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A dimensionless discretization parameter A controls the accuracy and the computational cost of
numerical renormalization-group calculations. For reliable computations of thermodynamical prop-
erties of impurities in metals, the upper bound A & 3 has long been established. This report discusses
a generalization that raises the limit to A = 10, yielding the same accuracy with signi6cantly smaller
computational cost.

I. INTRODUCTION

This paper discusses an extension of the numerical
renormalization-group approach to the calculation of
thermodynamical properties of impurities in metals. For
the computation of a given property, compared to the
original method, the generalized approach yields the
same accuracy with substantially smaller numerical ef-
fort. It therefore overcomes an obstacle that has re-
stricted applications of the method.

The numerical renorxnalization-group approach was
developed to compute the contribution of impurities to
the thermodynamical properties of metals. Two early
applications calculated the temperature-dependent mag-
netic susceptibility for the Kondo and Anderson models
for dilute magnetic alloys. ' More recent examples are
the computations of the low-temperature magnetic sus-
ceptibility and specific heat for the two-impurity Kondo
model. 3 4

The procedure is founded upon a logarithmic dis-
cretization of the conduction band. A dimensionless pa-
rameter A & 1, the ratio between two successive discrete
energies, controls this approximation and defines the cost
of a given computation. For A + 1, the conduction-band
continuum being recovered, the procedure would become
exact. In that limit, however, the cost of calculating
the partition function for any given Hamiltonian would
be infinite. Practical values of A are therefore signifi-
cantly larger than unity. They are chosen by weighing
the computational cost, which decreases exponentially
with lilnA, against the accuracy with which physical
properties can be computed, which deteriorates in the
same proportion.

Wilson has presented analytical arguments indicating
that computed thermodynamical averages depend very
weakly on the discretization parameter A, so that aver-
ages computed with A & 3 should be within a few percent
of the exact limit. The numerical computations of the im-

purity magnetic susceptibility g; p as a function of the
temperature T for the Kondo and Anderson2 models,
carried out for various discretization parameters in the
interval 2 & A ( 3, have confirmed that analysis. Since

then, the upper limit, A = 3, has become the standard
for calculations of y; ~(T).

With A = 3, the diagonalization of a spin-degenerate
single-impurity Hamiltonian is inexpensive. Unfortu-

nately, the computational effort increases exponentially
with the degeneracy of the conduction states and with
the number of impurities. This rapid growth offers a
practical limitation that obstructs applications of the
method. In particular, the computation of the spe-
cific heat and magnetic susceptibility in the recent nu-

merical renormalization-group study of the two-impurity
model3 5 had to focus only on the low-temperature fixed
points. The cost of diagonalizing many-impurity Hamil-

tonians, even spin-degenerate ones, is prohibitive. Due to
the same limitation, few full-scale renormalization-group
computations of thermodynamical properties have been
reported. '

A generalized renormalization-group procedure —one
based on a modified discretization of the conduction
band —has been described by Yoshida et al. That ex-

tension was developed to compute excitation properties
of impurity models and has been tested in a number
of golden-rule computations. Such studies indicate
that the results depend so weakly on the discretization
parameter A that transition rates calculated with A = 10
deviate negligibly &om the continuum limit.

In this paper, we adapt the generalized
renormalization-group procedure to the computation of
thermodynamical properties. To distinguish the new av-

eraging method from the standard one, we refer to it
as the interleaved method, a nomenclature justified in

Sec. V. We discuss the A-dependent deviations of the
calculated averages &om the continuum limit and show

that for given A, compared with the standard procedure,
the interleaved procedure yields considerably smaller de-

viations; averages within a few percent of the continuum
limit can be obtained with A = 10.

Although most of our discussion is concentrated on

an illustrative example —the magnetic susceptibility for

the single-impurity U = 0 Anderson Hamiltonian —the
new method is equally efBcient for more complex mod-

els. To show this, in an introductory overview of the
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procedure we present the magnetic susceptibility for the
single-impurity, spin-degenerate Kondo model calculated
by the interleaved method with A = 10—a computation
carried out in a small fraction of the time required by
the standard method with A = 3—and show that, on the
scale of the plot, its temperature dependence cannot be
distinguished &om the exact universal curve. By com-
bining satisfactory accuracy with relatively small com-
putational efFort, the interleaved procedure broadens the
scope of the renormalization-group approach; it should,
for instance, make accessible to modest computational
budgets the temperature-dependent impurity susceptibil-
ity for the two-impurity Kondo or Anderson model.

Our development occupies four sections. Section II
presents the preliminary overview of the interleaved pro-
cedure, comparing its results to those of the standard
method. A more systematic description of the new
method appears in Secs. III and IV, the former review-
ing the generalized renormalization-group procedure, and
the latter explaining how it can be applied to the corn-
putation of thermodynamical averages. As an illustra-
tion, Sec. V then shows that the magnetic susceptibility
for the U = 0 Anderson model computed with A = 10
agrees very well with results obtained with much smaller
discretization parameters. Conclusions are summarized
in Sec. VI.
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FIG. 1. Numerical renormalization-group results for
the temperature dependence of the impurity magnetic
susceptibility for the Kondo Hamiltonian with impu-
rity —conduction-band coupling J = —0.146D. The open cir-
cles represent the thermodynamical average calculated with
the standard procedure (Ref. 1) and A = 9. As discussed
in the text, the oscillation is an artifact of the discretization
whose amplitude increases rapidly with A. Similar oscillations
appear for any single choice of z. By contrast, the general-
ized procedure described in this paper yields the monotonous
curve represented by solid circles. For comparison, a solid line
shows the universal curve computed by the Bethe ansatz.

II. OVERVIEW

The computation of the magnetic susceptibility for the
Kondo model has been discussed by Wilson. The model
Harniltonian, comprising conduction states cg„ interact-
ing antiferromagnetically with a localized magnetic im-
purity described by spin-1/2 variable S, is

H = H, s —J) c~q„o„„cg„S,
k, k'

shows no oscillations; the calculated susceptibility con-
verges much more rapidly to the continuum limit, so that
even with A = 9 the computed curve virtually coincides
with the continuum limit. As a consequence, the new
procedure makes it possible to compute thermodynam-
ical averages with large A, resulting in substantial sav-
ings in the computational efFort. The modifications of
the numerical renormalization-group method responsible
for this achievement are described in Secs. III and IV.

where H,g is the conduction-band Hamiltonian, which
will be discussed in further detail in Sec. III. Results
for the impurity contribution to the susceptibility (g; ~)
calculated with discretization parameter A = 9 by the
standard method are shown as open circles in Fig. 1.
For comparison, a solid line shows the universal curve
for the susceptibility, calculated by the Bethe ansatz.
For such a large discretization parameter, the calculated
susceptibility oscillates markedly around the exact result.

That the oscillation is an artifact of the discretization
is readily recognized, for (i) its period is ink and (ii) its
amplitude grows rapidly with A: When the open circles
in the figure are recalculated with difFerent discretization
parameters, for diminishing A one finds results rapidly
convergent to the continuum limit. For A = 3, for in-
stance, the amplitude of the oscillations is smaller by a
factor of 100, so that on the scale of the plot the cal-
culated points would be indistinguishable &om the solid
line. It is for this reason that calculations of thermo-
dynamical averages have hitherto been restricted to dis-
cretization parameters A & 3.

By contrast, the susceptibility calculated with the in-
terleaved procedure, shown by solid circles in Fig. 1,

III. GENERALIZED NUMERICAL
RENORMALIZATION-GROUP METHOD

Since the generalized renormalization-group transfor-
mation procedure upon which our method is founded
has been detailed in previous publications, ' only brief
discussion seems called for here. As in the standard
numerical renormalization-group method, 2 the general-
ized transformation applies to model Hamiltonians of the
form

H = H; p+Hg+H;„„

where H; p is the impurity Hamiltonian, H, p describes
a half-filled structureless band of width 2D containing
Doninteracting electrons, and H;„q is the interaction be-
tween the conduction and impurity electrons. It is based
on a logarithmic discretization of the conduction band, a
controllable approxirn. ation afFecting only H g, both H;
and H;„t are treated exactly.

The novel ingredient in the procedure detailed by
Yoshida et al. is the pattern in Fig. 2, a generaliza-
tion of the standard discretization grid. 2 The extended
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FIG. 2. Logarithmic discretization of the conduction band.
Two parameters define the sequence of intervals marked by
ticks below the horizontal axis: A must be larger than unity
and z must be in the interval 0 ( z & 1; otherwise the two
numbers are arbitrary.

procedure involves two discretization parameters A and
z. The former, introduced by Wilson, can in principle be
any number larger than unity; the latter, which we shall
refer to as the shding parameter, is arbitrary in the inter-
val 0 & z & 1. With z = 1, the standard discretization is
recovered.

Figure 2 divides the positive conduction band energies
eI, into an infinite sequence of intervals of the form D &) Dp —z DA —z ) CA, ) DA —z —1 Dpl —z —m

~I, & DA ', . . . . A sequence of negative energies is
likewise defined. For each positive (negative) interval, we
then define a Fermionic operator a + (a ) as the most
localized conduction state centered at the impurity site
that can be constructed out of the energies in it. Thus,
for the leading intervals in the two sequences, we define
the operators

kD
a~ = k[D(1 —A ')] '/ cg deg,

+DA-r

and for the mth subsequent interval, the operators

set. As z varies from zero to unity, they sweep over all
energies in the continuum of the conduction Hamiltonian,
Eq (5)

The projection of the conduction-band Hamiltonian on
the (incomplete) discrete basis is an approximation con-
trolled by A. For A ~ 1 the continuum of the conduction
band is recovered, but that limit is clearly beyond the
reach of numerical computations. Thus, the diagonal-
ization of the model Hamiltonian has to be carried out
with A ) 1 and the convergence of the calculated physi-
cal properties to the continuum must be demonstrated a
posteriori.

For numerical applications, the infinite series on the
right-hand side of Eq. (6) must be truncated. The trunca-
tion, a somewhat elaborate procedure, will be discussed
below; here, we observe that this second approximation,
involving only the discretized conduction operators, does
not afFect the impurity Hamiltonian H; ~. In order to
ensure that it does not afFect the coupling H;„t between
the impurity and the conduction band either, we must
now give attention to H;„~. To be definite, we shall as-
sume that the impurity interacts only with electrons in
the Wannier state

1= ~):ct.,
k

centered at the impurity site.
The latter is a linear combination of the (ay, a ~)

(m = 1,2, . . . , oo) conduction states defined in Eqs.
(3) and (4),

y [D(1 A
—i)]—1/2A(vn+z —i)/2

ADA

x CA deI, .
Qg —r —rn

(4)

fp=
1 —A

2
(a, +a )

A(i z na)/2—
(

— + o
2 m=1

The central approximation in the method then consists
of projecting the conduction Hamiltonian

Hcb CA:CyCg dt-A;

on the basis of the operators (a~, a ~j (m
1, 2, . . . , oo), i.e. , of writing

(10)

Before diagonalizing the model Hamiltonian, accord-
ingly, we define a new discrete basis (f„) (n
0, 1, . . . , oo) by the Lanczos constructionis starting with
the Wannier state fp This casts . the conduction-band
Hamiltonian into the codiagonal form

JI,s = Ep(z, A)(a+ta+ —at a )

+) E (z, A)(a +a + —a a )
m=1

(6)

,s = ) e„'(f„f„+i+ H.c.),
n=O

with coefI1cients ~„given by the recursive equation

where

D D

Ep(z, A) = eI, ding dpi,
DA —r DA

~ I ~

n=O

where

(e„') = F~(z, A) —I('RN+i) +
]„, (12)

and

Dgl —r —rn

E (z, A) =
DA —r —rn f

�Dh1
—r —rn

t A. deI,
Dg —r —rn

dei, (8)

F~(z, A) = (1 —A ) [Ep(z, A)]

+(1 —A-') ) A'- -- [E (z, A)]'"",

are the average energies in each of the intervals in Fig. 2.
For given z and A, these energies constitute a discrete 'R is the (N + 1) x (X + 1) matrix whose elements are
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['Riv+i],, = e;,h;,- i ~e, ,h~;

i, j = 1, 2, . . . , N+1, (14)

and Eo and E (m = 1,2, . . .) are given by Eqs. (7) and
(8)

For N = 0, the second term on the right-hand side of
Eq. (12) vanishes, so that eo can be easily determined.
The matriz 'Rqq can then be constructed, following which
Eq. (12) with N = 1 becomes an explicit expression for

Successive recursions determine E'2,63, . . . . For sufB-
ciently large N, the coefficients e„(n & N) are described
to several decimal places by the approximate expression

1+A py —z —ny2

2
Vp

where vg is the Fermi velocity. Just how large N must
be to make this expression correct to a given accuracy
depends on A, but for practical purposes, N = 10 is
typically sufBcient to guarantee four or more accurate
significant digits in Eq. (15).

Once the e„' have been determined, Eq. (11) describes
the conduction band, while the impurity Hamiltonian
H p and the interaction term H;„t are written in their
original forms, which involve only the impurity degrees
of freedom and the conduction operator fo Still, .the
model Hamiltonian H = K; p + H;„t + H, g cannot be
diagonalized numerically, for the series on the right-hand
side of Eq. (11) is infinite; at this point, therefore, one
must specify the energy scale(s) defined by the physical
properties to be computed: In particular, in a calcula-
tion of thermodynamical properties at the temperature
T, the energy scale of interest is eT ——kBT. Energies sig-
nificantly smaller than eT in the model Hamiltonian can
be disregarded. Thus, if one chooses an integer L such
that

the scaled Hamiltonian

-L—i

) e'„(f„'f~+i + H c.) + Himp + Hi+i
n=0

(20)

and the renormalization-group transformation 7 by the
relation

Hr, +i = 7 [Hr, ]. (21)

IV. U = 0 ANDERSON HAMILTONIAN

As an illustration, we now consider the Anderson
model for U = 0. In this case, the impurity Hamilto-
nian simply associates an energy ep with each electron at
the impurity site,

Physically, the transformation amounts to examining
the physical properties of the model system with finer res-
olution, at an energy scale reduced by A ~ . To do this,
one must augment the truncated series within brackets
on the right-hand side of Eq. (20); i.e., one must let
L m L + 1. The factor multiplying the square brackets
is at the same time magnified by ~A, which is equiva-
lent to choosing a smaller energy unit in which to express
the Hamiltonian; this recurrent scaling makes the small-
est energies in the conduction-band Hamiltonian H, t, of
the order of unity. Since H, p has no characteristic en-

ergy scale, its eigenvalues remain invariant under such a
scaling; by contrast the impurity and interaction Hamil-
tonians normally have characteristic energies that are
substantially changed under the renormalization-group
transformation. This constitutes the basis for the con-
cepts of fixed-point and crossover Hamiltonians.

eL (( k~T
t

Hjmp 6gCgCg y (22)

or, more quantitatively,
while the interaction Hamiltonian couples the impurity
level cg to the conduction levels cg.

eL, ——pkaT, (17) H~„i ——y 2V(cdt fo + H.c.), (23)

where P is small, the infinite sum on the right-hand side
of Eq. (11) can be truncated at L, and the conduction-
band Hamiltonian written in the approximate form

where fo was defined in Eq. (9). Spin sums are implicit
in Eqs. (22) and (23). The conduction band is defined as
in Sec. III, and we consider the linear dispersion relation

L—Z

H, s = ) e„'(ftf„+i + H.c.). (18)
k

eI, ——D—
k~' (24)

With this, the conduction-band Hamiltonian has been
projected on a finite basis, and the model Hamilto-
nian can be diagonalized numerically. To define a
renormalization-group transformation, the model Hamil-
tonian must next be scaled. To this efFect, it is multiplied
by 2A~ i~2+' /[v~(1+A i)], a factor chosen so that
the smallest codiagonal energy on the right-hand side of
Eq. (18), eL i, scales to unity [cf. Eq. (15)]. One thus
defines the scaling factor

where k~ is the Fermi momentum, equal to unity in
appropriately chosen units, and the conduction ener-
gies eA, and momenta k are measured Rom the Fermi
level and the Fermi momentum, respectively. The trun-
cated, scaled, discretized model Hamiltonian then takes
the form

L—j
Hl, = ) e~(f~ f~+i + H.c.) + edcdcd

D 4 + j + P—(L—1)/2 —z+11 A ~~v
L— +v 2V(cdt fo + H.c.) DL. (25)
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This quadratic Hamiltonian can be written as the matrix
product

a simple calculation shows that, at temperature T, the
magnetic susceptibility of the U = 0 truncated Anderson
Hamiltonian HL, is

HI —+g+L+L ) (26)

where TL, is a vector of dimension L + 2,

t t t tI dfo f1 ' ' fI (27)

and 'RL is a (L+ 2) x (L+ 2) matrix whose nonvanishing
elements are

(L+i)/2

)- (1

(L+~)/2

+
e=o

+ e P«—+)2

(1+e—P«)2 {34)

[&L]» = «/DL,

[ZL]» ——[XL]„=AV/D„

(28)

To compute the impurity contribution g; p to the sus-

ceptibility, one must subtract from y the (Pauli) suscep-
tibility of the free electron gas. To this end, one must di-

agonalize the discretized conduction-band Hamiltonian,
which in analogy with Eq. (25), is given by

[+L]n,n+1 [+L]++1,n — n 2/ I—~ (3o)

L—x

IIL, = ) e„'(ftf„+, + H.c.)
n=o

Dl, . (35)

ge+ = &e-~y~, ~

the pe~ being in turn related to the ge by

(31)

To diagonalize the Hamiltonian HL, one has to diago-
nalize the matrix 'Rl. . The pattern followed by the nu-
merical results of this operation has been detailed else-
where . To summarize, we recall here only that for large,
odd I, out of the L+ 2 eigenvalues of RL'(L, + 1)/2 are
always positive, (L + 1)/2 are always negative, and the
remaining eigenvalue has the sign of e~ (it is zero for
« = 0). For definiteness, we henceforth consider «& 0,
which makes it convenient to denote the positive eigen-
values gI+, with I. = 1, . . . , (L + 1)/2 and the negative
ones —r)I, with E = 0, . . . , (L —1)/2. To a good approx-
imation, then

Also quadratic, this Hamiltonian can be diagonalized

by the numerical procedure in Sec. IV. For large, odd L,
a symmetric set of L+ 1 eigenvalues +il& (E = 1, . . . , (L+
1)/2) results, each of which is approximately given by

(36)

Once the eigenvalues of the discretized conduction-
band Hamiltonian have been determined, the Pauli sus-

ceptibility is easily computed. For odd L, it is given by

, 2 (L+i)/2
I,PPa)

(1 + e —P«)2

The impurity contribution to the susceptibility is

I'/Ap
tan(~ye~) =

&d + Dl, 'fIe+

gimp —g gcb.

(32)
From Eq. (34), it then follows that

Here, I' = vrV /D is the impurity level width, E+ (E—
)

ranges from unity to (L, + 1)/2 [(L+ 3)/2], and QA =
ln i/A/ tanh(ln ~A) converges rapidly to unity as A + l.

When Eq. (32) is compared to the exact expression for
the phase shifts b in the uncorrelated Anderson Hamil-
tonian,

tanb =

we see that the exponents pe are discretized versions of
the phase shifts divided by ~, that is, ~pg~ —=b/m.

V. THERMODYNAMICAL AVERAGES

To compute thermodynamical averages for an impu-
rity Hamiltonian, one must Grst diagonalize it. In the
renormalization-group method, this generally calls for
the iterative numerical procedure extensively discussed in
previous publications. For the single-particle Hamil-
tonian (26), however, the straightforward diagonalization
conducted in Sec. IV sufFices. For odd L, for instance,

pZ (L+i) /2

e=1

(39)

where we have separated the E = 0 term from the second
sum on the right-hand side of Eq. (34), and

~
—Pnc+ ~

—Pn~- ~
—Pnc

+ — -2
(1+e P«+) (1+ e P« )(1+e &«-)

(4o)

The summand on the right-hand side of Eq. (40) be-
comes very small for E such that PA» 1. For sufBciently

large L, therefore, it is safe to extend the upper limit of
that sum to in6nity.

It is also safe to extend the lower limit to —oo. To see
this, recall that P is small and that the eigenvalues gI+
are of the order of A, so that for small 8 the exponential

exp( —Pr)g+) is approximately equal to unity, and the first
term on the right-hand side of Eq. (40) is approximately
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1+e P 90—'
E=—oo

(41)

Considered as a function of a complex variable (, the
summand 4(() is real and analytic on the real axis,
( = z. Under these conditions, a Sommerfeld-Watson
transformation~r converts the infinite sum in Eq. (41)
into an integral:

) O(E} = f O(x) ch+ 4mB ) 'R(k), (42)
E=—oo

1/4; the second term is likewise approximately 1/4, while
the last one is approximately —1/2. The summand thus
becomes very small for small 8, and we substitute —oo
for 1 in the lower limit of the sum on the right-hand side
of Eq. (39), which then becomes

A g—Z+1/2A (46)

The function e(() in Eq. (40) then reduces to

exp( —PA~ '+ )'
)C(() = 2

[1+exp(—pA)' '+ )' )]

In order to substantiate this point with a more specific
discussion, and to show that for large A the second term
on the right-hand side of Eq. (42) introduces oscillations
in the temperature dependence of the susceptibility, we
will now calculate Ty; z(z, T) at the low-temperature
limit. To take the simplest illustration, we consider the
impurity at the Fermi energy ep ——0.

As T m 0, Eq. (17) shows that the truncation limit
L approaches infinity. According to Eq. (19), the scaled
bandwidth DL, then approaches zero, and according to
Eq. (32), tan(mpg~) ~ goo. In this limit, therefore,
pgy m pl/2, so that the eigenvalues in Eq. (31) become

where R(k) indicates the residue of the function

( )
1 —exp( —2mi()

(43)

exp( —PA~ ')
[1+exp( —PA& ')]2 (47)

at the pole ( = (g. The prime in the last term on the
right-hand side of Eq. (42) indicates that the sum runs
over all poles in the upper half-plane, 8((g) ) 0.

Since the denominator on the right-hand side of
Eq. (43) does not vanish in that half-plane, the (double)
poles coincide with those of 4(() and are given by and

PA~~-'+'~' = i~(2k+ 1) (48)

In the upper [8(() ) 0] half-plane, the right-hand side
has double poles at ( = (g and ( = (& (k = 0, 1, . . .) given
by

and

1 + exp( —pA~' ') = 0 (44) PA~~ = i~(2k+ 1),

respectively. It follows that

(49)

1+exp( PA~" '+~—~) +) = 0, (45)

where the pg„y are given by Eq. (32) with the replace-
ment gg -+ (g.

It is easy to show that the poles of 4'(() lie at or above
the line 8($) = x/(21nA). Equation (43) then shows
that the largest contributions to p((g) are proportional
to exp( —m2/in A). Each residue R(k) is therefore pro-
portional to that factor, and for small A the sum on
the right-hand side of Eq. (42) is negligible. For small
A, therefore, the infinite sum on the right-hand side of
Eq. (41) turns into an integral, showing that the impurity
susceptibility calculated with the discretized conduction
band is close to the continuum limit.

and

1 (4j + 1)in ln[(2k + 1)m]

2 21nA P»A

(4j + 1)iver ln[(2k + 1)7r]

21nA P»A

(50)

where j is any non-negative integer.
Given the denominator 1 —exp( —2vri(~) on the right-

hand side of Eq. (43), the function &p(() decreases rapidly
with increasing 9((). The leading contributions to the
sum over R(k) on the right-hand side of Eq. (42) therefore
come &om the poles with j = 0 on the right-hand sides
of Eqs. (50) and (51). Their residues are

2(k + 1) .(,„~ . 6 in[2m(2k + 1)] ln (k&T/D~) )
R(k)= e )" exp 2m'i z —12+ +

lnA lnA )
so that Eq. (42) becomes

(52)

8 ~~& z . (k+ 1) ( in[2+(2k+ 1)] ln(k~T/D~) )
lnA lnA

and Eq. (41) becomes
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(gv )'
p(z, T) = + 4(x) dx

2'&T (1 + e Pr—lo )2

A (k + 1) / HI[2K[2k + 1)] la (kBT/DN) 'I

)lnA lnA
(54)

For impurity energy e& ——0, the eigenvalue go is zero for all I and the first term within curls on the right-hand
side of Eq. (54) is 1/4. The integral in the second term, on the other hand, equals —1/4, so that the two terms add
up to zero. We are left with

(gga) 4 g& z . (0 + 1) / 1n[2m'(2k + 1)] 1n(kyar/Der)'l

j (55)

This expression illustrates the central points raised in
this paper. In the low-temperature limit, one expects
the impurity contribution to the susceptibility to van-
ish. The entire right-hand side must therefore be an ar-
tifact of the logarithmic discretization of the conduction
band, and indeed the exponential function multiplying
the curly brackets guarantees that it vanish for A m 1.
For small A, the deviation is minute; that exponential
function guarantees rapid convergence (as a function of
A) to the continuum limit Ty; ~ = 0.

For increasing A, however, by the time the discretiza-
tion parameter becomes comparable to 10, the right-hand
side of Eq. (55) has ceased to be negligible. The logarith-
mic temperature dependence within the argument of the
cosine makes Tg; ~(T) oscillate with period ln A. Such
behavior is visible in every calculation of a thermody-
namical average, as illustrated by Fig. 1. The amplitude
of the oscillations depends on the model Hamiltonian, the
calculated property, and on the temperatures at which it
is computed.

Inspection of Eq. (55) shows also that the phase of the
oscillations is a linear function of the sliding parameter
z. By averaging the calculated susceptibility over z we

eliminate the deviations from the continuum limit; i.e. ,
we recover the result Ty; z m 0, exact at low tempera-
tures.

At higher temperatures, the energy dependence of the
phase shifts p [see Eq. (32)I makes the analysis of Eq. (41)
cumbersome. We prefer to discuss the numerical results
in Figs. 3 and 4.

The solid circles in those figures show that the devia-
tions on the right-hand side of Eq. (55) are not restricted
to the low-temperature regime. The impurity suscep-
tibility calculated with a fixed sliding parameter z and
large A oscillates as a function of temperature; plotted
on a logarithmic scale the osciBations have period lnA.
By contrast, since the amplitudes of the oscillations grow
in proportion to exp( —m / jn A), calculations carried out
with 1 ( A & 3 are satisfactorily accurate, as the inset
in Fig. 4 shows.

The derivation of Eq. (55) indicates that the sinusoidal
deviations are mathematical analogs of the de Haas —van
Alphen oscillations. The latter are due to the physical
bunching of conduction band states due to an external
magnetic field; the former are due to the logarithmic dis-
cretization of the conduction band. One therefore ex-
pects them to disappear when the physical properties

calculated as functions of the discretization parameter z
are integrated from z = 0 to z = 1, since the discrete
levels in Fig. 2 then run over the entire conduction band.

The integration must be carried out numerically. To
consider the crudest approximation, one that neverthe-
less ensures rapid convergence to the continuum limit,
we employ a two-point trapezoidal rule. Thus, in-

stead of computing the susceptibility for fixed sliding
z as illustrated by the solid circles in Figs. 3 and 4,
we calculate the z-integrated susceptibility g; ~(T)

~(z, T) dz with the approximate expression

z(T) = y; z(z = 0.25, T)(0.5 —0)

p(z = 0.75, T)(l —0.5)

or, which is the same,

~ ~(T) = 4' ~(0.25 T)+~ ~(075 T)1/2 (57)

O. l 5
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FIG. 3. Temperature dependence of the impurity suscep-

tibility calculated with discretization parameter A = 9 for

impurity energy eg ———0.05 D, larger in absolute value than
the level width I' = 0.01 D. The solid circles represent results
obtained with the standard procedure (Refs. 1 and 6). The
solid line is the susceptibility computed with the interleaved

procedure. The vertical arrow on the horizontal axis indi-

cates the crossover temperature k~T = eg, which separates
the free-impurity regime [k~TX; ~/(gI/, n) = I/8] from the
frozen-impurity regime [knTy; ~/(gran) = 0]. In the latter,
the discretization of the conduction band introduces oscilla-

tions with period ink in the curve represented by the solid

circles. By contrast, the interleaved procedure yields results
indistinguishable on the scale of the plot from the exact curves

for the impurity susceptibility.
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FIG. 4. Temperature dependence of the impurity sus-
ceptibility calculated with discretization parameter A = 9
for impurity energy e& ——0 and level width I' = 0.01D.
The vertical arrow along the horizontal axis indicates the
crossover temperature k&T = I' from the free-impurity to
the frozen-impurity regime. As in Fig. 3, the solid circles
represent susceptibilities obtained with the standard proce-
dure (Refs. 1 and 6), while the solid line shows the suscep-
tibility calculated with the interleaved procedure. The large
difFerence between the conduction-band phase shifts in the
interacting system in the frozen-impurity regime and those
in the free-electron gas from which the Pauli susceptibility
is calculated makes the oscillations in the curve represented
by the solid circles particularly large; the inset, calculated
with A = 3, shows that such oscillations increase rapidly with
growing A, thus rendering the computation of thermodynami-
cal averages with A ) 3 impossible with the standard method.
By contrast, the results of the interleaved procedure are re-
markably independent of the discretization parameter.

Notice that the two sliding parameters z = 0.25 and
z = 0.75 on the right-hand side correspond to inter-
leaved intervals in the logarithmic discretization depicted
in Fig. 2; &om this image derives the name we have given
to the procedure.

The results of this procedure are shown by the solid
lines in Figs. 3 and 4. Even with this simple approxi-
mation, the integration washes out the oscillations and
yields a curve for the temperature-dependent suscepti-
bility that cannot be distinguished &om the continuum
limit on the scale of the plot.

Before closing this section, we comment on the scope of
the interleaved procedure. The rapid convergence to the
continuum is no special property of the U = 0 model. For
nonzero U, under the renormalization-group transforma-
tion (21), in certain temperature ranges (at low temper-
atures, for instance) the Anderson Hamiltonian fiows to
the vicinity of single-particle fixed-point Hamiltonians.
To such Hamiltonians, and therefore to such ranges, the
analysis in Eqs. (39—55) applies; it follows that integra-

tion over the sliding parameter z will eliminate the ar-
ti6cial oscillations introduced by the discretization. In
the remaining (crossover) section(s) of the temperature
axis, one has to rely on results such as those for the
Kondo Hamiltonian (i.e., the U -+ oo limit of the spin-
degenerate Anderson Hamiltonian) in Fig. 1. As illus-

trated by that 6gure, the numerically coxnputed tempera-
ture dependence of the ixnpurity susceptibility shows that
in the crossover region(s) the procedure ensures equally
rapid convergence to the A ~ 1 limit.

The accuracy of the interleaved procedure is therefore
independent of U. This, in fact, could be expected: Sim-
ilar to the standard method, the new approach involves

approximations affecting only the conduction Hamilto-
nian; consequently, it is uniformly accurate over the para-
metrical space of the model.

VI. CGNCLUSIGNS

Earlier publications have shown that the sliding pa-
rameter z, introduced by the generalized discretiza-
tion in Fig. 2, extends the scope of the numerical
renormalization-group method to encompass the compu-
tation of excitation properties. ~ As a matter of prac-
tical interest, the most recent of those applications have
shown that accurate results, quantitatively representa-
tive of the continuum limit, are obtained even with dis-
cretization parameters A as large as 12. In this work, we

have shown that, with the interleaved procedure afforded
by the generalized, z-dependent discretization, thermo-
dynamical properties calculated with equally large A' s
also yield remarkably accurate averages.

By greatly reducing the computational cost of di-

agonalizing many-body Hamiltonians, this development
aids the analysis of impurity Haxniltonians involving
more degrees of &eedom than the thoroughly stud-
ied single-impurity Anderson model. As an applica-
tion of this procedure, the magnetic susceptibility for
the two-impurity spin-degenerate Kondo Hamiltonian is
currently under study with discretization parameter
A = 10. Preliminary results show that the model Hamil-
tonian can be diagonalized with small computational
cost and the estixnated absolute error for the product
k&Ty; z(T)/(gag) at any given temperature lies below
5x10 3.
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