigonal anisotropy term. It is, however,
well known that there are effects which favor collinear
states in Heisenberg models. z4 In our example the DM
anisotropy Dz ——0.02Jz is large enough to overcome ther-
mal fluctuations which stabilize a collinear structure
when Dq ——0. Quantum-mechanical eKects also tend to
stabilize collinear states and might well be large enough
to compete with the DM energy, thus providing an alter-
nate explanation to that given in Ref. 12.

B. MnSq
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FIG. 3. Monte Carlo averages (O, ~, x) of type-I Fourier
components ([S(K 'g ) ~, m = 1, 2, and 3, for a model with
Jz ———20J& ) 0 and a DM anisotropy Dq ——0.02J& (a), and
in the isotropic case Dq = 0 (b). Dashed lines are guides for
the eye.

Recent experiments have shown that diffuse neutron
scattering in MnSe~ above TN is centered around the
incommensurate position q = (m/a) (1,0.44, 0), although
below T~ a collinear commensurate type-III structure
has been observed. As this kind of behavior is unusual,
it is tempting to connect the situation with nontrivial
properties of the pyrite structure. In order to gain some
insight, we study an example of the DM interaction in
which the mean-field approach suggest incommensurate
ordering with a wave vector q = (m/a) (1,0.44, 0).

Type-III order is stable in the (Jq, Js) model when

0 & 2J& ( Jz. We choose J~ ——0.2Jz which should
be in reasonable agreement with the situation in MnS2.
Apart &om its incommensurate centering, the intensity
of diffuse neutron scattering above T~ could be fitted
well by using J2 ——0.23Jz.

We also include a small nearest-neigbor dipole-dipole
interaction by setting Pz ——P2 ——1.01Jz, P3 ——0.98Jz
[Eq. (8)]. For the DM interaction we select Dq ——0.07Jq.
The deviation &om the fully isotropic model is thus
rather small. The lowest eigenvalue A(q) of the inter-
action matrix A(q) (see Appendix A) is shown in Fig.
4(a) as a function of q = (vr/a)(0, x, 0); the evolution of
the lowest energy eigenvector is illustrated in terms of
the corresponding quantities S(q+ K ) [see Eq. (A10)]
in Fig. 4(b).

The eigenvector having the lowest eigenvalue

Af(m/a)(0, x, 0)j at x = 0 corresponds to the structure
given by Eq. (10). The lowest energy eigenvectors for x
and —x are degenerate and when x ~ — one can con-z

struct the structure
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i.e., a collinear type-III configuration. Here the dipole-
dipole interaction selects the 2 direction of the wave vec-
tor as an easy axis along which spins are oriented in
collinear structures. The DM energy vanishes in this
case, indicating that an interaction with Dq ) 0 cannot
ef6ciently produce canted type-III structures. However, a
nonzero DM energy results if the wave vector of magnetic
order differs from Q = (m/a)(1, &, 0), and therefore, the
minixnum of A(xl) is slightly deflected from this position.

The actual transitions at T~ can still directly take
place to the commensurate, collinear type-III configura-
tion, through a Quctuation-driven first-order transition,
in a manner similar to that observed in UAs. In the
low-T limit, below the critical region around TN, the
stability of the type-III structure vs the incomxnensu-

-3.4

-3.6

rate wave vector corresponding to the minimum of A(xI)
can probably be understood as a result from the gen-
eral tendency to form a structure with equal sublattice
xnagnetizations. The most common equal-moment
structure with an incoxnmensurate wave vector, a heli-
cal spin configuration, is not energetically particularly
favorable since A;„[g= (n/a)(1, 0.44, 0) [ does not have
easy-plane anisotropy, as shown by Fig. 4.

C. MnSeq

According to neutron-diffraction measurements,
the principal ordering vector of MnSe2 is

Q = (x/a)(1, 1/3, 0); the magnetic unit cell thus triples
the chemical unit cell in the direction of the 1/3 com-
ponent (Appendix B). As Fig. 4(a) shows, it is possible
that the minimum eigenvalue is at an incommensurate
position xI = (x/a)(1, x, 0) and, for suitable parameters,
it can be arbitrarily close to x = 3. Therefore bilin-
ear exchange alone can stabilize a structure with the

(7r/a)(1, s, 0) order. For satisfactory agreement
with experiments, it would also be necessary to stabilize
a structure in which magnetic moments are along the 3
directions of the wave vector, and which exhibits the ob-
served third harmonic fundamental ordering vector (see
Appendix B):These features can probably be studied re-
liably only by the use of Monte Carlo simulations. We
were, however, not able to produce the observed struc-
ture in detail taking into account only interactions up
to next-nearest-neighbor exchange: The various possibil-
ities are summarized in Appendix B.

-3.7
0.0 0.1

l I

0.2 0.3
q = (vr/a)(0, z, o)

0.4 0.5

1.0 -
(b)

0.8-

~ 0.6

+
g 0.4

0.2

0.0
0.0 0.1 0.2 0.3

q = (~/a)(0, x, 0)

0.4 0.5

FIG. 4. (a) Smallest eigenvalue of A(g) along the line

g = (s/a)(O, z, O), 0 & z & s, when Jx ) 0,
Pg —— P2 —— 1.01Jg, P3 —— 0.98Jq, Jq —— 0.2Jq, and
Dx = 0.07J&. (b) Lowest energy eigenvector as a combination
of four fcc Fourier amplitudes; only the nonzero components
of S(q+ K ) are shown; S(q) = 0.

IV. DISCUSSION AND SUMMARY

We have analyzed the nearest-neighbor magnetic ex-
change interaction in the pyrite structure MnX2 where
the magnetic Mn++ ions occupy the fcc sites. The pres-
ence of the four anion pairs with different alignments
in the chexnical cell brings about important changes in
the coupling between the magnetic ions. We explic-
itly constructed the most general interaction matrices for
the symmetric and the antisymmetric anisotropic inter-
actions, the latter being known as the Dzyaloshinsky-
Moriya (DM) interaction.

Our general results were applied in an effort to ex-
plain some interesting properties of manganese pyrites
on the basis of a dominating nearest-neighbor exchange
interaction. We demonstrated that the DM interac-
tion can stabilize the anticollinear spin configuration ob-
served in MnTe2 when T is slightly below TN. This
structure can also result &om the symxnetric part of
the anisotropic coupling. For MnS~, we constructed a
model which is consistent with the observed centering
of diffuse neutron scattering around an incoxnmensurate
position g = (n/a)(1, 0.44, 0), at texnperatures slightly
above T~. Our xnodel also has the property that the
DM energy vanishes at x =

2 so that no sublattice cant-
ing is produced for type-III order, consistently with the
observed collinearity of the structure. Using a xnodel
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with only bilinear nearest-neighbor interactions, we were
unable to obtain the experimentally determined spin
configuration of MnSe2, although the fundamental order-
ing vector Q = (vr/a) (1, s, 0) itself could be stabilized. In
principle, the observed spin structure can be understood
by introducing an appropriate eighth-nearest-neighbor
interaction. Measurement of diffuse neutron scattering
in MnSe2 could give valuable more detailed information
about interaction parameters. In any case, our results
clearly show that anisotropic exchange interactions can
be important in the manganese pyrites. We also hope
that our work stimulates first principles calculations of
such interactions.

A(k) = ) A~ (k)e (k)e (k),
a=1

(A5)

and obtain finally

'R =
2 ) ) A l(k)jel l(k) 8(k)i

k
(A6)

If we can fulfill the conditions ~si„~ = S, expressing

8(k) using only eigenvectors e~s&(q) which belong to the
lowest eigenvalue A = min i, A~ &(k), we have solved the
classical ground state problem. After this we can extend
the solution to T ) 0 employing the formulas
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APPENDIX A: MEAN-FIELD THEORY'

If the system has n magnetic moments in the the chem-
ical unit cell, it is useful to write the Hamiltonian

x= —,') ) s,„.A,„„s„.
l,m

(A1)

Si„= —) S„(k)exp(ik ri„),
k

(A2)

Ai„„———) A„„(k)exp ik. (ri„—r~„) . (A3)
k

In terms of these the Hamiltonian assumes the form

Here subscripts denote the lattice site r~„——r~p + p„,
where pp, . . . , p„q runs through all magnetic sites in the
zeroth unit cell, and the vector r~p gives the position of
the zeroth site of the lth unit cell; the points r~p form a
Bravais lattice. For pyrites, we have n = 4.

We introduce Fourier transformations over r~p.

p(T) = Bs —S A p(T)/T (A8)

where Bs(z) is the Brillouin function.
Let us consider the case when points r~„constitute

a Bravais lattice but nonmagnetic ions reduce the local
symmetry so that exchange interactions are different for
various sites in the chemical unit cell. For simplicity
we assume that ~si„~ = S, using only one eigenvector

e~ l(k) = (ep~ l(k), . . . , e~ i(k)). In this case we have

Si„=v nSe„(k) exp(ik . ri„) . (A9)

Working in the original Bravais lattice r~„, we
then calculate the Fourier transform S(q)
= N ~ P& Si„exp(—iq ri„). The nonzero compo-
nents are given by

S(k+ K) = S —) ei l(k) exp( —iK p„), (A10)
X

where K belongs to the reciprocal lattice of points r)p,
but not to the lattice of the r~„'s except when K = 0. We
see that the ions reducing the local symmetry can give
rise to a coupling between Fourier components S(Q) and

S(Q + K) in the mean-field theory. For example, weak
ferromagnetism can exist if Q = K, and a structure
obtained by superposing members of the star of the or-
dering vector Q can be stable if the vectors of the star
differ by K.

'R =
2 ) ) S„'(k) . A„„(k) . S„(k)

k p, ~

=
2 ) 8'(k) A(k) 8(k), (A4)

APPENDIX B:
MAGNETIC STRUCTURE OF MnSe&

where 8(k) = (Sp(k), . . . , S i(k)) is a vector with 3n
components, and A(k) is a symmetric 3n x 3n matrix.
A(k) is symmetric even if it contains an antisymmetric
DM exhange, because when calculating the transpose of
A(k) we interchange both indices referring to the Carte-
sian components of the spins as well as the sublattice in-
dices p, v: The minus signs cancel. We write A(k) using
eigenvalues A~ l(k) and normalized eigenvectors e~ l(k),

According to powder neutron diffraction measure-
ments of Ref. 1 the observed Bragg reBections agree well
with values calculated ass»ming

4 mal 1 vr

S; oc x —cos —
~

—,0, 1 r; ——cos —(0, 1,0) r;
3 .a E3 3 a

(»)
where 2a is the lattice constant. However, a similar result
would also be obtained using
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2 ~(1 2 . x 1
S; ac x —cos —

~

—,1, 0 . r; + sin — —,O, l) . r;
3 a&3' ' * ~3 a 3'

1 m (+-cos —
] 0, 0, 1

[

. r;
3 a I ) (B2)

The results of Ref. 1 show that in the experimentally ob-
served magnetic structure the Fourier amplitude vector

S(q) is parallel with the s component of the wave vector

g; i.e., the easy axis is along the 3 direction; otherwise es-

pecially the (s, 1,0) Bragg reflection would have a much
stronger relative intensity.

The direction of the easy axis is readily under-
stood because the orientations of the modulation vec-
tors S[(z'/a)(s, 1,0)] ~]

x and S[(7r/a)(0, 0, 1)] J z min-
imize the dipole-dipole energy among the structures
with (7r/a)(s, 1,0) and (7r/a)(0, 0, 1) modulations, re-
spectively.

In principle, it is also possible that the spin configura-
tion is a multi-k structure, obtained by superposing two
or three independent modulations with perpendicular 3
directions. No direct coupling can, however, exist be-
tween these, because (e.g.) vectors (s, 0, 1) and (0, s, 1)
do not differ by K 's of the pyrite structure. Coupling
can be present only between Fourier components which
have the same 3 axis: These have parallel amplitudes

S(q) according to neutron-diffraction data. We note that
the DM energy is necessarily zero for allowed structures,
and it is thus likely that the DM coupling does not sta-
bilize the spin configuration observed in MnSe2.

In the isotropic Heisenberg model, 'R = g,.) . J;sS; .

Ss, the ordering is determined by minimizing p(q)
P . J;s exp(iq r;s ). With only antiferromagnetic nearest-

neighbor interaction Jq ) 0, function p(q) is minimized

when q = (7r/a)(l, z, 0). We note that

p q = (vr/a)(l, x, 0) = co+ czcos2mz+c4cos4zx+

(B3)

because, by the symmetry of p(q) at the boundary of
the first Brillouin zone, this function is even with respect
to z at 2; = 0 and x = 2. In order to place the min-

imum at z = 3, it is necessary to have c2 ——2c4 & 0.
The simplest way to achieve this is to include next-
nearest-neighbor r;s = a(2, 0, 0) and eighth-nearest-

neighbor r;s = a(4, 0, 0) exchange. This result remains
unchanged when one admits anisotropic interactions al-
lowed in ideal fcc systems. It also turns out to be im-

possible to set the minimum at z =
3 by using the in-

finite range magnetic dipole-dipole interaction and next-
nearest-neighbor exchange.

In practice it is impossible that the minimum of p(q)
is exactly at q = (z/a) (1, s, 0). Lock-in efFects, however,
owing to the tendency to "square up" the spin structure
so that sublattice magnetizations are equal, will favor
commensurate structures.

Because thermal as well as quantum-mechanical Huc-

tuations favor collinear spin configurations, we conclude
that the ordering observed in MnSez would result for cou-
pling constants (e.g.) Jq &) Jz = 2Js ) 0 and when a
small dipolar anisotropy is present.

An alternative possibility to explain the magnetic
structure of MnSe2 is to invoke four-spin exchange
interactions.
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