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%'e present the general theory of clean, two-dimensional, quantum Heisenberg antiferromagnets
which are close to the zero-temperature quantum transition between ground states with and without
long-range Neel order. While some of our discussion is more general, the bulk of our theory will be
restricted to antiferromagnets in which the Neel order is described by a three-vector order parameter.
For Neel-ordered states, "nearly critical" means that the ground-state spin stiffness, p„satisfies p, (&
J, where J is the nearest-neighbor exchange constant, while "nearly-critical" quantum-disordered
ground states have an energy gap, 4, towards excitations with spin 1, which satisfies 4 « J. The
allowed temperatures, T, are also smaller than J, but no restrictions are placed on the values of
k&T/p, or RENT/b, . Under these circumstances, we show that the wave vector and/or frequency-
dependent uniform and staggered spin susceptibilities, and the specific heat, are completely universal
functions of just three thermodynamic parameters. On the ordered side, these three parameters are

p„ the 7 = 0 spin-wave velocity c, and the ground-state staggered moment No, previous works
have noted the universal dependence of the susceptibilities on these three parameters only in the
more restricted regime of k&T &( p, . On the disordered side the three thermodynamic parameters
are 4, c, and the spin-1 quasiparticle residue A. Explicit results for the universal scaling functions
are obtained by a 1/N expansion on the O(N) quantum nonlinear o model, and by Monte Carlo
simulations. These calculations lead to a variety of testable predictions for neutron scattering, NMR,
and magnetization measurements. Our results are in good agreement with a number of numerical
simulations and experiments on undoped and lightly doped La2 &Sr&Cu04.

I. INTRODUCTION

The subject of two-dimensional quantum antiferro-
magnetism has witnessed a remarkable revival in recent
years. This is largely due to the intense interest in
understanding the properties of the Cu02 layers in the
high-temperature superconductors. However, the exper-
imental motivation is not limited to these cuprate com-
pounds; recent investigations have refocused interest
on a number of other layered insulating compounds which
are rather well described as Heisenberg antiferromagnets
at low temperatures.

The bulk of the existing theoretical work on two-
dimensional antiferromagnets can be divided into two
broad classes. First, there are the studies of the
low-temperature properties of antiferromagnets with
well-established long-range Neel order in their ground
state. ' ' ' Definitive results have been obtained for
these systems by Chakravarty et a/. ' They showed
that the long-wavelength, low-energy properties were well
described by a mapping to a clasaical two-dimensional
Heisenberg magnet. All effects of quantum Quctuations
could be absorbed into almost innocuous renormaliza-
tions of the coupling constants. Good agreement with
neutron scattering experiments on La2Cu04 was ob-
tained.

Second, there have been numerous investigations on
spin-Quid, or quantum-disordered, ground states.
These are states in which quantum fluctuations have re-
moved all vestiges of the Neel order. An entirely new
physical picture is necessary for visualizing the ground
states: it is phrased most often in terms of resonating
singlet valence bonds between pairs of quantum spins.
Many interesting questions on the presence of alternative
symmetry breaking in the ground state have been ad-
dressed. The nature of the excitations above the ground
state is also of some interest. The two experimentally
distinguishable possibilities are (i) the low-lying states
correspond to those associated with weakly interacting
spin-1/2 quanta ("spinons"), or (ii) the spinons are con-
fined in pairs, leading to integer-spin excitations with in-
finite lifetimes. The reader is referred to a recent review
where many of these questions are addressed in greater
detail.

In this paper, we present a detailed theory of quan-
tum antiferromagnets which fall in between the above
two classes. These nearly critical antiferromagnets are
neither strongly Neel ordered nor fully quantum disor-
dered in the ground state. The ordered Neel moment, if
it exists, is much smaller than the ordering moment of
the corresponding classical antiferromagnet. If the order-
ing moment is absent, the resulting quantum-disordered
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FIG. 1. Phase diagram of 'R [Eq. (1.1)j as a function
of g and temperature T (after Ref. 12). The coupling

g measures the strength of the quantum nuctuations. It
is inversely proportional to S for large spin and its value
also depends on the ratios of the J;~. The parameters
xj —Nk&T/ (2mp, ) and zz = k&T/ b, control the scaling
properties of the antiferromagnet (here p, is the spin stiffness
of the Neel-ordered ground state, and A is the spin-1 gap in
the quantum-disordered ground state).

ground state has an energy gap towards excitations with
nonzero spin which is much smaller than all microscopic
energy scales in the problem. Such nearly critical an-
tiferromagnets were considered brie8y by Chakravarty
et al. ; they identified three diferent regimes of behavior
(see Fig. 1) which we now outline. At short length and
energy scales the spin correlations in these antiferromag-
nets are essentially critical. The spins fluctuate strongly
between ordered and nonordered configurations. At very
low temperatures, the quantum-fluctuating system only
makes up its mind at a fairly large scale, and crosses over
to behavior characteristic of either a Neel-ordered ground
state (this is the "renormalized-classical" region of Fig. 1)
or a quantum-disordered ground state (the "quantum-
disordered" region of Fig. 1; see also Fig. 2). At larger
T there is another, very interesting possibility: the crit-
ical quantum fluctuations may be quenched by thermal
effects before the system has had a chance to undergo
the above crossover to one of its two ground states (the
"quantum-critical" region of Figs. 1 and 2). The sys-
tem then does not display the properties of either Neel
order or quantum disorder at any length scale; instead
it crosses over from critical spin fluctuations to a ther-
mally induced, quantum-relaxational regime which will

be described for the first time in this paper.
The above three crossovers occur at a large length scale

in nearly critical antiferromagnets, suggesting that their
properties should be universal. The bulk of this paper
is devoted to making this statement more precise. We
will indeed find that the long-wavelength, low-energy uni-

form and staggered spin susceptibilities are completely
characterized by universal scaling functions. The con-
tribution of the spins to the specific heat will also be
found to be similarly universal. The only required in-

puts are three thermodynamic parameters, which will

be described more precisely below. Some of the re-
sults reported here have been discussed briefly in recent
reports. ~ 2 Some other recent work has also discussed
quantum criticality near related magnetic phase transi-
tions 23 24
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FIG. 2. Properties of the nearly critical antiferromagnet
as a function of the observation wave vector k, or frequency
~ in the three diferent regions of Fig. 1. The appropriate
regime is determined by the larger of hck/(k&T) or fur/k&T.
In the renormalized-classical regime, ( is the actual correla-
tion length, while (q is a Josephson correlation length related
to the spin stiffness by hc/(q = p, /T, with T a universal
number. In the quantum disordered region, 4 is the gap for
S = 1 excitations at T = 0. The thermodynamic behavior in
the various regions is discussed in the text.

Our motivation in examining nearly critical antiferro-
magnets comes primarily from numerous recent experi-
ments on undoped and weakly doped La2 gSrgCu04.

We consider first undoped La2Cu04. It is by now well
established that La2Cu04 is described extremely well
as a spin-1/2 square lattice Heisenberg antiferrornagnet
with nearest-neighbor interactions. Almost all theoret-
ical studies ' of this system have focused primarily
on its properties at very low temperatures, where a de-
scription in terms of classical fluctuations of the Neel-
order parameter is appropriate; this range of tempera-
tures was referred to as the "renormalized-classical" re-
gion. There is good accord between theory ' and
experiments2s so at these low temperatures (T): the cor-
relation length ((T) increases exponentially with falling
T, the equal-time structure factor, S(k), at zero momen-
tum behaves as S(Q) oc Tz(z, and the ssCu spin-lattice
relaxation rate I/Tq decreases rapidly with the increas-
ing T, all of which is in good agreement with the renor-
malized classical theory. However, recent experiments30
have shown that at intermediate temperatures (T ) 0.4J'
where J is the nearest-neighbor exchange constant), 1/Tq
becomes nearly independent of T. The crossover to this
behavior occurs at a T which is small compared to J, so
one can hope that a low-energy theory of the expected
crossover to the quantum-critical region might still be ap-
propriate; the possibility of such a crossover was already
noted earlier. We will show in this paper that this new
behavior is well described quantitatively by a theory of
the quantum-critical spin fluctuations. The correlation
length ((T) is also expected to display a crossover at
these temperatures;~2 unfortunately, there are no experi-
mental data for f for T ) 0.4J. However, strong support
for our interpretation comes from the experimental and
numerical measurements of the uniform static spin
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susceptibility gf (T). We will show that its temperature-
dependent slope above T 0.35J is in excellent accord
with the predictions of the quantum-critical theory, and
in clear disagreement (by a factor of 3) with the result
deduced &om a renormalized-classical theory. Taken to-
gether, we will argue that the above results imply the
following: the square lattice spin-1/2 Heisenberg anti-
ferromagnet with nearest-neighbor exchange has long-
range Neel order ia its ground state, aad is well de-
scribed by a renormalized classical theory at low temper-
atures; however it is apparently close enough to a quan-
tum phase transition to a quant»~ disordered phase to
display quantum-critical spin Buctuations over an appre-
ciable range of intermediate texaperatures.

Consider next weakly doped La2 pSrpCu04. Nonzero
doping (b & 0) has two important consequences: (i)
the bare value of the spin-stiffness p, takes a smaller
value, pushing the antiferromagnet closer to the quaa-
tum phase transition, and (ii) the antiferromagnet is per-
turbed by the random potential of the dopant ioas. Ran-
domness is a relevant perturbation at the T = 0 quan-
tuxn phase transition and must be included in aay the-
ory of the low-T properties. Dynamic neutron scatter-
ing measurementsss'ss near h = 0.04 show that the spin
spectrum can be collapsed in a scaling plot in which the
measurement &equency u is scaled by T; a related depen-
dence of the susceptibility on u and T was also discussed
in the phenomenological theory of the marginal Fermi
liquid. s We have argued that this u/T scaling is in fact
a rather general property of quantum-critical spin Buc-
tuations, even in the presence of rundomness and dopi'. Furthermore, the prefactor of the scaling function
at low u and T shows clear evidence of the importance
of randomness. However many other experiments
on doped La2 gSrgCu04 have been performed at rela-
tively large temperatures. For these T we assume that
the antiferromagnet is insensitive to the weak random-
ness and is still in the vicinity of the pure fixed point.
The primary e6'ect of nonzero doping will then be to re-
duce the value of p,—an imxaediate coasequence is that
the NMR relaxation 1/Ti should be nearly T independent
(the quantum-critical behavior) over a T range which in-
creases with doping. This is indeed what is observed. %e
will discuss this aad other comparisons with experiments
on the doped cuprates in more detail later in Sec. VII.
With a single adjustable parameter (the doping depen-
dent p, ) we will find good agreement between our theory
and the experiments.

%e turn now to a more complete description of our
results. Consider the antiferromagnet described by the
following Hamiltonian:

'R = ) JiS;.Si,
i&j

where i, j extend over the sites of two-dimensional lattice,
S; are on-site spin operators acting on states with spin 8
on the site i, and the J,~ are exchange constants which fall
ofF rapidly with the separation between i and j. The J;~
are assumed to be invariant under the translation symme-
try of the underlying lattice. The energy scale J will be
used to denote the largest of the J;~. The J,.~ are predom-

No ——(n, (r) )T —Q. (1 2)

Upon approaching the critical point at T = 0, this stag-
gered magnetization will vanish as

where P is a universal critical exponent. We have No ——

0 for g & g, . Furthermore, (n, (r)) = 0 at all finite

T because it is not possible to break a contiauous non-
Abelian symxnetry in a two-dimensional system. At the
critical point, g = g„equal-time n(r) correlations will

decay with an anomalous power law

(n(r) n(0))- 1
(1.4)

where D = 3 is the dixnension of space-tixne.
The second ixaportaat hydrodynamic variable is the

inantly antiferromagnetic, so that the classical ground
state has no average»nonform magnetization. We will be
interested primarily in antiferromagnets which undergo a
zero-temperature quantum phase transition &om a Neel-
ordered to a quantum-disordered state as the ratios of
the J;~ are varied, and the strength of the quantum Huc-

tuation increases. Let us represent this strength by an
all-purpose coupling constaat g; the system is assumed to
be Neel ordered for g smaller than a critical coupliag g,
and quantum disordered for g & g, . We will assume fur-
ther that the critical ground state at g = g, is described
by a continuum field theory of excitatioas which propa-
gate with a non-singular spin-wave velocity c—a number
of explicit mean-field solutions of such transitions have
this property, is is although other possibilities have also
been discussed. ' ' 9 It should be possible to extend our
results to antiferromagnets which have difFerent velocities
for diferent spin-wave polarizations, ' but we will not
consider this complication here. In Sec. VII we will argue
that the following scaliag results also apply unchanged to
the corresponding quantum phase transitions in lightly
doped aatiferromagnets.

The nature of the classical ordering helps us iden-
tify the proper continuum fields necessary for a hydro-
dynamic theory of the quantum phase transition. The
first of these is of course the Neel-order parameter. %e
will restrict the analysis in this paper to antiferromag-
nets with an ordinary vector order paraxaeter. This
type of order parameter is associated with ground states
with collinear spin ordering, i.e., the on-site spin con-
densates are either parallel or antiparallel to each other.
More coxnplicated order parameters can arise in sys-
tems with stronger frustration, e.g., the triangular and
kagome lattices which have coplanar spins and matrix
order paraxneters; we will not discuss these compli-
cations here. Returning to the vector order-parameter
case, we assume that the condensate is oriented in the
kz direction, and define a continuum quantum field n(r),
which will be used as the hydrodynamic order-parameter
variable, as n(r;) = S; on sites where the condensate
points up, and n'(r;) = —8;; n+(r, ) = 8+ on sites
where the condensate points down. The staggered mag-
netization No is then
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magnetization density quantum field M(r)

M(r;) = S;, (1.5)

We now present the scaling forms satisfied by y„g„,
and C~ in the vicinity of the quantum phase transition
at g = g . The temperature, T, is taken to be nonzero,
but must satisfy

where a2 is the volume per spin, and gp~ is the gyro-
magnetic ratio of each spin. Although the ordering has
no net magnetization, magnetization fluctuations decay
slowly due to the conservation law on the total magneti-
zation.

Finally, the Hamiltonian '8 is itself associated with a
conserved total energy. The contribution of the spins to
the specific heat per unit volume, Cv, is the appropriate
experimental observable, sensitive to this hydrodynamic
quantity.

The hydrodynamic properties of the order parameter
and magnetization Buctuations can be determined &om
the following two retarded response functions:

X.(k, ~)bc, = -- d'r dt

x([nr(r, t), n (0, 0)])e ' "'
y„(k, (u)bt = -- d r dt

0

x([Mr(r, t), M (0, 0)j)e '~"' ', (1.6)

where all fields have now acquired a Heisenberg-picture
time (t) dependence, the indices I., m extend over the
three spin directions z, y, z, and the average is with re-
spect to a thermal Gibbs ensemble at a temperature T.
These correlation functions are the dynamic staggered
and uniform spin susceptibilities, respectively; their val-
ues predict the result of essentially all the experiments
that have been performed on antiferromagnets. An
important exception is the Raman-scattering cross sec-
tion —we will not discuss its properties here.

kgT « J.

A nonzero T implies the absence of a spin condensate,
and the response functions are therefore rotationally in-
variant. It is useful to describe separately the scaling
properties of magnets with and without Neel order in
their ground state. This will be followed by a discussion
of the relationship between the two cases.

A. Neel-ordered ground state

The scaling properties should clearly depend upon
a variable which measures the distance of the ground
state &om criticality. The most convenient choice is the
ground-state spin-sti8ness4 p, . Its value can be eas-
ily determined by experiments and by various numerical
analyses on model Hamiltonians, with no arbitrary over-
all scale factors. In two dimensions, p, has the dimen-
sions of energy, and the requiritent that the magnet is
not too far kom criticality is

p, «~.
Upon approaching g„p, obeys Josephson scaling

P. - (9.-9)'
where v is the usual correlation length exponent. We
can now state one of the central results of this paper:
For g & g, and under the conditions on T and p, noted
above, the values of y„y„and Cv satisfy the following
scaling forms:

No2 t' hc 5 (NkgTI" ( hck hu Nk~TI
y, (k, ~) =

p, t, kaT J E 2vrp y (k~T k~T 27rps j 'I

gp~ i 2 (' hck hu) Nk~TI
y„(k, ur) = ~ ~

k~T 4zu
~ khe i "
i k~T'k~T' 2zp. )

'

3((3) (kgT) (NkgT
'&h ) '&2«, J'

(1.10a)

(1.10b)

(1.10c)

where N is the number of components of the order pa-
rameter, |,' is the Reimann zeta function, and 4q„4q„,
and 4~ are completely u~~versal, dimensionless, func-
tions (4'q„and 4q, are complex while 4'q is real) de-
fined such that they remain finite as T/p, -+ oo; this
will also be true for other scaling functions introduced
below. For simplicity, we have explicitly specialized to
antiferromagnets with space-time dimension D = 2+ 1,
although analogous results for general D are not difBcult
to write down. Particularly striking is the absence of
any nonuniversal scale factors (in either the arguments
or the prefactors of the scaling functions) in all scaling
forms. Everything is fully determined by the values of
p„c, and No and there is no further dependence on

lattice scale physics. The universal dependence of the
spin susceptibilities on p„NO, and c was implicit in the
analysis of Chakravarty et al. ~z (see also the recent work
of Hasenfratz and Niedermayer2s) for the low Tregime-
T « p, ; our results are however valid for all values of
T/p, . Also Castro Neto and Fradkin4 have recently dis-
cussed closely related scaling forms for C~ near general
quantum phase transitions in 2 + 1 dimensions. The
coefficient of 4'q in (1.10c) has been chosen to be the
specific heat of a single gapless Bose degree of freedom
with dispersion cu = ck in two dimensions. The number
4q(T ~ 0) is thus a measure of the effective number of
such modes in the ground state. This number is given by
@q(0) for the ordered Neel phase, and by 4'q(oo) for the
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2P = (D —2 jg)v.

The arguments of the scaling functions will occur fre-
quently in this paper. We therefore introduce the dimen-
sionless variables

hck hew

kgyT' k~T' (i.i2)

which represent momentum and &equency measured in
units of a scale set by the absolute temperature T. The
third argument

quantum critical state at g = g .
We note further that all scaling forms continue to be

valid even at g = g: the prefactor of 4q, in (1.10a)
remains nonsingular at g = g, because of the results (1.3),
(1.9), and the exponent identity4s

& - (g —g.)" (1.14)

upon approaching criticality. One is not too far Rom
criticality provided

nets on the triangular or kagome lattices with coplanar
spin correlations are expected to possess deconfined spin-
1/2 spinon excitationsM 44—their critical properties will
therefore not be described by the present theory. For the
case of confined spinons, which is under consideration
here, the lowest excitation with nonzero spin will carry
spin 1. Further, at T = 0, this excitation should have
an infinite lifetime at small enough k. The distance from
criticality is conveniently specified by the gap, b, to this
spin-1 excitation. The equal-time order-parameter cor-
relation function will decay exponentially on a scale (
which is inversely proportional to A. Therefore 4 will
vanish as

NkgT
2&Ps

6&& J. (1.15)

determines whether the antiferromagnet is better de-
scribed at the longest distances as a quantum-critical or
a renormalized-classical model (see Fig. 1). The factor of
N in the definition of xq is to facilitate the large-N limit
in which p, N; the variable zq will therefore remain of
order unity. The factor of I/(2m) is purely for future no-
tational convenience. For large xq, the energy scale kaT
is the largest energy which first cuts off the critical spin
fluctuations, and the system never fully realizes that its
coupling g is in fact different from g, and that the ground
state is ordered: the spin fluctuations are quantum crit-
ical at the shortest scales, and are eventually quenched
in a universal way by the temperature. For small zq the
antiferromagnet is in the renormalized-classical region.
There is a large intermediate scale over which the anti-
ferromagnet behaves as if it has long-range Neel order;
eventually, strong two-dimensional classical thermal Quc-
tuations of the order parameter destroy the Neel order.

B. Quantum-disordered ground state

We now consider the case g & g, . We will assume
that the quantum-disordered state has a gap towards
all excitations. This has certainly been satisfied by
all explicit large-N constructions of such states in frus-
trated antiferromagnets in the vicinity of the transition to
long-range Neel order. 5 We will assume further that
there are no deconfined spin-1/2 excitations above the
ground state: this is expected to be true in systems
with a collinear Neel-order parameter. Antiferromag-

Further, we need an observable which sets the scale for
order-parameter fluctuations. On the ordered side this
was done by Np. A convenient choice on the disordered
side is to use an amplitude of the local, on-site, dynamic
susceptibility, yl, . This susceptibility is defined by

~~( )h~- = -- «(l~' (t) ~'-(0)))

d k= bg g, (k, ~).
4m2

(1.16)

In principle, y„also contributes to yL„but when (1.15)
is satisfied its contribution is subdominant to that from
g„and can therefore be neglected. For g & g„ it can
be shown that at T = 0, yL, has the following imaginary
part for small ur close enough to the threshold 6:

1m' (~) I =. = —sgn(~)g(~l~l —&) (i.i7)

where 8 is the unit step function, and A/4 is an amplitude
with the dimensions of inverse-energy. We will show later
that the discontinuity iA/4 in the local dynamic suscep-
tibility is precisely a quarter of the quasiparticle residue
A of the low-lying spin-1 excitation. As g approaches g„
A vanishes as

A (g —g,)"". (1.18)

We have now assembled all the variables necessary for
obtaining the scaling forms for y, and y„ for g ) g, .
The relations analogous to (1.10a), (1.10b), and (1.10c)
are

( hc l (kaT)t" ( hck Ro kaTI
gkaT) ( b, ) gkaT' kaT' 6 ) '

&-(»~) =
l
E hc ) " (kaT' kaT'

3((3) (kaT t (kaT&

(i.19a)

(1.19b)

(1.19c)
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where 4~„4~„,and 4'q are completely universal func-
tions, which are finite in the limit T/b, -+ oo. The
physical response functions are again completely deter-
mined by three thermodynamic parameters: 6, c, and
A, with no further sensitivity to lattice scale physics. As
in Sec. IA, all scaling forms continue to be valid even at
g = g, : the prefactor of 4q, in (1.19a) remains nonsin-
gular at g = g, because of the scaling results (1.14) and
(1.18).

We also introduce, for future convenience, the variable

+2 }

kgT
(1.20)

which determines whether the antiferromagnet is in
the quantum-critical or quantum-disordered regions (see
Fig. 1). For large zs, the temperature T predominates
the small zero-temperature gap, 6, and the system may
as well be at g = g, . For small xq, the ground-state gap
4 quenches the spin Quctuations, putting the system in
the quantum-disordered region. The thermodynamics is
well described in terms of a dilute gas of activated exci-
tations.

D. Experimental observables

The main purpose of the rest of the paper is to describe
the universal functions 4q„4q„, 4q, 4q„4q„, and 4q
as completely as possible. A large amount of information
is contained in them; in particular, as we shall see later,
in a suitable limit they contain the complete static and
dynamic scaling functions of Chakravarty et al. and
Tyc et al. A large number of experimentally testable
quantities can be obtained &om these functions; now we
highlight some of the most important by endowing them
with their own scaling functions.

We begin with the measurements related to y„.

Static, uniforra spin susceptibility
and spin diffusivity

The conservation of M makes the small k and ~ depen-
dence of g„rather simple. In the hydrodynamic limit,
~7g (( 1, where vg is a typical lifetime of excitations, the
magnetization Quctuations must obey a diffusion equa-
tion; we find for g & g, that

C. Critical point

We have obtained above two separate universal scaling
forms at the critical coupling g = g„but T finite, by
taking the limits g g g, and g g g, . It follows therefore
that the two results must be simply related:

4s~(k, (d, zi = oo) = Zq@y~(k) ld, zg = oo))

4s„(k, (d, xi ——oo) = 4 i„(k, (u, zs ——oo),

C, (oo) = ~I, (oo), (1.21)

where Zg is a universal number. Recall that the universal
functions have been chosen to have a finite limit as xq q m
OO.

Note that there is no rescaling factor for the uniform
susceptibility and the specific heat. This is because their
overall scale is nniversal and was not set by some ther-
modynamic observable, as was the case for the staggered
susceptibility. This universality in scale is related to the
fact that M and the energy are conserved quantities: this
will be discussed further in Sec. II. For the staggered
susceptibility, we have performed a 1/N expansion of the
scale factor on antiferromagnets with an ¹ omponent
order parameter and found

0.22S 191243
ZQ —1 (1.22)

Actually it is not just the values, but the entire asymp-
totic expansions of the universal functions which have
matching conditions at x~ ~

——oo. As the antiferromag-
net has no phase transition at finite temperature, all its
measurable properties should be smooth functions of the
bare coupling constant g —g, provided T g 0. This fact,
combined with xi - (g, —g) ", xq - (g —g, ) ", can
be used to easily deduce the constraints on the asymp-
totic expansions of 4»„4'&„, 4'» 4», 4&„, 4& about
Xyg =OO.

gPay'„'(T) = ( ) kgT B,(T&),

bc~
Ds'(T) = Di(») (1.24)

and analogous expressions for g & g, with 1 ~ 2.

N'ileon aetio

The Wilson ratio is defined by

(1.25)

Its properties are therefore easily obtainable &om our
scaling results for y„' and Cv. It follows from (1.10c),
(1.19c), and (1.24) that W is a completely universal func-
tion of xi (xq) for g & g, (g & g, ). We have for g & g

vr Qi(zi)
3((3) ~ (* )

(1.26)

and analogous expression for g & g with 1 ~ 2. We
turn next to experiments sensitive to y, .

8. Structure factor

The equal-tixne spin structure factor, S(k), is related
to y, (k, (u) by

4i„(k,rr, zi) = Ai(zi)
Di(zi)k

k, u((1,
irr+ Di(zi)—k

(1.23)

and an analogous expression for g & g, with 1 + 2.
The functions Oi(zi), As(xs), Di(zi), Ds(zs) are»1
universal. From (1.10b), (1.12), and (1.19b) we see that
they are related to the static, uniform spin susceptibility
y„", and spin diffusion constant D~. We have for g & g,
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8(k)bg = f d r(ng(r, O)a (O, O))e

Imp, (k, (u). (1.27)

From (1.10a), we deduce that for g ( g, it satisfies the
scaling form

upper cutoff (provided rl & 0). Thus RegL, has a lead-

ing contribution which is nonuniversal and dominated
by lattice-scale physics. There is no such problem for

ImyL, however —in this case the momentum integral sums
over intermediate states which are on shell and only long
wavelengths contribute. Finally we note that a sixnilar

scaling forxn for ILL, for g & g, can be obtained by
replacing Ns2/p, by A and the substitution 1 r 2.

S(k) = zi =i(k, zi),
N02 (hc) 2

p, kgT

where the universal function =q is given by

(1.28)

8. %MR relaxation mete

1
=i(k) zi) = 1m@i,(k, (d) zi). (1.29)

Similarly for g & g„we can relate S(k) to a universal
function =2(k, z2) with the prefactor Nz~/p, replaced by
A and the subscript 1 ~ 2.

g. Arrti ferromagnetic correlation length

( = Xi(*i)k~T
(1.30)

For g & g, we have an identical form with 1 -+ 2.
Since the correlation lengths must match at g = g„we
clearly have Xi(oo) = X2(oo). The universal linear T
dependence of f i at g = g, (zi ——oo) was noted by
Cha&avarty ep al.

$. Local susceptibility

From its definition (1.16), and the scaling form (1.10a),
we can deduce the following for g & g:

N2
ImyL, ((u) = x",~~~"Fi((d, xi),

Pe
(1.31)

where the universal function I"q is

We define the correlation length g from the long-
distance, e ")'t, decay of the equal-time n - n correla-
tion function. This correlation function will have such
an exponential decay for all g provided T g 0 (the ac-
tual asymptotic form also has powers of r as a prefactor).
Equivalently, one can define ( as I(; i, where ir(: is the lo-
cation of the pole of S(k) closest to the real k axis. The
scaling function for ( for g ( g, is

We consider the relaxation of nuclear spins coupled
to electronic spins of the antiferromagnet (e.g. , Cu spins
in La2Cu04). We assume that the relaxation is domi-
nated by contributions near the antiferromagnetic order-
ing wave vector. After suitably accounting for lattice-
scale form factors and integrating out high-energy lat-
tice excitations, a coupling A between the nuclear spins
and the antiferromagnetic order parameter n can be ob-
tained. The typical &equencies in NMR experiments are
much smaller than the temperature and the relaxation
rate, 1/Ti of the nuclear spins is given by

—= lim 2A Imp, (k, (u).
1 . 2kgT d k

Ty ~-+0 5 4d 4' (1.34)

From (1.31) we deduce the following result for 1/Ti for
g&gc:

2A2N2
z",Ri (zi),

Tg Sp,
(1.35)

where Ri(zi) is a universal function given by

Fi((d, xi)
m+0 QJ

(1.36)

As before, the scaling form for 1/Ti for g & g, involves

replacing N02/p, by A and replacing 1 ~ 2 on the right-
hand side.

We will discuss the general form of our results for the
scaling functions for the diHerent regions of the phase
diagram in turn (Fig. 1). We will consider first the
quantum-critical region (xi » 1, z2 » 1), followed by
the renormalized-classical (xi « 1) and the quantum-
disordered (z2 « 1) regions. Precise numerical results
will not be presented here: the reader is referred to
Secs. III—VI for precise results obtained in the 1/N ex-
pansion of the O(N) nonlinear (r model.

1 d2k
F, ((u, xi) = — 1m@i.(k, ur, z, ).

4vr2
(1.32) E. Quantum-critical region (zi » 1 or zq » 1)

On general grounds we expect Immi, (u) ~ for small ug

and T nonzero; this implies that

Fi sgn(cu) ~(d
~

" for small V. (1.33)

In principle, the real part of yL, also has a singular piece
which satisfies a scaling form analogous to (1.31); how-
ever the momentum integral in (1.32) is divergent at the

At short-length —time scales the spin Quctuations in any
nearly critical antiferromagnet should be indistinguish-
able &om those at the critical point. The special prop-
erty of the quantum-critical region is that the deviations
&om criticality at longer-length —time scales arise primar-
ily &om the presence of a 6nite T. The fact that the
ground state of the system is not exactly at the critical
point is never terribly important, and the system does
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not display behavior characteristic of either ground state
at any length —energy scale. The critical spin Huctuations
are instead quenched in a universal way by thermal re-
laxational effects.

It should therefore be evident that there are two dis-
tinct types of spin Huctuations in wave-vector —&equency
space (Fig. 2). With either hack or Ru significantly larger
than k~T, the spin dynamics is that of the critical (2+1)-
dimensional field theory of the critical point g = g, .
Otherwise, damping from thermally excited, critical spin
waves produces a regime of quantum-relaxational dynam-
ics.

The crossover &om the 2+1 critical to quantum-
relaxational behavior is clearly evident in the dynamic
staggered susceptibility (see Fig. 3). ln the (2+1)-
dimensional critical region (k » 1 or u » 1) we have

Ag4q, (k, u, oo) = 2, k » 1 or ~ && 1,
(k —A&2) '-&/2

(1.37)

where Aq is a universal number, and the exponent g =
8/(3+2N) at order 1/N but is knownso to order I/Xs For
N = 3, precision Monte Carlo simulations place the
value of g around g 0.028; this extremely small, but
positive, value of g will have important consequences for
experiments. Note that in this regime Im@~, is nonzero
only for ~ & k where one obtains a broadband spec-
trum of critical spin waves. The small value of g implies
however that the damping is small and the spectrum is
almost a b function. In the quantum-relaxational regime
(k « 1 and u « 1), there is strong damping due to ther-
mally excited, critical spin waves and excitations are not
well defined. However the spectrum of overdamped spin
waves remains universal and is shown in Fig. 3.

The same crossover is also present in the struc-
ture factor. Its universal scaling function =q(k, oo)
Zq -2(k, oo) has the 2+1 critical form =q(k, oo)

k at large I|:, and a Lorentzian form at small k.
The various static observables have a value set by the

absolute temperature in a universal way. Their T depen-
dence can be deduced easily &om the scaling forms with
the knowledge that all scaling functions were chosen to
have a finite limit as xq 2 ~ oo. The first corrections
away kom xi 2 ——oc are given by

where U represents any of the scaling functions X, 0, '0
for the correlation length, uniform static susceptibility,
and specific heat, respectively. The form of the sublead-
ing term above follows &om the requirement that the
physics at finite temperature is a smooth function of the
bare coupling g —g, . Chakravarty et at. have noted the
zq ——oo result for the case of the correlation length.

F. Renormalised classical region (aq « 1)

We now describe our results at low temperatures on
the ordered side, g & g, zq &( 1. Extensive results on a
closely related regime have been obtained by Chakravarty
et aL. and Tyc et al. The relationship between our and
their results is discussed below. We will find that, in the
appropriate limit, our scaling functions reduce exactly to
theirs.

We begin with a qualitative discussion of the nature of
the spin correlations in the renormalized-classical region.
The spin Huctuations now fall naturally into three differ-
ent regimes in wave-vector-frequency space (see Fig. 2).
At the largest k, u we have (2+1)-dimensional critical
spin Huctuations which are essentially identical to those
in the quantum-critical region and are therefore described
by a staggered spin susceptibility 4q, similar to that in
(1.37). Upon moving to longer distances and/or times,
the first crossover occurs at length (time) scales of order
(g ((g/c) to a "Goldstone" regime where the spin dynam-
ics is well described by rotationally averaged spin-wave
Huctuations about a Neel-ordered ground state. The
scale (g, controlling the critical to Goldstone crossover,
is the Josephson correlation length, and determines the
vicinity of the ground state of the antiferromagnet to the
quantum phase transition. Near g„(~ diverges as

(1.39)

The second crossover in the renormalized classical region
(Fig. 2) occurs at the length scale (, which is the actual
correlation length. At this scale, strong, classical, two-
dimensional, thermal Huctuations of locally Neel-ordered
regions destroy the long-range Neel order, so that at
scales larger than (, the antiferromagnet again appears
disordered, with all equal-time spin correlations decaying
exponentially in space. The scale ( is roughly given by

N( $Jexp
~( % —2)aqua

' (1.40)

FIG. 3. The scaling function Im4'q, (k, U, oo) for the stag-
gered susceptibility in the quantum-critical region. The re-
sults have been computed in a I/N expansion to order I/N.
and evaluated for N = 3. The shoulder on the peaks is due
to a threshold to three spin-wave decays.

where me have omitted preexponential power-law factors
of xq. For small xq, ( is clearly much larger than (g, the
three regimes in Fig. 2 are therefore mell separated.

Our explicit results for the scaling functions will be re-
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S(k) = S(0) f(k(), (1.41)

where f is a universal function. We find that f is related
to the scaling function =q by

) i/(N —2)

f(&) =&S
I N

(1.42)

where the universal n»mber Af was fouad to be Ay ——

1 —0.188/N + G(1/N2).
In Sec. V we will present the details of our computa-

tions of the reduced scaling functions of the renormalized-
classical regime in a 1/N expansion. Our results agree
with those of Chakravarty et ol. ;i2 however we are also
able to obtain a number of universal amplitudes which
were previously only determined by auraerical simula-
tions.

Another of our new results here is the low-T depen-
dence (xi « 1) of the scaling functions for the uniform
susceptibility and specific heat:

1 N —2

z Nx+

(1.48)

These results have also been obtained independently by
Hasen&atz et al. The first of these results will be im-
portant to us later in the comparison with experiments.
The second result simply implies that the number of low-
energy degrees of &eedom are the N —1 spin waves. The
two results together also imply that the Wilson ration
W 1/T at low temperatures provided g ( g .

C. Quantum chsordered re+ion (s:s (( 1)

At T = 0 (x2 ——0), the ground state of the antiferro-
magnet has a gap towards all excitations in this region.

stricted to the vicinity of the second crossover described
above: thus they are valid when xi « 1, k(g « 1, and
u(g/c « 1. In this regime, all of our scaling functions,
which in general depead upon three arg»ments k, u, and
xq, collapse into reduced scaling function depending only
on two arguments measuring momentum aad frequency,
kg and u(/c. Further, the reduced scaling functions turn
out to be exactly those obtained by Chakravarty et al. ,
Tyc et al. , aad Hasea&atz et al. ' At first sight this
result may seem a bit surprising. Our results were ob-
tained for antiferromagnets with a small stiff'ness, i.e.,
p, gg J, while in other work ' ' ' no restriction was
placed on the value of p, . The equivalence to order 1/N
between the two theories is a consequence of the fact
that the low-T results in the renormalized classical re-
gion contain no corrections of order p, /J to order 1/N.
In a recent analysis Hasen&atz et al. ' 6 have suggested
that such corrections are in fact absent at low T at all
orders in 1/N.

We show the nature of the collapse ia the scaling func-
tions explicitly for the structure factor. Chakravarty
et al. proposed the scaling form

Unlike both previous regioas, therefore, finite T is almost
always a weak perturbation on the T = 0 results; all fi-

nite temperature corrections are accompanied by factors
of exp[—4/(k~T)] = exp( —1/x2) && 1. Furthermore, the
ground state is rather well described by the N = oo the-
ory. We will therefore re&ain, here, &om giving complete
expressions for all the observables; we refer the reader to
Sec. III A 2 for the exact results at N = oo.

However, thermal effects and 1/N corrections are im-

portant at measurement frequencies smaller than 6; in
this region the dynamics is controlled by a dilute con-
centration of thermally excited quasiparticles. The dis-
sipative effects of such quasiparticles will be discussed in
Sec. IV.

We now discuss the plan of the remainder of the paper.
In Sec. II we present a phenomenological derivation of
the scaling forms used above. Section III introduces the
quantnm O(N) nonlinear o model and presents the com-
plete solution for all the scaling functions at N = oo. The
formal structure of the model at order 1/N is also dis-
cussed. The remainder of the paper contains the details
of the calculations. The calculations are discussed for the
quaatum-critical, reaormalized-classical, aad quantum-
disordered regions in turn in Secs. IV, V, and VI. Finally
in Sec. VII the comparison with experimental results is
presented. The appendixes contain a discussion of the
effects of disorder and Berry phases, results of a Monte
Carlo siraulation, and some technical details.

II. PHENOMENOLQGICAL DERIVATION OF
SCALING FORMS

In this section we will present a phenomenological
derivation of the scaling forms (1.10a), (1.19a) for the
order-parameter dynamic susceptibility, the scaling forms
(1.10b), (1.19b) for the uniform spin susceptibility, and
the scaling forms (1.10c), (1.19c) for the specific heat.
These are valid in the vicinity of a quantum phase tran-
sition in a two-dimensional quantum Heisenberg antifer-
romagnet &om a state with long-range Neel order to a
spin-Huid state. We will only consider the case in which
the Neel-order parameter is a three-vector. The follow-
ing discussion does aot explicitly refer to the quaatum
nonlinear 0 model. It should instead be regarded more
generally as a study of the coasequeaces of the scaling
hypotheses on a quantum phase transition in a Heisen-
berg aatiferromagaet. The nonlinear ~ model provides
a realization and verification of these hypotheses for a
particular Geld theory.

Let us first present the precise ingredients &om which
our results follow.

(1) The spin-wave velocity, c, should be nonsingular
at the T = 0, quantum Gled point separating the two
phases. We will also ass»me, for simplicity, that there
is no spatial anisotropy; this assumption is aot crucial
and our results can be easily extended to include quan-
t»~ transitions in aaisotropic systems like spin chains
coupled in a plane. These systems will of course have
two spin-wave velocities, whose efFects can be absorbed
into a rescaliag of lengths. In the presence of spatial
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isotropy, and for the case of the vector order parameter,
the nonsingularity of the spin-wave velocity implies that
the critical 6eld theory has the Lorentz invariance of 2+1
dimensions.

(2) The antiferromagnet in the vicinity of the critical
point satisfies "hyperscaling" 5 hypothesis. For a quan-
tum transition in D = 2 + 1 dimensions, this hypothesis
implies that the singular part of the &ee-energy density
(P, ) at T = 0 has the form

X, = hcT( (2.1)

where ( is the correlation length which diverges at the
transition (of course, on the ordered side ( = (g).
The number T is dimensionless, and like all such num-
bers at the critical point, it is expected to be univer-
sal. The statement of the universality of T is known
in the literature as the hypothesis of "two-scale factor"
universality.

(3) 'Dn'ning on a finite temperature places the critical
6eld theory in a slab geometry which is infinite in the
two spatial directions, but of 6nite length,

(2.2)

in the imaginary time (r) direction. The consequences of
a finite T can therefore be deduced by the principles of
6nite-size scaling. 54

In the following we measure temperature, time, and
length in units which make k~, 5, and c equal to unity.

(2.6)

We shall soon see that 4q, is the same function as in
(1.10a).

To make 4q, completely universal, we have to 6x its
overall scale, which we now do. First, we notice that
in the renormalized-classical region (xq « 1), there is
a Goldstone regime (k(~ && 1, k( && 1, see Fig. 2 and
Sec. IF) of noninteracting spin waves. In this regime, the
hydrodynamics predicts that the static staggered suscep-
tibility has a simple form:

y, (k, (u = 0) =
i

1 ——
iN) p, k2 '

z, « 1, k(& « 1, k( » 1. (2.7)

6
4g, (k, u = 0, zg)=

Ic z~

zy((1 key((1 kc C I &&1 (2.8)

The scale of the susceptibility has been set by the mag-
nitude of the T = 0 staggered moment. The factor of
(1 —1/N) arises &om the fact that only N —1 trans-
verse modes contribute the Goldstone singularity, while
the longitudinal mode is massive; after rotationally aver-

aging this induces a factor of (N 1)/N. W—e now demand
that in the appropriate limit, the scaling form (2.3) obey
this Goldstone form. The key constraint is that (2.7) is T
independent. It is easy to show that this can be satisfied
by (2.3) only if

A. Staggered susceptibility, g ( g,

Consider first the application of the scaling hypoth-
esis to the staggered spin susceptibility for g ( g, . A
straightforward application of 6nite-size scaling yields

for some constant b. In the last restriction on Ic we have
used (1.40), valid for the O(N) o model and neglected
preexponential factors of xq. The prefactor in (2.8) is
of course arbitrary. We now make the speci6c choice,
b = 1 —1/N and thus specify the overall scale of 4q, .
Comparing (2.3), (2.6), (2.7), and (2.8), we can now fix
the value of the prefactor A

y, (k, (u) = AL "4
~

kL~, u)L~,
L~)

4'
i

k, cu,
- (— (z i

(2.3)
pe (2mps j (2 9)

Inserting this value of A into (2.3), we obtain (1.10a) as
desired.

Pe = (2.4)J
where T is another universal number. Now, from (1.13),
(2.4), and (2.2) we see that the third argument

(z
L

NT
2m

(2.5)

We therefore define a new universal function 4q,

where A is a nonuniversal amplitude, and the scaling
function 4 is universal up to an overall prefactor. In par-
ticular there are no nonuniversal metric factors55 in any
of the three arguments of 4. We now wish to eliminate
the dependence of this result on (~. It has been argued
recently ' that the result (2.1) can be extended to de-
duce a simple, universal relationship between p, and ('q,
valid in the limit $J m oo:

B. Staggered susceptibility, g ) g,

A similar analysis can be carried out in the spin-
Buid phase for the staggered susceptibility and its scal-
ing function 42, as in (1.19a). We remind the reader
that our theory is valid only for antiferromagnets with
a three-vector order parameter, in which case the quan-
tum disordered phase is expected to have only integer
spin excitations;s ~s ~s in particular if spin-1/2 spinons
are present at intermediate scales, they are always con-
fined at the longest distances.

At T = 0 the equal-time order-parameter correlation
function will decay in space with a correlation length (.
As the theory has a Lorentz invariance, this implies that
the gap towards spin-1 excitations, 4, is
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therefore the quasiparticle amplitude A must vanish as

where we have momentarily reinserted explicit factors of
A and c. An application of finite-size scaling, very similar
to that for the ordered side, now yields immediately the
scaling function (we now return to units in which k~ =
5 = c = 1)

A (g —g,)"".

This was noted earlier in (1.18).

C. Uniform susceptibility

(2.17)

(2.ii)

The only nonuniversal components on the right-hand side
are the amplitude A and the related overall scale of the
function 4z, . As before, we will fix this scale by match-
ing with an experimental observable at T = 0. Let us
therefore think about the nature of the spectrum in the
spin-fiuid phase at T = 0. As all excitations have a gap,
the spin-1 quasiparticle should have an infinite lifetime
for energies close enough to the threshold 6 [this quasi-
particle appears as the bound state of two spinons in large
M theories of SU(M) and Sp(M) antiferromagnets ' ].
Further, the Lorentz invariance of the theory implies that
the dispersion spectrum, up of this spin-1 quasiparticle
is given by

(us = Qk2+ b, 2 (2.12)

for small enough k. These facts combine to imply the
following form for y, at T = 0:

y, (k, ~) =
k2 —((u + is)2 + A2 '

T = 0, k « b„)~—A~ && b„ (2.13)

ImyL, (u) = 8(ur —b,—), T = 0, ~ur —b,
~

&& b, . (2.14)
4

The discontinuity in the local dynamic susceptibility is
therefore precisely a quarter of the spin-1 quasiparticle
amplitude. We now demand that the scaling form (2.11)
satisfies (2.13) as T -+ 0. A little experimentation shows
that this is only possible if

2—Tl

C 2, (k, rr, z2) =
(kz2) 2 —(uz2 + ie) z + 1

z, « I, kz, « 1 l~» —1
I

&& 1 (2.15)

Here we have arbitrarily set the overall scale of 42, , this
function is now completely universal. Finally, the deriva-
tion of (1.19a) is completed by obtaining the amplitude
A in (2.11):

(2.16)

The prefactor A is expected to be nonsingular as g g g;

where e is a positive infinitesimal and A is the spin-1
quasiparticle residue. This residue can be experimentally
measured by examining the imaginary part of the local
susceptibility, ImyL, . Using (1.16) and (2.13) we find

The key ingredient in the determination of the scaling
form for y„ is the realization that y„ is simply a stiff-
ness related to twists in boundary conditions on the sys-
tem along the imaginary time (r) direction. sr A uniform
magnetic field on the antiferromagnet causes a preces-
sion of all the spins at the same rate. The relative angle
between any two spins remains unchanged. Therefore by
transforming to a rotating reference kame almost all ves-
tiges of the magnetic Beld can be removed. However the
partition function in the laboratory frame had periodic
boundary conditions along the r direction, implying that
the system in the rotating frame has a twist in its bound-
ary condition. The susceptibility is the response to such
a twist, which is precisely the spin stifFness.

The Lorentz invariance of the theory now implies that
the scaling properties of y„should be the same as those
of p„which is the stiffness for twists about the spatial
boundary conditions. In other words, the scaling dimen-
sion of y„ is exactly D —2, and at T = 0 the combination
(gy„approaches a universal number as g g g, . The scal-
ing laws (1.10b), (1.19b) are now a completely straight-
forward consequence of the principles of finite-size scal-
ing. Unlike g„ there is no need for any normalization
condition to set the overall scale of the scaling function.
It is already fixed to a universal value by the hypothesis
of two-scale factor universality.

D. Speci8c heat

Consider the D = (2+ 1)-dimensional Lorentz invari-
ant theory in a slab geometry in the vicinity of g = g, .
An early paper by Fisher and de Gennes argued by ex-
tending (2.1) to finite sizes, that the free-energy density
E must have the following dependence on the size L of
the Bnite dimension:

+=&0+ LDP I L
1 ((g)

«-) ' (2.16)

where To is the bulk &ee-energy density and we have
assumed that g ( g, . The function p is»mversal at all
x; there are no nonuniversal metric factors in either the
argument or the scale of y. s The scaling function (1.10c)
for C~ now follows immediately from the thermodynamic
relationship between X and Cv, the relationship (2.4)
between p, and f~, and the relationship (2.2) between
I and T. An entirely analogous argument can be made
for g & g .

We note that a related result has been discussed re-
cently by Castro Neto and Fradkin4~ in the context of
(2+1)-dimensional quantum systems; they have also dis-
cussed an interesting connection to Zamalodchikov's C
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theorem. We have chosen a numerical prefactor of the
scaling function @i in (1.10c) which is the specific heat
of a single gapless Bose degree of freedom with disper-
sion ur = ck in two dimensions. The number @i(T -+ 0)
is thus a measure of the efFective number of such modes
in the ground state. For g ( g„ this number should
equal N —1, the number of spin-wave modes in the or-
dered state. For g = g„ the number @i(oo) is probably
irrational and will be calculated later in this paper to
order 1/N. Finally, in the quantum-disordered phase,
g & g, there are no gapless modes and we should have

4, (0) = 0.
A very similar connection between the efFective number

of gapless modes and C~ was established some time ago
for (1+1)-dimensional spin chains so in this case C~ T
with Cv/T universal and related to the central charge of
a conformal field theory, which in effect measures the
number of gapless quasiparticle modes.

III. THE QUANTUM O(1V) NONLINEAR
cr MODEL

In this section we will discuss the O(N) quantum non-
linear o model field theory. This theory may be viewed
as the simplest model which displays a quantum phase
transition in 2+1 dimensions. Moreover, a microscopic
connection between weakly &ustrated antiferromagnets
with short-range Neel order and the O(3) o model can
also be established. 3

There are several subtle and difficult questions relat-
ing to the consequences of Berry phase terms which are
present in the antiferromagnet but are absent in the cr

model. is In this paper we will simply neglect the ef-

fects of the Berry phase terms. In Appendix B we will

present some circumstantial evidence, in computations
for SU(M) antiferromagnets, which suggests that these
Berry phases are irrelevant both in the Neel phase and
at the quantum critical point, but do significantly modify
the properties of the quantum-disordered phase. In crit-
ical phenomena terminology this implies that the Berry
phases are "dangerously irrelevant. " As all of our scal-
ing functions are properties of Hows in the vicinity of the
quantum-critical point, we do not expect any modi6ca-
tions of our results by Berry phase efFects in. this scenario.
Berry phases will however modify the corrections to scal-
ing.

In passing, we note that there is an alternative ex-
pansion which could have been used to obtain the scal-

I

ing functions of this paper: this is the large-M expan-
sion about antiferromagnets with SU(M) or Sp(M) sym-
metry. ' However, the presence of a gapless gauge
field in the perturbative 1/M corrections makes this ex-
pansion somewhat more involved than the O(N) ex-
pansion. For general M, N, both approaches predict
that the lowest-lying non-zero spin excitation above the
quantum-disordered ground state in an antiferromagnet
with collinear order carries spin S = 1; the detailed
structure of the spectrum at higher energies is however
diff'erent in the two theories. The results of this paper
show that the O(N) expansion is numerically much more
accurate at N = 3 than is the Sp(M) or SU(M) expan-
sion at M = 2. This can be seen immediately by com-
paring the values of g in the two theories: the large-M
theory gives g = 1—O(1/M) while the large Ntheo-ry has

g = 0 + G(l/N) com—pare this with the known valuesi
in the D = 3 classical Heisenberg model g 0.028. We
shall see below that, at N = 3, the 1/N corrections in the
O(N) model to the universal scaling functions are almost
always less than about 20%%uo of the leading N = oo term.

We will begin this section by a definition of the quan-
tum O(N) nonlinear cr model. The first subsection will

present its exact solution at N = oo. This solution
has also been discussed earlier by Rosenstein et aI. ,
although they did not emphasize the universal scaling
properties of the solution. For clarity, we will repeat some
of the step in Ref. 63 and will then explicitly compute all
of the scaling functions introduced in Sec. I in the N = os
limit. The N = oo computations are also similar to ear-
lier studies of Gnite-size scaling properties of the spherical
model —in our case the inverse temperature plays the
role of the finite-size along the time direction. The sec-
ond subsection will present complete formal expressions
for the staggered and uniform susceptibility which are
correct to order 1/N; to the best of our knowledge, these
constitute the first computations of 6nite-size corrections
to two-loop order in any system. Subsequent sections will
manipulate these expressions into the appropriate scaling
forms for the three regions of Fig. 1. The structure of the
1/N corrections is however rather involved and the ca-
sual reader may be satisfied by studying only the N = oo
solution of Sec. III A. Even this limited solution is quite
rich and instructive; its main shortcoming is the absence
of spin-wave damping and anomalous dimensions which
appear only at order 1/N

The O(N) nonlinear o model is defined by the func-
tional integral

( 0 fi/ha T
g= &ngbn& —1 exp~ ——' d r d~ (V,ng)'+ —,(8 ng)'

2h 0 Co
(3 1)

where the index E runs from 1 to N, p, is the bare spin
stifFness, and co is the bare spin-wave velocity. Both p,
and co difFer &om their renormalized values p, and c;
however at N = oo we will find co ——c, although the
renormalization of co will be quite crucial in subsequent
sections. Further analysis is simply expressed in terms of

the coupling constant,

(3.2)
S

which has the units of inverse length. We will 6nd that
the quantum transition occurs at a g of order unity. This
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implies that we have to choose p, N in the large-N
limit. In the remainder of this section we will use units
such that k~ = 5 = co ——1. The large-N analysis of Z
begins with the introduction of the rescaled field,

nr =yNnc,

and the imposition of the constraint by a Lagrange mul-
tiplier A. This transforms Z into

P
Z = 'Vng17Aexp —— d r d~ V,ng + 8 ng +iA 6& —N

2g 0
(s.4)

This action is quadratic in the np, which can therefore
be integrated out. This induces an effective action for
the A field which has the useful feature of having all its
N dependence in a prefactor. Therefore, for large N
the A functional integral can be evaluated by using its
value at its saddle point. Terms higher order in 1/N can
be obtained by a systematic expansion of the functional
integral about this saddle point. We parametrize the
saddle-point value of A by

i(A) = m', (3.5)

BnmBn —i Bxn~ gPa (3.6)

where the "mass" m is to be determined by solving the
constraint equation n&z ——1, order-by-order in 1/N. This
value of m can then be used to obtain a 1/N expansion
of the nq nr correla-tor and hence of all the observables
related to the staggered susceptibility.

Deterxnination of the uniform susceptibility requires
introduction of a slowly varying magnetic field 8 into
the nonlinear 0' model. In the O(3) model such a field
causes a precession of the local order parameter about
the magnetic-field axis. This precession is realized in the
O(3) 0 model by the substitutions7

A. Solution at N = oo

The O(N) n model can be solved exactly at N = oo.
Closed-form expressions for all the scaling functions in-
troduced in Sec. I can be easily obtained. We begin with
the staggered spin susceptibility which is given by

gS2 1

N k2 —(~+ ie)2 + mz (s.io)

We have introduced here the mass ma which is the value
of m at N = oo, and S = ZsS which is a rescaling factor
between the actual susceptibility of a quantum spin-S
antiferromagnet and the susceptibility of the nnit n field
in the O(3) ~ model. The renormalization factor Zs
accounts for the Buctuations at short scales, which have
to be integrated out in the derivation of the o model
from the original spin Hamiltonian. Expressions for all
the experimental observables dependent upon y, can now
be easily obtained; we will re&ain from giving explicit
expressions. One quantity we will need is the correlation
length g, which we defined earlier from the long-distance
decay e "~& of the equal-time n ncorrelati-on function.
Such a decay is present at all finite T for all values of g.
At N=oo wefind

by~ ——~g~„Bj,. (3 7)

in functional integral Z; here gp~/h is the Bohr magne-
ton for a single spin; in the remainder of this section we
will measure the field in units of gp~/5 and hence omit
explicit factors of gp~/h. For the general O(N), the ana-
log of the magnetic field is a second-rank antisymmetric
tensor bg which causes a precession of the spin compo-
nents lying in the plane defined by the 8, m directions.
For N = 3, bg is related to B by

mp
(s.ii)

st x ~ d k EI cd&

4x2 (e +~2)2' (s.i2)

Now turn to the uniform spin susceptibility. There
is no damping at N = oo and hence the spin-diffusion
constant is infinite. We therefore consider only the value
of the static susceptibility. Evaluating (3.9) at N = oo
we find

The full action in the presence of the b field is defined by
(3.1) and the substitution

O~Ag M O~Ag —Xbg~A~. (s.s)

The uniform susceptibility y„ is now obtained by evalu-
ating lnZ in powers of b and picking out the coefficient
of the quadratic term: m gmo/TT mo e

l (
m /T' 1)x T e~o/T' —1

(s.is)

where ep ——A: + mp, and a„ is the Matsubara frequency
which takes the values 2vrnT with n integer. The fre-
quency summation and the subsequent momentum inte-
gration can be perforxned exactly. Moreover, the momen-
t»m integration is convergent in the ultraviolet, and final
result depends only on mp and T:

1 8
X 2/P V gb2

where V is the volume of the system.

(3 9) Note the absence of direct dependence on the coupling g.
Consider next the free-energy density, T, from which

Cy can be obtained by taking two temperature deriva-
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tives. At N = oo, T can be directly obtained from
the saddle-point value of the effective action. The result
1S62,64

2 Nm2

~n

d2k= NT ln(1 —e '"(
)4m2

ln(k +~ +mo) —,(3.14)
N d k~ 2 2 ~ Nmp
2 8~3 2g

V=1. (3.22)

mp ——OT, (3.23)

where the number

For g ( g, there is a Josephson scale (g which diverges
with the same exponent v as g approaches g, . However,
this scale is not present in the N = oo theory: this is
because the exponent g = 0 at N = oo, making the
critical and Goldstone Quctuations indistinguishable. At
g = g„we have from (3.18)

It now remains to determine the dependence of mp on
g and T. The constraint n2 = 1 takes the following form
atM=oo: 0 = 21n

~

= 0.962424
2

(3.24)

d2k g = 1.f 4m~ k~+~~ +m~ (3.15)

It is easy to see that the momentum summation is di-
vergent in the ultraviolet, and it is therefore necessary to
introduce a cutoK We use a relativistic Pauli-Villars cut-
ofF at the momentum scale A, assumed to be much larger
than the temperature. This transforms the constraint
equation into

T
d2k ( g g = l.
4n'2 (k2 + A)2 + m2 k~ + ur2 + A2 )

(3.16)

gT ( sinh(A/2T) )ln
27r (sinh(mo/2T) )

(3.17)

Finally, we can solve for the dependence of mp on T, g,
and A

( 2~) . (A)
mo —————2Tarcsinh exp

~

—
~

sinh
~gT) E2T)

(3.18)

In the limit T « A, this equation can be rewritten as

2~ (1
mo ——2Tarcsinh —exp ——

~

———~, (3.19)
2 T (g g, )

where

The momentum integration is now convergent in the ul-
traviolet and can be performed exactly. The subsequent
frequency summation is also tractable and yields

will occur frequently in our analysis. We see therefore
that the correlation length scales with 1/T at the critical
point.

We now examine the scaling limit of the above re-
sults. This limit is obtained when the temperature T
and the deviation from criticality ~g

—g ~/g, are both
much smaller than the upper cutoH' A. We will consider
the cases of g smaller or greater than g, separately.

1. Scaling proper ties for g & g,

From the discussions in Secs. IA and II it is clear that
the results become simple after they have been expressed
in terms of the T = 0 ordered staggered moment Np
and the fully renormalized, T = 0 spin-stiffness p, . In
Appendix D we have performed a 1/N expansion of these
T = 0 variables. At N = oo their exact values are

(1
(g gc)

N =8 i1 —— (3.25)

(c
Xi(zi) = 2arcsinh

2 )
(3.26)

We now use these results with expression (3.18) for (
to study the limit p, /N, T « A. It is not difficult to
show then that ( takes the scaling form (1.30) where the
scaling function Xi is

4m
gc =

A
(3.20)

Thus, in the renormalized classical region x~ «1, we
have

By examining the T ~ 0 limit of this equation, it is
immediately apparent that the behavior of ( is quite dif-
ferent depending upon whether g is smaller, larger, or
close to the critical value g, . For g & g„( approaches
a finite value as T ~ 0, while for g ( g„( diverges as
T m 0. The finite, T = 0 asymptote of ( for g & g, itself
diverges as g approaches g . We 6nd

X, = ~-'/'*, ~, «1, (3.27)

X —21
2 xi»1,
5xi

(3.28)

implying a correlation length which is exponentially
large, while in the quantuxn-critical region (zi » 1) we
6nd

((T = O, g & g, ) (g —g, ) (3.21)

This identi6es the N = oo value of the exponent v to be
indicating that the correlation length, ( = 1/(TXi)
scales with 1/T
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g=0,
1

4g, (k, u, zg) =
k —(V + is)'+ X,'(z, )

(3.29)

The scaling functions for all the other observables now
follow in a straightforward manner. The scaling function
4z, for the staggered susceptibility in (1.10a) and the
exponent g can be deduced from (3.10), (3.11), (3.25),
and (1.30) to be

where P = (k, ur) is the relativistic three-momentnm and
the integral is suitably regulated in the ultraviolet. We
now apply (3.25) and the result mp(T = 0) = 0 to (3.14)
to obtain

d~k
X(T) —X(0) = NT ln(1 —e '")

)

N d'P t'P'+ mP+—
2 8zs ( P2 )

The scaling functions for the observables dependent upon
y, now follow immediately. For the structure factor S(k)
we have the scaling function =i in (1.28) which is

mo2

P2
mop~

2

2
(3.37)

(
— 1 [k + Xi2(zg)]'i'

2[k + Xi2(zi)]xi2 2

Using mp = TXg(zi), and simplifying the above inte-
grals, we get

(s.so)

The local susceptibility ImgL, (ur) obeys (1.31) with the
scaling function I'» given by

E(T) —E(0) = NT ln(1 —e ')
(~ ) 2T

Xf(») x (zi)
12m 4xz»

(3.38)

1
F,(,*,) = —(8[ —X,(*,)] —8[—~ —X,(z, )]),4

(3.31)

Rg(zg) = 0. (3.32)

The result for the hamiform susceptibility, y„", (3.13)
can also be collapsed into the scaling form (1.24). We
use (3.13), the expression (3.18) for mp, and (3.25) to
obtain

where 8(z) is the unit step function. The presence of a
gap in Fi at finite T is an artifact of the N = oo theory
and will be cured upon including 1/N corrections. A
consequence of this gap is that there is no relaxation of
nuclear spins at N = oo and the scaling function for I/Ti
in (1.35) is

Finally we use the thermodynamic relation Cv
TB E/BT—to obtain the scaling function @i(zi) for

the specific heat as defined in (1.10c)

Nx dk i &de
4g(zz) = —

d 2 z, ~ ln(1 —e ')
3 3 d2 (,(,)2

X,'(z&) X,'(z&) i
12m 4xz»

(3.39)

C&(0) = N, (s.4o)

We recall that the function Xi(zq) is given in (3.26). It
is clearly that the universal crossover function @i(zi) is
quite nontrivial even at 1V = oo. In the renormalized
classical limit, zi -+ 0 it has the value

1
Dg(zg) =

7rz»

/4+ e i~i . (e+ arcsinh
~ i

. (3.33)xe-»/' ~ 2 )
In the renormalized classical limit zi « 1 this function
has the limiting behavior

1 1
O, (z, ) = + —, z& «1,

XX» 7f
(s.s4)

while in the quant»m-critical region (zi » 1) it obeys

~5, ~5 + I i 41+
2 ) Szg

z»& 1. (3.S5)

We turn now to the &ee-energy density, T and the
specific heat Cv. We will evaluate X(T) —X(T = 0) at
a Gxed value of g. The calculations are performed most
easily if we use relativistic cutofF and write the value of
g in the following form:

4N4, (oo) =
5

(s.41)

We have no physical understanding of why this number
is rational.

The reduced scaling functions of the regormalized clas-
sical region, describing the crossover &om Goldstone to
classical, thermal disorder (Fig. 2) can also be easily ob-
tained. From (1.41), (1.42), and (3.30) we find the scaling
function f (y) for the structure factor S(k)

which is the number of gapless spin-wave modes (up to
relative order 1/N). The normalization in (1.10c) was
chosen to make this result simple. In the quantum-
critical limit, x» —+ oo, the integrals cannot be analyti-
cally evaluated. However, one of us has recently shownss

that application of some unusual identities of polyloga-
rithmic functions can be used to prove that the integrals
reduce a surprisingly simple result

1 d3P 1

g 8+3 P2' (3.36) f(II) = (s.42)
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2. Scaling properties for g ) g,

The first step is to obtain the value of the T = 0 gap.
From (3.19) we have the exact N = oo result

d2k
X(T) —X(0) = NT ln(1 —e '"~T)

N dsP rP2+ mp2)+— ln
2 8vrs (P2+ b,2)

(14 =4vr! ———
! .

(gc
(s.43) m2 —A20 (3.51)

Second, we also need the spin-1 quasiparticle amplitude
A. From (3.10) we obtain immediately at N = oo

gS2
N (3.44)

From (3.18) we can now deduce the scaling function
X2 as defined in (1.30) for the correlation length

r ei/(2*. ) y
X2(z2) = 2arcsinh! (3.45)

(Recall that z2 ——T/A. ) This function has the fol-
lowing asymptotic limits in the quantum disordered and
quantum-critical regions, respectively:

X (z, ) = &

1 +2e-'~*', z2 &&1,
X2

r ~5+ I &

21n +, z2)) l.
) 5z,

'

(3.46)

These results imply a correlation length which is of order
and T, respectively.

The scaling function 02(z2) for the uniform static sus-
ceptibility in (1.24) can be obtained from (3.13) combined
with (3.18) and (3.43). We find

V'4+ e'~* r e'~(" ) )
!02(z2) = — +

&( )
arcsinh!

27cx2 7ce 2 )
(3.47)

In the quantum-disordered region (z2 (( 1), this function
is exponentially small

02(z2) = e
—z/»

z2 « 1) (3.48)

Next we consider the &ee-energy density, T and the
specific heat C~. The following relation between the T =
0 gap, A, and the coupling g will be useful

d'P
g 8~& P2+ Q2' (3.50)

where P = (k&u) is the relativistic three-momentum.
Note that we again use relativistic cutofF for the value of
g . Applying this result to (3.14), we obtain

while in the quantum-critical region it implies a p„" of
order the temperature

Using mp = TX2(z2), aiid simplifying the above inte-
grals, we get

E(T) —X(0) = NT ln(1 —e ')
X (e )

X,'(z, ) sz', X,'(z, ) —1

12m 24+x 2
(3.52)

Finally we use the thermodynamic relation C~
T82%/B—T to obtain the scaling function @2(z2) for

the specific heat as defined in (1.19c)¹r d2 r ~ ede
@2(z2) = —

d 2 z2! ln(l —e ')
3 3z2dz2 I x(~) 27r

X,'(z, ) Sz,'X,'(z, ) —1

12m 24+@2

where the function X2(z2) is given in (3.45). In the quan-
tum disordered limit, z2 —i 0, we have @2(0) = 0 corre-
sponding to the absence of any gapless degrees of free-
dom. Recall also that 42(oo) = @i(oo).

The scaling functions for the ritaining observables are
identical to those obtained above for g & g after the
substitution Xi(zi) i X2(z2). Thus, e.g. , the scaling
function 42, for y, in (1.19a) differs from the function
Oi, in (3.29) only by this substitution.

B. 1/N corrections

g+2 1
N A:2+ u2 + m2+ Z(k, iv) )

' (3.54)

where Z is the self-energy arising &om the A Buctua-
tions. It is convenient to absorb the value of K(0, 0) into
the mass m; all our expressions for Z will therefore al-
ways include a subtraction which makes Z(0, 0) = 0. The

We now present formal expressions for the modifica-
tions to the uniform and staggered spin susceptibilities
at order 1/N These expr.essions will be used in the fol-
lowing sections to determine the scaling properties of the
quantum-critical, renormalized-classical, and quantum-
disordered regions.

The formal structure of the 1/N expansion has been
reviewed in the book by Polyakovl (see also Refs. 67 and
68). The leading corrections arise from considering the
Huctuations of the A GeM about its saddle point. The con-
tribution to the staggered susceptibility, or equivalently
the propagator of the ng field, is given by the Feynman
graph in Fig. 4. This leads immediately to
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and Gp is the propagator of the ng 6eld at N = oo

1
Gp(k, iu)„) =

k +v +mp
(3.57)

It now remains to determine m . The value of m is
set by solving the constraint equation n&

——1, or

d2k . S2
T ) y, (k, iv)„) = —, (3.58)

order by order in 1/N At. N = oo, the dependence of
mp on g and T is determined by solving the following
equation exactly:

FIG. 4. Feynman graph for the staggered and uniform sus-
ceptibilities to order 1/N. The solid line represents the ng

Seld and the dashed line represents the propagator of the A

field (polarization operator), where A is the Lagrange multi-
plier imposing the constraint.

d2k
gT) Go(k, i(d„) = 1. (3.5S)

This has of course already been done in the previous sub-
section. We represent the 1/N corrections to m by bm,
where m2 = mp2+ bmz. UPon examining the 1/N correc-
tions to (3.58) we find in a straightforward nianner

leading contribution to Z is

Z(k, i(d„)

K, (T, m, )
K2(T, mp)

'

where the constants Kq, K2 are

(3.60)

2 ). dzq Gp(k+ q, iru„+ ie„) —Gp(q, ie„)
N 4 2 II(q, ie„) Kq( Tm )o= T) f E(i,', iw„)Go(k, iw„),

where 1/II is the propagator of the A field

II(q, ie„)

(3.55) 2

K2(T, mp) = T) Go(k, i(d„)

1
coth

S'il mp
(3.61)

d= T ) 'G()(q+ qi, ie„+ iO„)Gp(qi, iA„),
0„

(3.56)

I

Note that Kq, K2 dePend only uPon T and mp, and
do not depend directly upon the value of the coupling
g. Comparing (3.61) with (3.55), (3.56), and (3.57), the
expression for Kq can be manipulated into the following:

K,(T, mo) = ——T ) .2 . d2q 1 ( 1 (911(q,ie„) + Go(q, ie„)K2(mo, T)
~

.
N 4z' II(q, ie„) (4mp (9mp

&n

(3.62)

These results for m, Kq, and K2 will be quite useful in
subsequent sections.

Expressions for observables that depend upon y, can
now be obtained as before. In particular, the equal-time
staggered structure factor S(k) is given by

where Sp(k) is the structure factor at N = oo:

S2
Sp(k) = T) Gp(k i(d ). (3.65)

The correlation length, (, is defined by the pole of S(k)
in the complex k plane which is closest to the real k axis;
this pole is at k = i/f. From (3.63) it is clear that, at
any finite T, the poles of S(k) are simply the poles of
y, (k, i(d ) for all (d„It is also clear .that the pole closest
to the real axis is that associated with y, (k, i(i)„= 0).
The location of this pole can be simply determined kom
(3.54) in a 1/N expansion. We find

S(k) = T ) y, (k, i(u„). (3.63)

Using (3.54) we see that to order 1/N this can be rewrit-
ten as

S(k) Q [bmz+ Z(k, i(d )]Go2(k, i(u )
S()(k) Sp(k)

(3.64)
1( = m+ Z(k = imp, i(d„= 0).

2mp
(3.66)
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Finally, the residue of the pole in the structure factor,
which sets the overall scale for exponentially decaying
correlations, can be determined in a similar manner:

d2k
X~

I1

—2n'1 — "—(m —mp) —Ks (T, mp),

(3.68)
gS' t' OZ(k = imp, i~„=0) ) 1

Bk2 ] k2+(
where the energy eg = (k2 + mp)1~ was introduced ear-
lier, nl, = n(e1, ) is the Bose function

k close to i( (3.67)

The results for ( and S(k) will be of great use to us in
the subsequent sections.

Now we turn to a consideration of the 1/N corrections
to the static uniform susceptibility, y'„t. This is a four-
point function of the ng field and the Feyr1man graphs
which contribute at order 1/N are shown in Fig. 4. The
evaluation of these graphs is, in principle, quite straight-
forward, but rather tedious. After some fairly lengthy
&equency summations, we obtained the following, sur-
prisingly compact result:

1
n(e) =

~~/T ] (3.69)

and n& ——dn(e1, )/del„etc. (note that the symbol n is
used both for the Bose function and the nonlinear n
model field —the appropriate meaning should however be
clear from the context). The very first term in (3.68) is
identical to the N = oo result of (3.12), while the sec-
ond term arises Rom effective mass renormalization of
the N = oo graphs. The remaining 1/N corrections are
contained in the function Ks(T, mp) which is given by

&2q ]. d~k n'„' ~a+ ~~
4~2 11(q i~ ) 4~2 e~ (e + e + ~2)2 —4e f e + QJ

~n

(3.70)

We will evaluate this expression in the later sections on
the difFerent critical regimes.

Lastly, the 1/N corrections to the &ee-energy density,
The 1/N corrections to (3.14) arise from the func-

tional determinant of the integration over the A field. The
propagator of the A field is II as defined in (3.56) and the
correction to the &ee energy in simply (1/2)Tr lnII. We
have therefore), ln(k + ~„' + mp)

NT . d2k-

1+ —In[11(k, i(u„)j
Nm~o

2g
(3.71)

Note that we have not included the 1/N correction to
the mass i(A) = m. This is because by construction
dX/d(A) = 0 at N = oo. This immediately implies that
the correction to (A) at order 1/N will modify P only at
relative order 1/N2 Thus may a.s well use i(A) = mp to
compute X to order 1/N.

I

we chiefiy used a Pauli-Villars cutoff to obtain the value
of g, . However, we will see that g, does not explicitly
show up in 1/N corrections and we are therefore &ee to
choose the most convenient regularization scheme. All
of the computations in this section were performed with
two different cutofFs.

(a) Lattice cutoff: The ng field was placed on a square
lattice of spacing 1/A, but no restriction was placed on
the allowed values of the Matsubara &equencies ur . The
scaling functions were obtained in the limit A ~ oo. By
construction, in this cutoff scheme relativistic invariance
is violated at short scales and is present only in the long-
distance theory at T = 0. Consequently, the T = 0 spin-
wave velocity will be renormalized from its bare value,
and care will have to be taken to express the scaling
functions in terms of the fully renormalized spin-wave
velocity.

(b) Relativistic, hard cutoff: The momenta k, and fre-
quencies ~ carried by the ng field were restricted to sat-
1S

k +~ (A (4.1)

IV. QUANTUM-CRITICAL REGION

This section will present expressions for the scaling
functions in the quantum-critical region to order 1/N.
We will restrict our discussion here to the critical point at
g = g, . This point will be accessed by taking the xq —+ oo
limit &om the ordered side. We will thus present explicit
results for the scaling functions 41,(k, u, x1 ——oo) and
41 (k (d Z1 = oo). Tllose fol' 4g and 4g ca11 be ob-
tained immediately &om (1.21).

An important issue that arises at the outset of any
calculation of universal scaling functions is that of proper
choice of an ultraviolet cutoff. In the preceding section,

Unlike the previous cutoff, this scheme has full relativistic
invariance, and there wiB be no renormalization of the
bare T = 0 spin-wave velocity.

All of the remaining discussion in this section will use
the second, relativistic cutoff schexne; as a result we will

not have to consider explicitly the renormalization of the
spin-wave velocity. We emphasize however that all of our
numerical coxnputations have been carried out with both
schemes. While many of the intermediate results of the
two schemes were dMerent, the final results for the uni-
versal scaling functions were found. to be identical. This
agreexnent provides strong support for the complete uni-

versality of the scaling functions, and makes it virtually



49 THEORY OF TWO-DIMENSIONAL QUANTUM HEISENBERG. . . 11 937

certain that there are no numerical errors in our compu-
tations in the quant»m critical region.

The basic strategy for obtaining the scaling functions
is straightforward. We evaluate y, and y„ to order 1/N
as outlined in Sec. IIIB, and then invert Eqs. (1.10a)
and (1.10b) to express Cq, „ in terms of y, „. We will

also need in this procedure the T = 0 value of the ratio
No2/p, . The structure of the T = 0 theory for g ( g, is
discussed in Appendix D where we found

p, N (16p
(4.2)

where the number g = 8/(3n 2N) will become the critical
exponent rI defined in Sec. I.

We mill begin by noting some of the significant issues
that arose in the evaluation of the results of Sec. III B in
the quantum-critical region. We will then proceed to a
statement of the results for the various scaling functions.

The first step was to develop a fast computer program
I

for the rapid evaluation of II(q, ie„), in (3.56) for ms ——

OT. Simple power counting shows that II is convergent
in the limit of the cutoff A ~ oo. However, it is not
clear a pHori that it is valid to take the A ~ oo limit at
this early stage. The point is that subsequent integrals
will involve values of II(q, ie„) with q, e„ itself of order
A. However, we have shown by a detailed consideration
of the relevant integrals that these potentially dangerous
contributions &om II cancel out in the final results for
all universal quantities. Thus we will fearlessly evaluate
II in the limit of an infinite cutoff.

The evaluation of II began with analytic determina-
tion of the integral over qq in (3.56). The summation
over u„was then performed by a direct n»merical evalu-
ation. Terms up to some large value of ~„were explicitly
evaluated, and the remainder were summed by fitting to
an inverse power series in 1/ur2 up to order 1/us. A very
similar procedure was used to evaluate BII/Bmo. Finally
the results were checked against the following computed
asymptotic expressions:

1 (2e2 —q~) OsTs 1 —6p ( T
8(q2 + &2)1/2 (q2 y &2)3 3& g (q & )6)

1 BII(q, ie„) v 5 q'+ e„' f T
4m gm 8&eT (q2 + &2)2 + 4e2T2& ((q & ) )

(4 3)

where

OO

dz = 2.324 143543 17.03 8 e* —1
(4.4)

BZ(k = 0, ir) = 0) (A'i= kiln i-
ak' ET)

0.252 66
N

6 A )t 0.226 16—0 kiln — +
~T& N

(A ) o.694 oo

T N

(k +(u ) gin
i

—
i

(A)

Z(k = iO, i~)

BZ(k = iO, i~ = 0)

Bk

Z(k, ~ && 1)

2 —2 8——ln(k +(u )+2 9~2% '

ln
i

—
I
y 0.17800, (4.5)T)

where Z(k, i~) = Z(Tk, iT~)/T2.

Next, we evaluated the self-energy, Z, and the constant
Ks defined in (3.70). It is not difficult to show from (4.3)
that both these quantities are logarithmically divergent
in the limit A + oo. Further the coefficient of ln(A) can
be easily determined analytically. We numerically evalu-
ated the integral over the momenta and the summation
over the &equency for a fixed A and subtracted the known
ln(A) term. The remainder was found to be independent
of A for large A, and was the required finite part of the
result. These computations yielded the following catalog
of useful results:

A httle care is required in inferring the 1/N correction
to the mass m at g = g, . The point is that the critical
coupling g itself has 1/N corrections, and in addition to
the correction 6m2 in (3.60), there is an additional T
independent shift to mo itself. Accounting for the 1/N
correction to the value of g„we find the following result
form atg=g, :

Kg(T, mo) —K&(0, O)

K2(T, mo)
(4 6)

where Kq, K2 are to be evaluated using (3.60), (3.61),
and (3.62) at mo ——OT The above .result for m2 differs
&om that in Sec. IIIB by the T-independent correction
Kq(0, 0) which in fact ensures that bm2(T = 0) = 0, as
should be the case at the gapless critical point.

Now we need Kq(T, mo ——OT). Simple power count-
ing in (3.62) shows that Kq is linearly divergent for large
A. Moreover, the linear A term is Kq(0, 0), which from
(4.6), must be subtracted out. However, upon using the
explicit results in (4.3) for II and BII/t9mo in (3.62), one
finds that Kq is in fact only logarithmically divergent.
The absence of any terms of order T/(q, e„)2 (which are
allowed by naive power counting) in the asymptotic ex-
pansion of II was crucial in obtaining this surprising re-
sult. The dangerous T/(q, e )2 terms are, in fact, present
at all values of mo other than OT. Even for this special
value of mo, there is linear A contribution to Kq &om

q, e of order A. However it was precisely these contri-
butions that were dropped when II was evaluated in the
limit of infinite cutoK Since we are interested only in
Kq(T, mo) —Kq(0, 0), we blithely neglect such contribu-
tions, and simply evaluate Kq as defined in (3.62) using



11 938 ANDREY V. CHUBUKOV, SUBIR SACHDEV, AND JINWVlJ YE

the values of II and BII/Bmo obtained above. The inte-
gral is only logarithmically divergent and can be evalu-
ated in a manner similar to Z and K3. At the end, we
obtained f'rom this the needed result for m:

(4.7)

We will now describe the universal scaling results
obtained by combining the above with the results of
Sec. IIIB. The factors of ln(A) were found to cancel
out of all universal quantities.

This last result for the behavior of:-q(k, oo) for large k
required knowledge of the asymptotic properties of the
scaling function 4q, for the dynamic staggered suscepti-
bility discussed in Sec. IVC below; the constant Ag is
given in (4.17).

For experimental comparisons, it is convenient to ex-
press S(k) directly in terms of kf, where ( is the ac-
tual correlation length. From (1.27), (1.29), (4.10), and
(4.11), we obtain

Xo' (Xk&TI" ~5 ( ( 0.1925)
p, ( 27rp, ) 2 (1+k() & ( N )

A. Correlation length and structure factor

For the correlation length we obtained

o.2373)= Xq(oo) = 0
i
1+

N
(4.8)

( o100i 0
1 —

i
1 —

i

k', k(«1,
N

(k()" ( 0.267&

N

(4.12)

=-~(k ~) = I1+( 0.4415 i 1

) k'+X,'(~)
for k near iXq(oo). (4 9)

Our numerical results for the full scaling function
:-q(k, oo) for real k are presented in Fig. 5. Analytic
forms can be obtained in the limit of large and small k:

(k, oo) = 0.860818+ 0.3697

+k
~

0.864674 — ~, k && 1, (4.10)
—2 ( 0.079 )

The residue of the structure factor in the vicinity of the
pole in the complex k plane at i/( is contained in the fol-
lowing result for the scaling function =t of the structure
factor [defined in (1.28)]:

B. Uniform susceptibility

For the scaling function Qq [see (1.24)], of the static
uniform susceptibility we obtained

~5 ~ y 5+ 1~ f 06189)
Og(zg m oo) = ln

~

1—
2 ) ( N

(4.13)

We have also performed Monte Carlo simulations of a
lattice version of the O(3) o model which are described
in Appendix C. This yielded Aq(oo) = 0.25 6 0.04, in

good agreement with the above result.

:-~(k, oo)=,„, k» 1. (4.11)
I'((1 —g)/2) Ag

2~~k' "

1.2—

0.9

C. Staggered susceptibility

We Grst describe some asymptotic limits of the two-

parameter scaling function @q,(k, 2, oo). For small k we

have

2 f 0.4830)
Re@~,'(k, o, oo) = e

~
1+

N

0.6

0.3

Our numerical accuracy is not sufhcient to rule out zero—2
1/N correction to the coeKcient of k; the small value

obtained for this correction appears to be accidental. At
large arguments we found

0.0

—2 —2 rl —2
4~, (k, i~, oo) = (k +~ ) 1 ——ln(k +(u )

FIG. 5. Scaling function =q(k, oo) for the structure factor
in the quantum-critical region.

681 1
+~ in

~

—
~

+-, k, ~ » 1.
3

(4.15)
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We expect that this logarithmic series can be exponen-
tiated. Performing the exponentiation, followed by an
analytic continuation to real frequencies we get finally

Ci, (k, r, oo) = 2, k, ~ )) 1,
~2) 1 g/2

where the universal n»mber Aq is given by

(4.16)

t'8&
Ag = 1 —ri ln

i

—
i

+—
3

(4.17)

to order 1/N.
We turn finally to the determination of the scaling

function 4i, (k, V, oo) for arbitrary k, ~. As analytic eval-
uation is clearly impossible, we will have to resort to nu-

merical computations. Moreover, as it is not easy to ana-
lytically continue numerical data, we will perform the nu-

merical computations directly at real &equencies. There
are some interesting issues which arise kom the interplay
between the analytic continuation, finite-temperature ef-
fects, and ultraviolet divergences. These issues do not

appear to have been discussed elsewhere before, and it
appears worthwhile to present some details.

Our strategy will be as follows: we will start with the
key observation that to order 1/N ImZ is &ee of ultravi-
olet divergences and that

Im4'i, (k, ~, oo) = ImZ(k, ~). (4.18)

Therefore Im@z, can be obtained by a direct evaluation
of (4.18). All ultraviolet divergences and A dependences
are in fact in the real part of self-energy. Next we note
that 4z, is analytic as a function of u in the upper-
half kequency plane. However, we will find that because
Im@z, v for large-u, its Kramers-Kronig transform is
not convergent and cannot be directly used to obtain the
real part. Instead, we will use the analytic information
contained in the large-u behavior in (4.15) to perform an
appropriate subtraction, and take the Kramers-Kronig
transform of the remainder.

First some details on the evaluation of ImZ. From the
results for Z in Sec. III B, we obtain after and analytically
continuation to real &equencies

ImZ(k, (u) = d'q dAIm [)n—+—„—ri—„(b(~ —)~—+i, —&])4n2N o (II(q II)) e—yi,

+(1+n~y—„—n—„)b(~ —e~+„——0)]. (4.19)

Here ei,
——(k + 02)i~2, P ) 0 (ImZ is an odd function of e), n& ——n(e&) is the Bose function, and there is no cutoff

in the q integration. The propagator 1/II(q, 0) is simply 1/II in rescaled variables. Thus &om (3.56) we get ImII:

(4.20)

Re@i, = —[u in' —A& u —pi(k) lure ]

+~2(k)+ "
Imli, ————sgne [7r

—y, i(k) +.. .],9 — —2 (4.21)

where the functions pi 2(k) are unknown. We fit the
numerically computed Im@z, to the above asymptotic
form, and thence obtained pi(k). Then we defined the
function P(k, id) by

where 0 ) 0 (ImII is an odd function of 0), and there
is no cutoff in the p integration. The real part ReII
can be obtained by a Kramers-Kronig transform of ImII
(the &equency integral is &ee of ultraviolet divergences),
which can then be used to determine Im(l/II). Note all
of the integrals above defining ImZ are pure numbers
and amenable to a direct numerical evaluation, which we
undertook. The presence of b functions in the integrand
considerably speeded up the numerical computations.

Next, we turn to Re@i, . We deduce &om (4.15) that
for momenta k fixed, but cu ~ oo we must have

P(k) ~):—Im@„'(k, (u) + —sgn(V) [(u —pi(k)].
2

(4.22)

The terms on the right-hand side have been chosen so
that P falls off sufficiently fast at large V for its Kramers-
Kronig transform to be well defined. Then, using the an-
alyticity of @i, in the upper-half plane, we can conclude

—A~'(u —y, i(k) in''] + p2(k);

(4.23)

this determines Re@i (k, w) up to the additive
&equency-independent function pq(k). Finally, p2(k)
was fixed by evaluating Ree'i, (k, ru = 0) by an indepen-
dent method: we determined it directly &om expression
(3.55)—im»ke the computations just discussed, the &e-
quency sums were evaluated by a direct summation along
the imaginary &equency axis and a straightforward nu-
merical evalutation of the relevant Feynman integrals.
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This completes our discussion of the derivation
C)x, (k, u, oo). The numerical computations are summa-
rized in Fig. 3.

One important feature of Fig. 3, which has not been
discussed so far, is the behavior of Im@q, at small fre-
quencies. This can be determined directly Rom expres-
sions (4.19) and (4.20) for ImZ. We found

0 25

( 3O'i
1m@x,(k = 0, )d, oo) —exp ~—

N ( 2/r)f)
'

while

1 r3'0' )
lmC1 (I~I & k oo) - ~ exp

I

(4.24)

(4.25)

0.00
0

D. Local susceptibility and NMR relaxation

Having obtained scaling results for the staggered sus-
ceptibility, we can now easily obtain properties of the lo-
cal susceptibility gL, . The scaling function, F1, for ImyI,
was defined in (1.31). We determined Fx by perform-
ing the integration in (1.32) numerically. Our result for
N = 3 was shown in Fig. 6. From our numerical compu-
tation we find for small &equencies

0.06
+x(~) =sgn(~) ~ (4.26)

The power of ~ at small ~ is fixed by the requirement
that Ixn(yx, (&u)) ur for sxnall u For large )d,.we use the
large k, u result for 4x, in (4.15), and (1.32) to deduce
that

These peculiar singularities are probably artifacts of
large-N expansion, because they arise &om the strong
contraints imposed by the 6 functions in (4.19) and (4.20)
and the difficulty in satisfying them at small momenta; in
other words energy-momentum conservation drastically
reduces the phase space for emission-absorption of spin

waves with the spectrum u = (k + 02) x)'2. Actually, for
self-consistent calculations, we have to include the damp-
ing of intermediate excitations, which lifts the restrictions
imposed by the b functions, This should probably give
Im@ u for small w, as in naive expectations. Note
that in an exactly solvable (1+1)-dimensional model of a
quantum phase transition, where analogous scaling func-
tions can be computed, no such singularities appear.

1 d2k Aq
~)d~ & 4n'

(k 2)x-

Ag . vrrI sgn()d)
sin

4m 2 ~w~~" fo (~s x )i—q(s

Aq sin n.q 2= sgn(~)
~q/2

(4.27)

Thus Ex(u) tends to a universal constant for large u
From (1.36) and (4.26) we find that the scaling function

Rx(xx) for the NMR relaxation in (1.35) satisfies

0.06
Rx(zx ——oo) =

N
(4.28)

E. Specific heat

We consider evaluation of the expression (3.71) for the
&ee-energy density T at g = g, . We will of course only
be interested in E(T) —E(0) which is finite as A ~ oo.

We will need the value of II(k, i)d) at T = 0. From the
result (4.3)

1
II(k, iur) ~T —o —— , q, (u && A.

8g +(d
(4.29)

Using this result, and the representation (3.36) for g, we

get from (3.71)

FIG. 6. Scaling function Fx(&u, oo) for the imaginary part
of the local susceptibility in the quantum-critical region. The
oscillations at large ~ are due to a Snite step size in the mo-
mentum integration.

2

X(T) —X(0) = ) ln(k + co„+mo) + —ln[II(k, i~„)]
4P ra

dodd lc 1 m2

2 8@3
ln(k + (u ) — in[8(k +(u )]+2N k2+ ~2

Repeated applications of Poisson summation formula simplifies this result to

82k
E(T) —X(0) = NT jn 1 —e +" + '~ — ln (1 —e ~"~~~

)4a2 2N

(4.30)
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All the integrals and summations in this last expres-
sion can be shown to be finite in the limit A -+ oo after
using the asymptotic expansion of II in (4.3). The ab-
sence of any terms of order T/(q, e„) in (4.3) is again
quite crucial; the structure of the Ts term in (4.3) is also
such that all potentially dangerous ln(A) terms cancel.
The &equency s»mmation and momentum integration in
(4.31) were performed numerically and led to a result
proportional to T . We then evaluated the specific heat
and obtained

4N4, (oo) = —0.3344.
5

(4.32)

V. RENORMALIZED CLASSICAL REGION

We now proceed to the calculation of the scaling func-
tions in the region where the ground state is ordered
(g & g, ) and the temperature satisfies Nk~T && 2n'p„
i.e., zi « 1. Under these conditions, the Josephson cor-
relation length (g ~ p, is much smaller than hc/k~T.
At the shortest scales, the antiferromagnet possesses
D = 2+ 1 critical spin Suctuations which continue to
be described by the scaling function Oi, in (1.37). The
crossover to the Goldstone region (see Fig. 2) occurs at
scales k(z 1 (tu(g/c ~ 1). In this regime, the dynamics
is governed by rotationally averaged spin-wave Huctua-
tions about a Neel-ordered ground state. We will focus
in this section on the second crossover (Fig. 2), which
occurs at the correlation length ( [( » (g, hc/(k~T)] to
a fully disordered antiferromagnet. At scales larger than
(, all correlations decay exponentially in space and the
low-energy dynamics is purely relaxational. For a quali-
tative description, one can neglect quantum effects in the
vicinity of this crossover, and study a simplified, purely
classical version of the problem —the classical lattice ro-
tor model. We will see, however, that for a complete
quantitative description, quantum effects cannot be ne-
glected at any k.

A detailed study of the staggered spin correlations
in the renormalized-classical region was performed by
Chakravarty et al. i2 in the &amework of the perturba-
tive renormalimation-group (RG) approach for a classical
rotor model. In this approach, one starts the description
at relatively short spatial and time scales where there
is a perfect short-range Neel order, and one can distin-
guish between the longitudinal and transverse suscepti-
bilities. At these short scales, the thermal coupling con-
stant gz = k~T/p„which measures the strength of ther-
mal Huctuations, is small (notice that in two dimensions,
gz is a dimensionless quantity). One then performs RG
calculations to see how gz grows at larger scales. The
scale where the ru~~ing coupling constant becomes of
the order of unity is identified with the inverse correla-
tion length (. At larger scales, perturbative approach
is unapplicable but it is assumed~0 i2 that ( is the only
large scale in the problem and the behavior at k & ( is
not very different f'rom that at k = ( i. This assumption
has been explicitly verified by the Bethe ansatz solution
of the O(3) tr model in two dimensions. ~i

In terms of this function

N2
y, (k, ~) = 4 i, (k, (u).

Pa
(5.2)

Next, at xi « 1, the typical frequencies ~ c( are
much smaller than k~T/h, and equal-time structure fac-
tor S(q) is simply related to @i,(k, ru = 0):

The 1/N expansion, which we use here, attacks the
same problem but &om a different perspective. We start
with the Green's function which satisfies the mean-field
equation for the saddle point. The structure of the
saddle-point equation in Sec. IIIA shows that the sym-
metry remains unbroken at all finite T. The mean-field
solution has a gap for quasiparticle excitations which we
identified, at N = oo, with the inverse correlation length.
In other words, the correlation length is finite &om the
very beginning. An obvious consequence is that the spin
susceptibilities are isotropic functions in the spin space:
y;~(q, u) oc 8;~. This is indeed what we expect &om the
true scaling functions in 2D antiferromagnet at finite T
[Eq. (1.10a)]. On the other hand, the temperature de-
pendences of observables are not necessarily correctly re-
produced by the infinite N theory. We will show below
that the perturbative 1/N expansion for zi « 1 is ac-
tually an expansion in 1/(N —2) lnzi. We assume that
the logarithmic terms can be exponentiated; the 1/N ex-
pansion thus yields corrections in the form of extra pow-

ers of temperature: zz . For N = 3, the power
1/(N —2) = 1, and there will be substantial changes in
the temperature dependences of the observables, and in
particular, of the correlation length.

Most of our results for the staggered dynamic suscep-
tibility agree with the results of the RG treatment for
the classical lattice rotor model (some minor discrepan-
cies with Chakravarty et aLi2 are found however). We
are also able to go beyond previous results and obtain ex-
plicit expressions for various prefactors and scaling func-
tions up to the two-loop level. For the»nonform suscepti-
bility, we have calculated the temperature dependence of
y„'~ in a quantum antiferromagnet and found a linear T
dependence at low T, with a universal slope. We empha-
size that the temperature dependence of y„'~ is a purely
quantum effect. It was absent in previous studies of the
classical lattice rotor modelii i2 which had (for N = 3)

= y~(b~p —(n~np))—:sy~b~p (g~ is the trans-
verse susceptibility at T = 0).

We now proceed to a more detailed discussion of 1/N
expansion. As in the quantum-critical region, we will
use the result (4.2) for the value of N02/p, at T = 0, to
provide a counterterm for the lnA contributions to the
universal function 4~, . However, unlike the quantum-
critical region, temperature no longer sets the overall
scale for Huctuations, and we find it useful to introduce
a function @i,(k, u) related to @i, by
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T Imp, (k, u))

7l ~ (d

= k~Ty. (k, (u = 0) = Cg, (k, ~ = 0). (5.3)
kgyTNp2-

ps

The result for 4q, to order 1/N follows from (3.10) and
(4.2):

which are much larger than the scale set by the temper-
ature. Accordingly, performing the calculations with the
logarithmic accuracy, we can restrict the evaluation of Z
and bm to a classical lattice rotor model; this implies
that we restrict the summation over ~ to the contribu-
tion at u = 0 only and set k&T/hc as the upper cutoff in
the momentum integration. This substantially simplifies
the calculations and we easily obtain from (3.56)

4i,'(k, ~) = 1 —gin
I

f NAi
i16~ ).

x (k + (u + m y Z(k, ur)), (5.4)

k~T q+ Qq2+ 4mo2
II q, 0 ln

s q gq2 + 4m2o 2mo
(5 7)

where self-energy and mass renormalization terms (m2 =
m20 + bm2) are to be calculated as in Sec. III B.

We will now describe, in outline, the computations to
order 1/N for (, m, and the structure factor. We will then
proceed, in the subsequent subsections, to present more
precise and detailed results for these and other static and
dynamic observables.

At N = oo, we have from (3.27)

ksT f 2~pf =

NksT
(5.5)

exp
/

kg) T ( 2mp, ) q (N —2)k~T y

(5.6)

where pN= is given by (3.25). We emphasize that mo
is expressed here in terms of the T = 0 spin-stiffness
constant p, computed at N = oo. There are however 1/N
corrections at T = 0 as well, and the fully renormalized p,
indeed differs f'rom (3.25). When reexpressed in terms of
the total p, at T = 0, mp by itself acquires a correction of
the order of 1/¹this correction will be important later
as a counterterm for the leading ultraviolet divergence of
m =1/g.

At N = oo, the value of the correlation length, (, is

given simply by ( = 1/mo. Comparing Eq. (3.27) with
the results of previous perturbative approaches, we see
that neither the numerical factor in the exponent nor the
temperature dependence of the prefactor in ( agree with
the results of the two-loop RG analysis of Chakravarty
et a/. As w'e already discussed above, this is not sur-

prising because their analysis was done for the particular
case of N = 3. The two-loop P function for arbitrary
N was first calculated by Brezin and Zinn-Justin 2 in
a perturbative expansion about the ordered state, and
their result for the correlation length is

Substituting this expression into (3.55), performing the
integration, and using (5.5) for mo, we obtain

k2 1n[k~T/(hemp)]~kp= n Ic+ '') k = 5.8
in[@'k2+ m p/mo]

'

where dots stand for the terms of higher order in 1/N,
nonlogarithmic classical contributions, and for quantum
contributions. Note that as written, (5.8) is valid only for
k &) mo, for k = O(mp) we have with the logarithmic
accuracy As = A = in[kgb T/(hcms)]. We now substitute
(5.8) into (3.61) and, using the smallness of hcmo/k&T,
obtain after some algebra

m2
hm' = —4ln + 3lnA

kgT
hCmp

(5.9)

k'+ Z&p —k' 1+ —1+ —+. lnAk
N N )

ln Ak+
12¹

Next, we have to show that (i) the actual expansion
holds in 1/(N —2) rather than in 1/N and (ii) the log-
arithmic series are geometrical and therefore can be ex-
ponentiated. In principle, to prove any of these state-
ments, one has to examine the structure of the pertur-
bative expansion up to infinite order in 1/N. This is a
rather difBcult problem to analyze and we will be content
with demonstrating that both expectations are consistent
with the perturbative results up to order 1/N2. Specifi-
cally, we computed 1/N2 logarithmic corrections to Z& 0.
The computational procedure is tedious but straightfor-
ward. We followed the general procedure described by
Polyakov: we identified various regions of virtual mo-
menta which contribute to ZI, p with logarithmic accu-
racy and, evaluating the integrals, obtained:

At 1V = oo, this expression coincides with mp, as
it should. Purther, if we formally expand the rhs
of (5.6) in 1/N, we find terms of the form [1/(N—
2)] In[k~T/(hcmo)] and [1/(N —2)] in[in(k~T/hcmo)].
We therefore anticipate that the same terms should ap-
pear in the 1/N expansion. This is indeed what we found
in our calculations, as we now demonstrate.

We first observe that all 1n(k~T/hcmo) terms in the
1/N expansion come from integration over spatial scales

~ k'(a, )'~~"-'l, (5.10)

precisely as we anticipated. We did not perform 1/N
calculations for bm2, but it is very likely that the expan-
sion for the mass is similar to that for Z~ p. We assume
that this is the case, and assemble the 1/N corrections to
m into logarithmic and double logarithmic series. This
yields
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m 2= (kBTI (hemp~ 2 / kBT l
1 — lni

( hc ) (kBT)

+ . . !i+(
N —2

2 2N/(N —2)

( hc) (kBT)

hc i ~kBT(N —2)i( oc

( kBT) ~
21rp~ )

2~p.
(N —2)kBT )

(5.i3)

In writing the last line we also assumed that the value
of mp in double logarithmic terms can be replaced by
the total mass m. The verification of this assumption
requires a computation of finite contributions to order
1/N2 which we did not perform. We now assemble the
contributions in (5.4), (5.10), and (5.11) and obtain

A
—1/(N —2)

41~(k, ld = 0) oc
+ (5.12)

where with logarithmic accuracy

This agrees with the two-loop RG result (5.6). From
(5.12) and (5.3), the equal-time structure factor is

(N 1)/—(N —2)

S(k) (2 kB T(N 2)—

2&ps )
(I + 1 in [I + (k()2]}1/(N—2)

X 1+ (k()2
(5.14)

For N = 3, this coincides with the result of Chakravarty
eg g&

~2

An advantage of the 1/N expansion is that we can go
further than (5.12)—(5.14) and calculate not only loga-
rithmic contributions in 1/N, but also the regular ones.
For this type of calculation, the classical approximation
is not suKcient and one has to consider the full quantum
problem. The computations are lengthy but straightfor-
ward. We will skip the details here: interested readers
can obtain a fuller description of the intermediate steps
directly from the authors. We will list here only a catalog
of the results similar to Eq. (4.5):

m2 = Zmp 1 ——ln + —ln ln + —(31n2 —1+C+ 0.3841)
4 kgb T 4 kaT 2

N hemp N hemp N
(5.15)

mp+ Z(k = imp, 0) = Z mp 1 ——ln ln ——0.3841
2 kaT 2

hemp

c)Z(k m 0, 0)1+ ' =Z 1+
W

k + Z(k » ( ', 0) = Zk 1
W

c)Z(k = imp, 0)
k

—ln ln + —0.3518
2 kJ3T 2

hemp

( 2 kBT 1.9561—ln! 1+ —in[1+ (k() ] + —ln ln +
N g 2 ) N hemp N

2 kJBT 0.2385—ln ln
hemp

Z =!1+kiln ! 1 ——ln ln
( NA 'i 1 kBT

16p, ) N hemp

0.9561
N

(5.16)

Here C is the Euler constant C 0.5772. As before,
we use these results to evaluate universal functions for
various observables.

where (p has a rather simple form

(31n2 —1+{ )
p —1 (5.18)

A. Correlation length and equal-time
structure factor

he t (kBT(N'—2)l{!=6
I(kBT) I 27I p~ j

( 2zp.x exp!—
(N —2)kBT) ' (5.17)

We start arith the scaling function for the correlation
length. From (5.15) and (5.16), we find

e
g. = (,-) rp+i~p —2~I, (5.19)

The same result was recently obtained in a diHerent
way by Hasenfratz and Niedermayer. 2s They deduced (
by comparing the &ee energy of the Heisenberg antifer-
romagnet in moderate magnetic fields with the Bethe
ansatz solution for the O(N) 0 model. ' Moreover,
they argued on the basis of the n»merical analysis, that
the 1/N result for (p is in fact the first term in the 1/N
expansion for
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where I'( . .) is the p-function. The numerical evidence
for (5.19) is rather convincing and we will use (5.19) for
the experimental comparisons in Sec. VII.

Further, the equal-t;ime structure factor is given by
(5.3) and using (5.16) we obtain

E2~p, ) 4 2~p, )

2
t' 0.188)

(5.21)

where

S(k) = S(0) f(k(), (5.20)
and f(k() is a universal scaling function introduced first
by Chakravarty et al. , for which we obtain

f(k() =
1+ (k()', k(«1,0.065

x g i 1/(N —2)1+ (k() N —1 ( 0.188 t t 1
l [ (k()2]&I

(5.22)

At k( )) 1, i.e., in the "Goldstone" region, (5.20) re-
duces to

k TN2 N —1
(5.23)

For N = 3 this agrees with the result obtained by
Chakravarty et al. i2 [their definition for S(k) difFers from
ours by a factor of N]. Clearly, Eq. (5.23) is nothing but
the rotationally averaged result for the Neel-ordered anti-
ferromagnet. In the ordered state, there are N —1 gapless
transverse spin waves which contribute to the low-energy
part of S(k) and one longitudinal component of fiuctua-
tions which has a Bnite gap and does not contribute at
low energies. Rotational averaging then gives a factor
(N —1)/N, as in (5.23).

Though our results are very similar to t,he scaling the-
ory, i2 we observe that the two limits in (5.22) cannot
be assembled into the single one-parameter interpolation
form for f(k() suggested by Tyc et al. is This is not sur-
prising however because the one-parameter scaling func-
tion was introduced as a convenient, but approximate
way to interpolate between k( )) 1 and k( « 1, where
the behavior of S(k) is known &om the hydrodynamic
considerations.

Further, we emphasize that p, and No in (5.21) are the
fully renormalized spin-stiH'ness and sublattice magneti-
zation at T = 0. Only in this case, all ultraviolet lnA
divergences in 1/N corrections to ( and S(k) are canceled
out. Finally, in obtaining the universal functions (5.17)
and (5.22), we actually did not use the condition p, « J.
It thus appears that at least to first order in 1/N, the uni-
versal behavior holds for arbitrary p„ i.e., in the whole
renormalized classical region. This is a remarkable prop-
erty of the quantum o model, and the arguments that
the universality at all g may hold at arbitrary N were el-
egantly displayed in the analyses of Hasen&atz et al.
In any event, this implies that our results for the renor-
malized classical region, which were obtained in a theory
valid near g = g, are in fact valid at small T for all

g &gc.

B. Uniform susceptibility

We turn next to the calculation of the static uni-
form susceptibility. The expression for y„valid at arbi-

l

trary xi was given in (3.68) and (3.70). In the renor-
malized classical region, it is convenient to introduce
4i„=kBT Ci„(0,0, zi) such that

X„(0,0) = 4i„.(WB&
(5.24)

We then use n, = kBT/hcmo, and obtain for @i„

(5.25)

where 4i„, given in (3.13), is the contribution at N = oo
and the remaining terms are 1/N corrections. For @i„
we have

(5.26)

Using the expression for mo at small zq, we can rewrite
the N = oo result for g„" as

(gp &
' ( 2

Xa g I NXJ. + 2kBT
) IN xc2 )' (5.27)

where y~ = p, c is the transverse susceptibility. We
see that in the limit of vanishing temperature, y„' is
precisely the rotationally averaged uniform susceptibil-
ity of the ordered antiferromagnet. This is likely to be
the exact result, and we expect that all 1/N corrections
at T = 0 can be assembled into the renormalization of
y~. On the other hand, the temperature dependence of

is a purely quantum effect [it is entirely due to the
second term in (5.26)] and 1/N corrections to dX„'~/dT
are indeed possible. We also observe that the slope of
y'„versus T at N = oo is twice as large as in the mean-
6eld Schwinger boson approach. ~' 4 This is not surpris-
ing however, because the mean-6eld Schwinger boson the-
ory is the N = oo limit for a 0. model of the N-component
comp/ex unit 6eld defj.ned on the CP~ manifold. This
model is isomorphic to O(3) 0 model only at a particular
value of N = 2 and there is no reason why the N ~ oo
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igpgy 2 2 /N —2l kJsT
(5.28)

The renormalization factor, (N —2)/N, of the linear T
term is likely to be correct to all orders in 1/N. The argu-
ment is that in the XY case (N = 2), the spin-wave anal-
ysis for g„'~ is &ee from divergences~5 and predicts a cubic,
rather than linear dependence on T yf = y'„~(0)+O(Ts).
We also note that for N = 3, the renormalization factor is
1/3 and the slope of y'„~ is therefore significantly reduced
from the N = oo result and now difFers substantially from
the slope of y„' in the quantum critical regime. We will
use this later in Sec. VII for the interpretation of the
experimental data.

C. Dynamic staggered structure factor

The calculations of the dynamic susceptibility proceed
along the same lines as in Sec. IV. We use integral rep-
resentation of the polarization operator continued to the
real axis, and compute the retarded self-energy. The cal-
culatioas are rather lengthy, so we skip the details and
focus only on the results: details of the intermediate steps
can be obtained directly from the authors. At k( » 1,
we obtained

N —1 (hey)sNs2 p," 1
xs kr~ 2 27p. p. es —(~+ i'YA:, )

(5.29)

where es = (Aced) (k +( ), cs ——p,"/gz. We have intro-
duced here the k-dependent spin stifFness, p, , and spin
susceptibility, g&, which are values of these observables
at the momentuTn scale k. In the present 1/N expansion,
they are given by

limits of the two theories should be the same. One of the
main technical points of this paper is that the 1/N cor-
rections in the O(N) theory are numerically quite small,
making it a superior approach to make precise numerical
predictions.

The corrections to 4i„were computed in the same way
as for the correlation length and equal-time structure fac-
tor. We skip the details of calculations and discuss only
the results. As before, we found that all divergent contri-
butions in the ultraviolet are canceled out when the result
is expressed in terms of the fully renormalized transverse
susceptibility at T = 0. We have explicitly checked that
there are no other corrections at T —+ 0 besides the renor-
malization of y~. Moreover, we did not 6nd any loga-
rithmic corrections to the temperature dependent part of

which might have changed the power of the leading
T-dependent correction. This result is likely to be valid
to arbitrary order in 1/N although the proof is lacking.
At the same time, we did find the finite correction to the
@q„and our result for y„'~ valid to order 1/N is

Xi =Xi N+ gp, )
(5.31)

The dimensionless, numerical variable g was found, to
first order in 1/N, to be g = 1 and independent of the ra-
tio of u/hck as long as this ratio is less than l. Equation
(5.30) (with g = 1) coincides with the one-loop result
for the running spin-stifFness inferred &om the RG equa-
tion for the static coupling constant. It was suggested
by Tyc et al. that the two-loop corrections may lead to
g g l. In our approach, the same is likely to happen from
higher-order terms in the 1/N expansion; dependence of
g on the ratio ur/hck is also possible. Furthermore, we

have checked that Eq. (5.31) coincides with the pertur-
bative result for the transverse susceptibility measured
on the momentum scale k (and frequency scale ck). The
first term in (5.31) is the exact result at T = 0, which we

already obtained in the previous subsection. The second
term (which, we emphasize, is also a classical contribu-
tion) actually accounts for the difi'erence between trans-
verse and longitudinal susceptibility measured at 6nite
momentum and frequency. In this situation, we probe
the system at 6nite spatial and time scales where the
system appears Neel ordered. The temperature depen-
dence of this term for N = 3 is the same as in the scaling
approach and, in fact, can be deduced directly Rom the
diagrammatic expression of y'„~ in Sec. IIIB if k and ~
are both small but 6nite.

The 1/N result for the damping rate ps~ is given by

hcsk ((N —2)kgTI ' t' kgyT)
2.ps ~ ~'n. k '

8

(5.32)

where rig (=1 for on-shell excitations) is a smooth func-
tion of the ratio u/csk. This result for the damping rate
agrees with the lowest-order perturbative calculations by
Tyc and Halperin. 6 They, however, have shown that the
logarithmic dependence on the quasiparticle momentum
k in (5.32) is actually an artifact of the Born approxi-
mation. Significant corrections to the self-energy term
arise from the damping of intermediate excitations. Ne-

glecting this damping is a legitimate approximation only
if the dampiag rate is smaller than the energy of the
incoming quasiparticle. Let us define the momentum
scale for intermediate states, q~, such that pq
Clearly then, the lowest-order calculations are valid for

q & q, but damping of intermediate states must be
included for q ) q . A simple estimate based on Eq.
(5.32) yields q k(p", /T) . A careful consideration~s
then demonstrated that q~ has to be taken as the upper
cutofF in the momentum integral leading to (5.32), and
k-dependent logarithm in (5.32) has to be substituted by
the self-consistent expression

(N —2)kg) T
pe = 2' g+ —ln(1+ (k()')

2
(5.30) ln mlnq /kevin —

~

'
~

. (533)k~T
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The self-consistent result is then

vr her, k ((N —2)kgT)™
7I p

2&p

(N —2)kg) T (5.34)

D. NMR relaxation

The assumption about the functional form of y, (k, ~)
at small k is a key ingredient which makes possible the
calculation of the antiferromagnetic contribution to the
spin-lattice relaxation rate. Using the definition of 1/Ti
in (1.34) and performing the integration in (5.29), we
obtain

Tle (N-2)n qNq qn &

r(N 2)k T~"'""-"—
xi

2mp,
(5.35)

where gs (=1 for on-shell excitations) is a smooth func-
tion of the ratio u/cqk, which generally difFers &om rj,
and I is a pure number of order unity.

We return to consideration of the dynamic suscepti-
bility g, (k, u) but now at momenta other than k( )) 1.
At k( 1 the naive 1/N expansion is not terribly use-
ful because the scale q 0(( ), and the damping
of intermediate excitations cannot be neglected at any
momentum. We have therefore little to add here to the
results of Refs. 12 and 76 who used the dynamic scaling
hypothesisrr to study this region. The content of this
hypothesis is that there is only one large spatial scale
in the problem, namely the correlation length, and the
damping of excitations becomes comparable to the real
part of the spectrum at k( = Q(1). Indeed, if we use our
result (5.34) for pg, which is strictly speaking valid only
for kg )) 1, and extend it down to k(O(l), this is pre-
cisely what happens. The ratio pl, /el„which behaves
as (T/p,") ln p", /T at large kf, becomes of the order of
unity at the scale of k( = O(1). This happens because
p", in (5.30) is renormalized substantially downward at
small k and eventually becomes kJBT.

Notice also that y& tends to a finite value as k ap-
proaches zero. As a result, cI, decreases with k, and for
k( = Q(1), we have cs c gk~T/27rp, independent of
¹ This last result illustrates an important feature of
the 1/N expansion in the renormalized-classical region.
The N-independent result for cI, is inconsistent with our
earlier N = oo analysis in Sec. III A which is completely
Lorentz invariant and has a T-independent value of c.
This apparent contradiction is a consequence of the non-
commutativity of the T ~ 0 and N ~ oo limits. The
key point is that the T = 0 static uniform susceptibility
in the O(N) 0 model scales as O(1/N) [Eq. (5.28)j and
therefore vanishes at N = oo. In view of this, one has
to proceed to the next order in the expansion over 1/N
(as we did) to check that there is indeed a breakdown of
Lorentz invariance at small but finite T.

where A is a numerical factor whose calculation requires
us to know the precise form of y, (k, w) at k$ = O(1).
The functional form of 1/Ti, in (5.35) is identical to that
obtained by Chakravarty and Orbach on the basis of
the scaling approach of Chakravarty et al. They also
estimated the value of numerical factor to be AN02 —0.61
(for N = 3) by fitting the scaling forms of Chakravarty
et al. and Tyc et Ol. to the numerical simulations on
a classical lattice rotor model.

E. Speci6c heat

A simple inspection of the &ee energy (3.71) in the
renormalized classical regime shows that the dominant
contribution to X(T) —X(0) comes from the region of
magnon frequencies comparable with the temperature.
In this region, mo in (3.71) can be neglected compared
to k2+ (u2, and we obtain

II(k, iu)) =
N k2+ ~~ (5.36)

The &ee energy (3.71) is then easily seen to be precisely
the same as that of a gas of N —1 gapless Bose degrees of
&eedom. By definition, (1.10c), @i(T -+ 0) is a measure
of the number of such modes in the ground state. We
have therefore

@i(*i(( 1) = N —l. (5.37)

It can be shown using the above results that zq-
dependent corrections to 4q are suppressed by a factor
e -1/ZI

VI. QUANTUM-DISORDERED REGION

The section will present computations of 1/N correc-
tions to the staggered susceptibility. We will not compute
1/N corrections to the uniform susceptibility and the spe-
cific heat: both these quantities are suppressed by factors
of e +/~"~ ~ at low temperatures, and are well described
by the N = oo theory in Sec. IIIA2 1/N correctio—ns
will lead to innocuous n»merical prefactors.

As in the previous sections, the computations will be
carried out with a relativistic cutofF scheme which re-
stricts ~ + q ( A . We will begin with a description of
results at T = 0, followed by a discussion of the finite T
corrections.

A. T=O

An immediate simplification here is that all correla-
tors are completely relativistic. In fact, as the ultraviolet
cutofF is also relativistic, this is also true at &equencies
and momenta of the order of A. All Green's functions
are therefore dependent only upon a relativistic three-
inomentum Q, related to the usual momentum, q, and
real &equency, u, by
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Q = q —((u+ is) . (6.1)

gS2 f BZ(Q2 = —62)l
N ( BQ2 )

(6.2)

We turn therefore to an evaluation of Z. This will be
obtained from the results of Sec. IIIB evaluated at T = 0
with mp ——b, . From (3.56) it is easy to obtain the exact
result for II

II(Q) = arctan
~

PQ1
4n g2b &

(6.3)

Here c is a positive infinitesimal.
An important feature of y, (Q) has already been dis-

cussed in Sec. IIB: there is a perfect spin-1 quasiparticle
pole at ~ = gq + b, . From (3.54) we deduce that the
residue, A at this pole is (to order 1/N)

B.TgO

We present here results for the local susceptibility
ImyL, (ur) at very small u. Clearly, because of the pres-
ence of gap, b, , we have Immi, ((ar & 4) ~z'—p = 0. Thus
the entire contribution below comes from thermally ex-
cited quasiparticles. From the definition (1.16) of yL, and
(3.54) we have to order 1/N

gS2 d2k ImZ(k, u))

N 4z' (k'+ hz)2' (6 6)

The first result can be combined with (4.2) to obtain the
result (1.22) for Zq, while the second is closely related
to the fourth equation in (4.5).

1 ~ P'dP 1 ((P+ Q)'+ 6')
2n II(P) 2PQ I (P —Q) + 6 )

2

P2+ Q2 (6.4)

From this result, numerical and analytic manipulations
show

BZ(Q = —b, ) (A) 0.4817408231574
BQ2

—l I ~ I N

Z(Q' » 4') = Q' g ln
~

—
~
+

3 N
(6.5)

Next, (3.55) can be reduced to a one-dimensional integral
for Z(Q):

Using the integral representation of the polarization op-
erator, it is not dificult to obtain that in the quant»m
disordered region (T « b, )

2K 82/ 8
—eg+q/T

ImZ(k, (u m 0) = ImII i(q, ei,+q),NT 4+2 e&+q

(6.7)

where, as before es = gk + mp2. Note that ei, and II
now have to be evaluated at mp ——b, .

It now remains to evaluate ImII . We will begin by
considering ImII. From the generalization of (4.20) to
the quantum disordered region we find the following im-
portant contributions to ImII for T « b

1 2 Ap Ap+q
lmll(I7&es+q) Imll(g&cs+q)~& p+ d p b(ep+q fp ep+q),Sx ~p~p+q

(6.8)

where Il~q —p was obtained earlier in (6.3). In principle, the T-dependent corrections to ReII can be obtained by a
Hilbert transform of (6.8); however, we found that these contributed subdominant corrections to ImyL, /ur in the limit

We can now compute ImyL, by combining (6.3), (6.6), (6.7), and (6.8). We omit the details and give the final result

—2& ZImyL, (ur m 0) =(u e
4N62

1 4 ~ 1+, +
arctan2(1/~2) ln (6,/T) (ln (6/T) )

(6 9)

Note that the first term in the brackets is due to the
temperature-dependent part of ImII, while the logarith-
mical terms come from the real and imaginary parts of
11~2 —p. This result can be combined with the definitions
in Sec. ID5 to obtain the small argument limit of the
scaling function I"2.

VII. COMPARISON WITH EXPERIMENTS

In this section, we compare our theoretical results with
the available experimental data for undoped, and weakly

doped La2 Sr Cu04 and the numerical results for 2D
S = 1/2 Heisenberg antiferromagnets on a square lattice.
But first, let us brieQy s»mmarize our findings.

We presented above the general forms for uniform
and staggered susceptibilities in a two-dimensional quan-
t»~ antiferromagnet which has p, && J. The explicit
crossover functions were calculated at N = oo and the
1/N corrections were examined in the limiting cases of
xi » 1 and xi « 1, where xi ——Nk~T/(2m p, ) is a pa-
rameter which governs the crossover between renormal-
ized classical and quant»m critical regions (for xi « 1,
the system is in the renormalized classical region, while
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for xq » 1 it is in the quantum critical region). We found
that for large values of z~, the perturbative expansion is
regular in 1/¹ Moreover, the corrections were numer-
ically rather small; so we expect that for the physical
case of N = 3, the results obtained in the first order in
1/N are already quite close to the exact values of ob-
servables. On the other hand, at small xq, the 1/N ex-
pansion is logarithmically singular —it holds in lnxq/N
and eventually changes the leading singularity in some of
the scaling functions at zq -+ 0; the final low-T behavior
is the same as in the renormalized-classical scaling the-
ory of Chakravarty et al. 2 The crossover between small-
and large-zq behavior should occur at zq around unity,
though not necessarily at the same zq for various ob-
servables. For p, (& J, z~ 1 is within the validity
of the long-wavelength description, and we expect that
there should be a temperature range where our formu-
las for the quantum-critical region describe the experi-
mental data better than the renormalized-classical the-
ory. Strictly speaking, the renormalized-classical theory
should be valid only for zq (( 1 when lnzq terms domi-
nate regular perturbative corrections.

We now proceed to describe the data. Let us first dis-
cuss undoped antiferromagnet. We know &om elemen-
tary spin-wave analysis that zero-point Huctuations are
not divergent in two dimensions and. therefore the T = 0
renormalization of spin-stiffness, spin-wave velocity and
sublattice magnetization come primarily &om the lattice
scales, where we can rely on the results of spin-wave cal-
culations. At present, two-loop spin-wave expressions are
available. s For S = 1/2, they yield the values of p„g~,
and No, which are practically undistinguishable &om the
results obtained in numerical simulations:

p, = 0.181J, gp~ 2 0.514
8Ja2 ' Np ——0.307, (7.1)

where a is the lattice spacing. Hence 2xp, 1.13J
and we therefore expect that quantum-critical expres-
sions should work for k~T & 0.35J —0.4J. The ex-
pected crossover temperature is indeed not very small,
but it is still significantly lower than J; in other words
we may reasonably expect out long-wavelength descrip-
tion to continue to be valid for zq & 1. Notice that our
result for p, differs &om p, = 0.15 used by Chakravarty
et al. The reason is that Chakravarty et al. extracted
the value of p, from one-loop spin-wave results extended
to S = 1/2, while our estimate of p, is based on a two-
loop spin-wave calculation.

We now discuss what happens at nonzero doping.
First, a mean-field analysis based on Hubbard model pre-
dicts that antiferromagnetism is destroyed at arbitrary
small concentration of holes. However, more sophisti-
cated considerations show ' tha, t there is in fact no
discontinuity in the immediate vicinity of half-filling, and
one needs a finite, though small, concentration of holes
to destroy antiferromagnetic ordering. There are several
possible scenarios of the doping-induced loss of Neel or-
der: (i) There is a T = 0 transition from the Neel state
to an incommensurate magnetically ordered state;
or (ii) the Neel state is destroyed by quantum fluctua-
tions and the system enters a quantum-disordered spin

Quid with commensurate correlations. Only at a larger
doping do incommensurate correlations appear.

A recent self-consistent two-loop calculation on the
Shraiman-Siggia model displays both sequences of tran-
sitions depending on the strength of the coupling between
fermions and n field.

The two scenarios differ primarily in their predictions
for the behavior in the non-Neel-ordered state; in both
approaches, the spin-stiffness decreases with doping and
vanishes at the critical point, while the spin-wave veloc-
ity remains finite at the transition. Thus, in any event,
the main effect of small doping is simply to decrease the
bare spin-stiffness of the antiferromagnet. Moreover, the
self-consistent analysis mentioned above ' 6 shows that
the holes do not modify the critical properties of a Neel
to quantum spin-Quid transition. Thus, the universal
scaling functions computed in this paper can be used
unchanged to describe this transition in doped antiferro-
magnets.

A further, important, complication that has to be con-
sidered in realistic doped antiferromagnets is the effect
of randomness. All cuprate antiferromagnets have ran-
domly placed dopant ions which will perturb the prop-
erties of the two-dimensional antiferromagnet. Random-
ness has been argued to be a relevant perturbation near
the pure phase transition of the 0(3) o model. 2~ It thus
necessarily changes the universality class of the fixed
point and also pushes the transition to smaller doping
concentrations. In Appendix A we have presented a phe-
nomenological discussion of the expected scaling proper-
ties of the random fixed point.

However, we may conjecture (though we have no strong
theoretical arguments for this) that the effects of ran-
domness are important only at low temperatures in the
immediate vicinity of the quantum transition. At higher
T the dominant effect of doping is solely the change in
p, and the properties of the antiferromagnet should be
controlled by the pure fixed point. We will soon see that
neglecting randomness at moderate temperatures is con-
sistent with the available experimental data in weakly
doped La2 Sr Cu04. Of course, this simple approach
will eventually fail at large doping. Crudely, we may take
the largest possible z as one where p, would vanish in the
absence of randomness. We will estimate from the data
that this z to be somewhat larger than 0.04.

An important consequence of the decrease of p,
with doping is that zq becomes larger at the same T.
Hence the crossover between renormalized-classical and
quantum-critical behavior occurs at lower T. Conse-
quently, there should be a wider temperature range where
our predictions for quantum-critical region should de-
scribe experiments better than the renormalized-classical
theory.

We now consider separately the experimental data for
various observables.

A. Uniform susceptibility

We start with the uniform susceptibility,
This quantity has no logarithmic corrections in the
renormalized-classical region, and is therefore an ideal
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candidate to test the predictions of the 1/N expan-
sion. We consider first the numerical results for y„'
in the square-lattice S = 1/2 antiferromagnet. There
have been high-temperature series expansions, quan-
tum Monte-Carlo, and finite-cluster calculations of

Their results all show that g'„t(T) obeys a Curie-
Weiss law at high T, reaches a maximum at k~T
J and then falls down to a finite value at T = 0
which is closest to the rotationally averaged 1/S result
(ha/gp~) y'„'(T = 0) = (2/3) (0.514/8J) 0.04/J (a
is the lattice spacing). The data at low T are not ac-
curate enough to make a reliable theoretical fit but at
higher T (0.35J ( T ( 0.55J), both series expansions
and Monte Carlo calculations report a linear temper-
ature dependence of y„'~. The best fit to the Monte
Carlo data gives (ha/gp~) Jy„" = 0.037zq(1+0.775/zq)
(Fig. 7). We compared this behavior with the theoretical
prediction for the quantum critical region, which over
the range of zq values used in the figure, is well ap-
proxirnated by the large-zq formula Eqs. (1.24), (3.35),
and (4.13): (ha/gy~) Jy„" = 0.037zq(1+ o/zq) where
o. = 0.8+0(1/N). (We do not know the 1/N corrections
to a; we only know that the 1/N corrections modify the

I/zq term to I/zz ".) The agreement between the slopes
of the two results is remarkable. On the contrary, the
slope for the renormalized classical region, Eq. (5.28), is
0.014z~ in clear disagreement with the numerical data at
T ) 0.35J.

We consider next measurements of y„"(T) in weakly
doped La2 Sr Cu04. The interpretation of the experi-
mental datarequires caution ' because one has to sub-
tract Van Vleck, core, and diamagnetic and paramagnetic
contributions &om valence fermions &om the measured

0.3—

0.2

y„'t(T). Besides, as we said above, the effects of random-
ness are clearly important at low T. The subtraction
of extra contributions neglecting the effects of random-
ness was first done by Jo~~~on who actually estimated
the strength of the Van Vleck contribution by aasum-
ing that at zero doping, the susceptibility should be the
same as in the Monte Carlo studies of 2D antiferromag-
net. Nevertheless, his results for y„' clearly show
that at small doping concentrations, the susceptibility is
linear in T with the slope of (ha/gy~) Jy'„~ versus zq
about 0.043 which is close to our result (0.037). Unfor-
tunately, we cannot definitely conclude &om the experi-
mental data whether the linear behavior with the univer-
sal slope stretches up to lower T as the doping increases,
which has to be the case if p, decreases with the dop-
ing. We will observe this effect, however, in the data for
the spin-lattice relaxation rate. Note also that at higher
doping concentrations zq 0.1, the experimentally mea-
sured y'„~(T) versus T flattens. ss However, at such zq,
the system is already in the metallic phase, where our
approach clearly has to be modified.

B. NMR relaxation rate

The simple Mila-Rice-Shastry model for hyperfine
coupling in La2Cu04 predicts that the hyperfine cou-
pling constant for Cu is finite at the antiferromagnetic
ordering momentum (m, m), where the dynamic suscepti-
bility is peaked. The region around (7r, 7r) thus gives the
dominant contribution to Cu relaxation and we may
use the long-wavelength theory for experimental com-
parisons. At the same time, the value of the hyperfine
coupling constant in the cr model approach cannot be
inferred directly &om the Knight shift measurements as
in microscopic theories. Instead, we have to integrate
out all intermediate scales in the microscopic model for
the hyperfine interaction, to obtain the coupling constant
between the nuclear spin and the unit vector field in the
sigma model. This renormalization is not singular, how-

ever, and the fully renormalized coupling, which we label
as A, should not be very different &om the microscopic
one.

At very low T (zq small), the system is in the renormal-
ized classical region. For N = 3, our theoretical result
Eq. (5.35) is the same as in the hydrodynamic theory of
Chakravarty et al.

0.3 0.4 0.5 0.6

FIG. 7. Quantum Monte Carlo (Ref. 33) (squares) and
our theoretical (line) results for the uniform susceptibility
X„= [3J(ah/gpa) ]X'„' of a square lattice spin-1/2 Heisen-
berg antiferromagnet (a is the lattice spacing). The experi-
mental results for weakly doped La&Cu04 are very close to
the Monte Carlo data (Ref. 31). There are no adjustable
parameters in the theoretical result (1.24). Over the range of
T plotted, the function Aq(zq) [recall zq ——NknT/(2n p, ) ] is
very close to its large zz behavior given in Eqs. (3.35) and
(4.13). We used the theoretical result at N = 3. The theo-
retical and experimental slopes agree remarkably well. The
good agreement in the intercept is somewhat surprising as its
theoretical value is known only at N = oo.

A No ( (kgyT t

hc i2xp, )
(7.2)

1 2A No (3kgyTi"
2z.&. J

(7.3)

Here A is the numerical factor which is difficult to calcu-
late analytically. Chakravarty and Orbach estimated
it to be AND 0 61 by fitting the scaling forms of
Chakravarty et al. and Tyc et al. to the numerical
simulations on a classical lattice rotor model.

On the other hand, at higher temperatures (zq & 1)
we expect the quantum-critical theory to work and I/Tq
should behave as in Eqs. (1.35) and (1.36):
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Comparing these two forms for 1/Tx, we observe that the
predicted spin-lattice relaxation rate rapidly decreases
with the temperature at low T, passes through a min-
imum at xz 1 and then slightly increases with T. In
practice, q is very small for clean systems [xl = 0.028 (Ref.
51)] and therefore 1/Tx should be nearly independent on
temperature in the quantum-critical region.

We now turn to the data. The spin-lattice relaxation
rate for nuclei coupled to the antiferromagnetic order
parameter of 2D S = 1/2 antiferromagnet was numer-
ically studied in high-T series expansions32 and Gnite
cluster calculations. s4 In both cases, 1/Tx rapidly de-
creases with increasing T at high temperatures (T & J/2)
and becomes weakly temperature dependent around T
J/2. In finite-cluster calculations, the subsequent growth
of 1/Tx at lower temperatures has also been observed.
Clearly, this behavior is consistent with our theoretical
observations.

Experimental measurements of 1/Tx in undoped and
weakly doped La2 Sr Cu04 have recently been per-
formed by Imai et gl. in the temperature range 20 —900
K. For the undoped system, the behavior above T~ ——308
K, but below 700 K, is well fitted by (7.2) with A
(1.33 6 10) 10 2 K and J = 1590 + 140 K (our estimate
for A is slightly di6'erent &om theirs because we use
the exact prefactor for the correlation length). However,
at about 650 K, 1/Tx fiattens and remains practically in-

dependent of temperature up to 900 K—the largest tem-
perature reported in by Imai et al. This is indeed what
we expect &om 1/Tx in the quantum-critical region. Fur-
thermore, the experimental T range over which 1/Tx is
nearly T independent increases with doping: at x = 0.04
it stretches nearly up to 500 K. We interpret this result
as an evidence that p, indeed decreases with doping, thus
pushing the system into larger xq for the same T.

For a quantitative comparison with the data, we need
to know the value of Rx(oo). Direct 1/N calculations
give Rx(oo) = 0.06/N, which is too small to account for
the experimental result for 1/Tx. However, we already
observed in Sec. IVC that Im@q, calculated to lead-
ing order in 1/N has peculiar exponential singularities
at small frequencies [Eqs. (4.24) and (4.25)] which are
probably artifacts of the large-N expansion. These sin-
gularities substantially reduce the slope of Fx(u) at the
smallest u (see Fig. 6). On the other hand, no such
low-&equency suppression of Fq(V) was found in numeri-
cal studies and in the experiments on weakly doped La
compounds. In view of this, it appears reasonable to es-
timate the value of Rx(oo) from our result for the scaling
function I"~ at slightly larger frequencies. Inspection of
the nuxnerical result for I"x (Fig. 6) shows that Eq(u) is
linear in u for w between 0.5 and 1, and the slope yields
Rx(oo) 0.22. Substituting this result into (7.3) and us-

ing the values of A and J from the low T(renormalized--
classical) fit, we obtain 1/Tx ——(3.2 6 0.5) x 10 sec
this is in a good agreement with the experimental result
1/Tx —2.7 x 10 sec

C. Correlation length

Detailed measurements of ((T) in pure La2Cu04 have
been performed ' ' at low T, where the system is in

the renormalized classical region. Here Eq. (5.17) is valid
and using (7.1) we obtain

1.13J
((T) —0.50a exp

&AT
(7.4)

(-x = 1.039
kxxT

hca g zx)
(7.5)

where p —1. The 1/N corrections have been included in
the slope but are not known for p: they also change the
subleading term to xz ". We 6tted the data of Keimer
et al. at x = 0.04 by this formula and found satis-
factory agreement with the data over the temperature
range between 300 and 550 K. The value of p, extracted
&om the 6t: 2~p, 150—300 K, is still positive, but of
course is much smaller than at zero doping. Note that
Keimer et al.ss used a phenomenological forxn for ( (T)
which combined the renormalized-classical result at zero
doping and temperature-independent correction due to
6nite doping; this form agreed well with the experimen-
tal data for doping concentrations x = 0—0.04, but the
theoretical arguments behind it are unclear to us.

We also compared our results for the quantum-critical
region with the numerical data for ( in a pure 2D
S = 1/2 Heisenberg antiferromagnet. ss s2 ss Numerical
simulations were performed up to temperatures of about
4J; if quantum-critical behavior for ( is present in the
Heisenberg antiferromagnet in some temperature range,
it should have been detected. It turns out, however,
that up to k~T J, numerical data are well 6tted by
the renormalized classical theory, although the best 6t
gives the value for the prefactor which is nearly half of
that in (7.4). On the other hand, for 0.4J ( k~T ( 0.6J
(where 1/Tx levels ofF to a constant value), our pure
quantum-critical result for ( is close to the numerical
one. ' The interpretation of the numerical data at

Chakravarty et al. used a diferent numerical prefac-
tor in (5.17) and a different value for the spin-stiffness
constant. The combination of the two yielded nearly the
same value of prefactor as in (7.4), but the numerical fac-
tor in the exponent was slightly different (0.94 instead of
1.13). This discrepancy is not crucial however, and both
Eq. (7.4) and the analogous expression of Chakravarty
et. al. fit the experimental data between 350 and 560
K rather well. The value of J has been estimated by high-
energy neutron scattering measurements of the spin-wave
velocity2s to be J 1560 K. Hence zx T/590 K, and
all of the experimentally accessible temperature range is
within the renormalized classical region. Nevertheless,
we estimated the value of ( at the highest experimen-
tally accessible temperature 560 K by using the N = oo
expression for the crossover function Xx in (3.26); we

obtained ( = 0.023 A, which is not far froxn the
experimental valueM of 0.03 A

At Gnite doping, we expect that the crossover be-
tween the two regimes will occur at smaller temperatures;
quantum-critical behavior should therefore be observable
at temperatures above and around 500 K. Deep in the
quantum-critical region, we expect that ( behaves as
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higher T requires caution as these data at k~T & 0.6J
are equally well fitted by the quantum-critical result

oc xi(1 —pxi) where 7 is close to one. However,
the prefactor in the fit is nearly twice as that in (7.5).
We argue in a separate publication that these discrep-
ancies in the fit to the quantum-critical theory are chieBy
due to nonuniversal corrections T/J which cannot be
neglected above 0.6J.

Separate Monte Carlo calculations of the correlation
length precisely at p, = 0 have been performed by
Manousakis and Salvador. They simulated the quan-
tum O(3) o model directly, rather than the spin-1/2
antiferromagnet. Their results yielded the value of the
universal function Xi(oo) = 1.25 which is not far &om
the result of Chakravarty et al. ,

i2 or our result in (7.5):
Xi(oo) = 1.04.

D. Equal-time structure factor

There are, to our knowledge, only few data avail-
able on S(k). The behavior of S(k) versus k( in a
2D antiferromagnet was studied by a quant»m Monte
Carlo by Makivic and Jarrell. e They fitted their data at
kgyT = 0.35J—0.42J by the renormalized-classical scal-
ing formula of Chakravarty et al. iz We present another
interpretation for the data. The key point is that at
k~T = 0.42J, the correlation length is about 5.7a and the
magnon energy is therefore hck/k~T 0.7(k(). We see
that it becomes larger than k~T already at k( 1.5, and
the use of the classical description at larger k is hardly
justified. We rather have to use the full quantuxn expres-
sion for S(k) to fit the data. Clearly, at k~T 0.4J, the
Josephson correlation length is not very different &om

(, that is at hck ) k~T the system should be in the
quantum-critical regime. However, we found above that
the 1/N corrections to S(k) in this regime are very small,
even for N = 3, and for experimental coxnparisons we
may well use the scaling function for S(k) computed at
N = oo. For kgyT = 0.42J, we have the following theo-
retical prediction, valid in both the quantum-critical and
renormalized-classical regions, &om (1.28) and (3.30)

coth[agl + (k()2]

Ql + (k()2
(7.6)

where a = hc/2kgy T( 0.35 and S
= (No /p, )(he(/2a ) = 2.48. We fitted the Monte Carlo
data by (7.6), using the overall factor S as the only ad-
justable parameter; we found very good agreement with
the simulations not only for hck ) k~T, but for all k
(Fig. 8). However, the value of S in the fit is S = 3.61,
which is somewhat larger than our N = oo result of 2.48.
As yet, we have no explanation for the discrepancy, and
therefore cannot judge &om the data whether at inter-
mediate k the system is in the quant»m-critical or in the
Goldstone regime [S(k) in the quantum-critical regime is
very close to the N = oo result, while in the Goldstone
regime, S(k) chielly differs from its value at N = oo
by the factor (N —2)/N = 2/3]. At the same time,
the good agreement we found in the xnomentum depen-
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FIG. 8. Theoretical scaling function at N = oo, Eq. (7.6)
(line) and quantum Monte Carlo data (Ref. 33) (squares) for
the equal-time structure factor in the S = 1/2 Heisenberg
antiferromagnet at k~T = 0.42J. The correlation length is
taken from the Monte Carlo data ($ 5.7a). We expect that
for most of the values of k( plotted, the antiferromagnet is in
the quantum-critical regime where 1/N corrections to (7.6)
are small. The only adjustable parameter in the theoretical
curve is the k-independent overall factor 8 in (7.6). The best
St value of S was found to be 1.45 times larger than our
N = oo result.

dence of S(k) is clearly consistent with our conjecture
that at k~T 0.4J, the antiferromagnet is very near the
crossover between renormalized-classical and quantum-
critical regimes.

Experimental data for energy-integrated S(k) are
available for pure La2Cu04. Clearly, the experimen-
tal texnperature dependence for the correlation length
was inferred Rom these data. The experiments were
performed in the temperature range of T ( 560 K,
where zi ( 1. The momentum dependence of S(k) was
reported to be well described by a simple Lorentzian
S(k) = S(0)/[1+ (k()z], and the teinperature depen-
dence of S(0) agreed with the renormalized-classical re-
sult S(0) oc T2(2. The absolute value of S(0) was not
determined in the experiments, so we cannot compare
the experimental result at highest accessible temperature
with the theoretical expression in the quantum-critical
region, as we did for the correlation length. The data on
S(0) at finite doping have not been reported, to the best
of our knowledge.

E. Local susceptibility

1m', (~) = 1(I~I)F(~/T) (7 7)

Finally, we consider the experimental data on
the momentum-integrated dynaxnical susceptibility
Imyr, (tu) = f d klmy, (k, v). Extensive experimental
measurexnents were done ' for Laq 96Sro 04Cu04 in a
&equency range cu = 2—45 meV and for temperatures
10 & k~T & 500 K. They showed that the experimental
data at all values of u and k~T, obeyed the following
functional form to reasonable accuracy:
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This form is in agreement with the theoretical scaling
form (1.31) and (1.32) for clean systems, or (A1Q) and
(AlS) from Appendix A for random systems; further,
we arrive at the theoretical prediction that I—
The exponent p = g ) 0 in clean systems, while we
expect p ( 0 in random systems. Experimentally, it
was found that I was approximately ~ independent at
the larger frequencies; this is consistent with our results
for the clean antiferromagnet in which p = g is very
small. At smaller &equencies, I showed signi6cant &e-
quency dependence which could be well 6t by an expo-
nent p, = —0.41 +0.05. Such a behavior is clear evidence
of the importance of randomness at low frequencies and
low temperatures. Note also that the scaling plot to
test the ~/T dependence of the function E shows rather
good collapse of the data for a wide range of values of
u/T, ssss thus giving strong evidence of the presence of
quantum criticality. The universal scaling functions at
the pure and random fixed points probably have a rather
similar shape, and thus the presence of disorder does not
effect the scaling plot very much. It is only the exponent
p which is particularly sensitive to disorder.

We emphasize, then, that this experimental data
clearly shows the presence of quantum criticality and sug-
gests that the effects of randomness are important only
at low energies; at high enough ~ or k~T one can suc-
cessfully 6t the data at x = 0.04 by the quantum-critical
theory for a clean antiferromagnet.

VIII. CONCLUSIONS

We conclude the paper by recalling some highlights
of our results. We have presented the general theory of
clean, two-dimensional, quantum Heisenberg antiferro-
magnets which are close to the zero-temperature quan-
tum transition between ground states with and with-
out long-range Neel order. While some of our discus-
sion was more general, the bulk of our theory was re-
stricted to antiferromagnets in which the Neel order is
described by a three-vector order parameter. For Neel-
ordered states, "nearly critical" means that the ground-
state spin stiffness, p„satisfies p, « J, where J is
the nearest-neighbor exchange constant, while "nearly-
critical" quantum-disordered ground states have an en-
ergy gap, 4, towards excitations with spin 1, which sat-
is6es 6 « J. The allowed temperatures, T, are also
smaller than J, but no restrictions are placed on the val-
ues of k~T/p, or kJ3T/b, .

Our results followed &om some very general properties
of the T = 0 quantum fixed point separating the mag-
netically ordered and quantum-disordered phases. These
properties are expected to be valid in both undoped and
doped antiferromagnets, though not in the presence of
randomness. They are (i) the spin-wave velocity, c, is
nonsingular at the fixed-paint (i.e., the dynamical critical
exponent z = 1); for the case of a vector order parameter
this implies that the critical 6eld theory has the Lorentz
invariance of 2+1 dimensions; (ii) on the ordered side of
the transition, there is a Josephson correlation length,
(g, related to the T = Q spin stiffness p, by the hy-
pothesis of "two-scale factor" universality which implies

that p, = bcT/(g, where the number T is dimensionless
and universal; (iii) turning on a finite temperature places
the critical field theory in a slab geometry which is in-
finite in the two spatial directions, but of 6nite length,
L = hc/(k~T), in the imaginary time (~) direction. The
consequences of a finite T can therefore be deduced by
the principles of finite-size scaling.

Under these circumstances, we showed that the wave-
vector —&equency-dependent uniform and staggered spin
susceptibilities, and the speci6c heat, are completely uni-
versal functions of just three thermodynamic parameters.
On the ordered side, these three parameters are p„ the
T = 0 spin-wave velocity c, and the ground-state stag-
gered moment No, previous works have noted the univer-
sal dependence of the susceptibilities on these three pa-
rameters only in the more restricted regime of k~T && p, .
On the disordered side the three thermodynamic param-
eters are 6, c, and the spin-1 quasiparticle residue A.

We have calculated the universal scaling functions by
a 1/N expansion on the O(N) quantum nonlinear o
model, and by Monte Carlo simulations. For p, 6nite,
these scaling functions demonstrate the crossover be-
havior between the renormalized classical regime, when
thermal fluctuations are dominant, to the quantum-
critical regime, where the dynamics is governed by the
renormalization-group flows near the T = 0 quantum
fixed point. For small k~T/p„ the T dependence of
our results was similar to those already obtained by
Chakravarty et al. ~2 For large k~T/p„most of our re-
sults were new. We found that the crossover between the
renormalized-classical and quantum-critical regimes oc-
curs at zq 1, where zq ——NknT/2mp, In a square . lat-
tice, S = 1/2 Heisenberg antiferromagnet, 2s p, - 1.13J,
and quantum-critical behavior therefore should be seen
at k~T & 0.4J. We compared our quantum-critical re-
sults with a number of numerical simulations and ex-
periments on undoped and lightly doped La2 gSrgCu04
in the intermediate temperature range, and found good
agreement with the data, particularly for uniform suscep-
tibility, NMR relaxation rate and equal-time structure
factor. It appears, therefore, that the use of a "small" p,
point of view is quite reasonable even for a pure square
lattice, S = 1/2 Heisenberg antiferromagnet —while or-
dered at T = 0, this system is evidently close to the
point where long-range order vanishes. A small p, ap-
proach also appears to be appropriate for lightly doped
antiferromagnets.
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APPENDIX A: RANDOM
ANTIFERROMAGNETS AND

ANISOTROPIC SCALING

This appendix will present a brief discussion of the
extension of the results of this paper to the case of ran-
dom antiferromagnets. We will restrict our attention to
systems in which the randomness preserves the Heisen-

berg spin symmetry„ i.e., antiferromagnets with randoxn

exchange constants J;~.
Random impurities induce perturbations on the clean

system which are uncorrelated in the spatial directions
but fully correlated along the imaginary-tixne direction.
This has the immediate consequence of breaking the long-
distance Lorentz invariance of the pure system. It there-
fore becomes necessary to allow for anisotropic scaling
in space-time at the quantum fixed point. It is conven-
tional to introduce a dynamic scaling exponent z such
that characteristic frequencies, u, scale with the charac-
teristic wave vector k as

1. Neel order

We present here some phenomenological scaling
Ansatze for the quantuxn phase transition &om a Neel-
ordered state to a spin Quid in a random antiferromagnet.
The scaling arguments are sixnilar to those employed for
the superBuid to Bose-glass transition by Fisher et al. ,

7

although they did not discuss the issue of universal ampli-
tudes. We will restrict our attention to the magnetically
ordered side g ( g, . The magnetically disordered side
is expected to be gapless98 and its properties will not be
discussed here. We also note that little explicit reference
to randomness will be made here, its main role being the
introduction of a z g 1. The results should therefore
also be applicable to other quantum phase transitions in
clean systems which have z g 1 and are below their up-
per critical dixnensions. We also assume below that the
antiferromagnet is below its upper critical dixnension and
hyperscaling is valid.

As in clean systems, we expect that T = 0 ordered
state is characterized by a Josephson length scale, fz,
separating the Goldstone and critical regions. As g ap-
proaches g, this scale must diverge as

(i - (g. —g) ". (A2)

At scales larger than (g, the system should exhibit con-

(A1)

in the critical region.
It is important to distinguish to two distinct classes

of magnetically ordered phases that can occur in random
antiferromagnets: these are (i) Neel-ordered and (ii) spin-
glass ground states. In the first of these the ordering
xnoment has a definite orientation on each of the lattice
sites. In the spin glass, there is a long-lived moment on
each site, but its orientation is random. We will consider
the properties of the transition of these two xnagnetically
ordered states to a spin Quid in turn.

ventional Goldstone fluctuations with a well defined spin-
wave velocity, c. However, because z g 1, the spin-wave
velocity should. exhibit nontrivial critical behavior as g
approaches g:

c-(g. -g)"' '. (A3)

The ground state is also characterized by an average or-
dered moment No which vanishes as

No (g, —g)~, (A4)

and a spin-stifFness p, which satisfiese

( )
v(d+z —2) (A5)

where d is the spatial dimensionality. The exponent iden-
tity

2p = (d+ z —2+ rl)v (A6)

generalizes (1.11) and will be useful to us below.
In the main part of the paper we showed that the three

properties No, p„and c, of the T = 0 state, completely
determine the entire finite temperature forxn of the sus-
ceptibilities and the specific heat in clean antiferromag-
nets. We argue below that, remarkably, this continues
to be true even in randoxn antiferromagnets which have
z g 1. The value of c helps determine the appropriate
scaling between space and time even though t" itself has
nontrivial critical behavior.

The following discussion will specialize explicitly to the
case of d = 2, although the generalization to arbitrary d
is quite straightforward. We will also assume that z &
2, otherwise, the universality in the spectrum near the
critical point will be broken by the higher-order analytic
terms in an expansion in k. As before, we will use units
in which h = k~ ——1. Of course, we are no longer &ee to
set c = 1.

The application of finite-size scaling to quantum sys-
tems requires that one determine two length scales char-
acterizing the efFects of (i) the deviations from criticality,
and (ii) the temperature, and write down universal func-
tions of their ratio. The length scale characterizing devi-
ations from criticality is clearly (g. In clean systems, the
length scale fz characterizing the efFect of a finite T was
given by (z = c/T. Scaling suggests that in systems with
z g 1 we should have (z T ~~'. The scaling functions
will now depend on the ratio (g/(~. Using (A2) we see
that this ratio is measured by the value of (g, —g)"'/T.
However from (A5) this is the same (in d = 2) as p, /T
Moreover, since this ratio also has engineering dimen-
sion 0, there are no nonuniversal metric factors that can
appear. Thus as in clean systems, the scaling functions
will have a universal dependence upon p, /T. For similar
reasons, they can also depend only on tu/T.

It remains to consider the wave vector dependence of
the scaling functions. By scaling, this must appear in the
combination q(2 q/T ~'. Let us now try and deter-
mine the xnetric factor in &ont of this combination. There
are two basic rules: (i) the metric factor should involve
coxnbinations of observables whose scaling dimension is
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0; and (ii) the entire combination which appears in the
argument of the scaling function should have engineering
dimension 0. Once these rules are satisfied, one is guar-
anteed, by the principles of scaling, that no nonuniversal
prefactors remain. A little experimentation shows that
the following satis6es these criteria:

/ T) 1—1/z

TEP j (A7)

We now have enough information to use the same steps
as were used in Sec. II and obtain universal scaling func-
tions of the observables. We will omit most of the inter-
mediate steps here and go directly to the results.

Consider 6rst the susceptibility measuring Buctuations
of the order parameter, g, . We End

Np (C)2
x.(k ~) =

p~ ET)

t'ca
x@g,

p T ) 2+(p —2)/z

(pe)
(T')' '/'

(u T )

(p. )
(As)

Np2 f T l "/' t'(u T'l
imxL, (~) = '

I

—
I +1

I

——
I

pe (pe j (T pe)
(Alo)

Again Xq and Eq are completely universal functions cho-
sen such that Xi(oo) and Fi(V, oo) are finite.

The properties of the uniform susceptibility and the
specific heat follow from an understanding of the hyper-
scaling properties of the &ee-energy density, T. A simple
generalization of the arg~Iments of Privman and Fisher 5

to anisotropic systems yields (in d = 2)

x = xp+TgT'y
I

—I,
f'T t

(A11)
(pe)

where Tp is the ground-state energy, and p is a universal
function. As in Sec. II the following results for static
uniform susceptibility y„' and the specilc heat C~ now
follow

( T ) —2+2/z

x."= (g»)' —,
I

—
Ic'Ep j

T2 ( T $
—2+2/z

c (p, j Ep)

Ep. j
(A12)

where 4q, is a completely universal function and there
are no nonuniversal metric factors. We have chosen the
prefactors to satisfy the convention that scaling functions
should remain finite as g approaches g, . One can ver-

ify from (A3), (A5), and (A6) that the prefactor of the
scaling function, and the coefficient of qjT /* are nonsin-
gular as g approaches g, . The scaling results for all the
observables dependent upon y, can now be obtained in a
manner similar to that used for clean antiferromagnets.
We will display explicit expressions for only two of them:
the correlation length $ satisfies

1—1/z

while the local susceptibility ImyL, is given by

We now consider the properties of a quantum transi-
tion from a spin-glass ground state to a spin Quid. Clearly
many of the properties discussed in the previous section
are special to Neel-ordered states and do not generalize.
However measurements which are spatially local do have
similar critical properties. As we do not wish to discuss
the nature of the spin-glass state itself, we will restrict
ourselves here to behavior in the quantum-critical region
where T )) (g, —g)'".

A very useful measure of the local spin correlations is
provided by the local spin susceptibility, X~(u) defined
in (1.16). Along the imaginary f'requency axis, this local
susceptibility is given at the Matsubara frequencies ~„
by

~jr
xL, (i~-) =

0

C(~) = (S,(o). S,(

d7e' " C(7.),

(A13)

where the bar represents an average over all the sites i.
The function C(7) can be used to distinguish the spin-
glass and spin-Quid states In th. e spin-Quid state C(r)
will decay to zero for large w, will in the T = 0 spin-glass
phase& 0 we must have

lim C(7-) = qEA) O,
TABOO

(A14)

with qEA the Edwards-Anderson order parameter. It is
conventional to define the order-parameter exponent P
by the behavior of qEA as g approaches g, :

qEA (ge —g) (A15)

The value of qEA thus fixes the behavior of C(v) at infi-
nite time. We can obtain the behavior of C(7) for finite
times v by a simple application of the dynamic scaling
hypothesis. We expect at T = 0 that

C(~) = (g. —g)'hi(r lg —g.l'")

where hq is a scaling function and z is the dynamic scal-
ing exponent. Clearly we must have hi(x -+ oo) be a
finite nonsingular constant to satisfy (A14) and (A15).
For r « (g, —g) '", standard critical phenomena lore
requires that C(w) become independent of g, —g. This
is only possible if hi(x) x ) /'" for small x. Putting
this together with (A16) we can determine the behavior
of C(~) at T = 0 and g = g, :

1
C(r) /, T=o, 7. «(g, —g) (A17)

where 01, 1111 are universal functions, with Ai(oo)
4'1(oo) finite. Note, in particular, that the Wilson ra-
tio, W [Eq. (1.25)] continues to remain a fully universal
function of T/p„and has a universal value at g = g, .
The universality of the Wilson ratio, even in the pres-
ence of anomalous powers in y'„and C~, was also noted
recently (using very diff'erent arguments) in the boundary
critical theory of overscreened Kondo 6xed points.

2. Spin-glass order
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We can now use finite-size scaling to determine the be-
havior of C(r) at finite T

C(~) = h2(Tr), T, 7 && (g, —g) '", (A18)
1

where h2 is yet another scaling function. Finally we use
(A13), to determine yL, (iu„). In general we may find
that the Fourier transform is dominated by nonuniver-
sal contributions at short times. However, upon analyt-
ically continuing to real frequencies, we expect all these
nonuniversal contributions to affect only the real part of
yL„while the imaginary part is dominated by the univer-
sal long-time behavior. We therefore obtain the following
generalization of (A10) to systems with spin-glass order:

Imps(w) = (wgtg (
—), T, w )) (g —g)*", (A19)

where

(A20)

and Fq is a universal scaling function with a single
nonuniversal overall scale. For small argument, we have
Eg(V) sgn((u)~(u~ ", while Fg(rr m oo) is finite and
nonsingular.

In addition to the local susceptibility, the thermody-
namic properties of the quantum phase transition which
can be deduced from the hyperscaling properties of the
free energy, are very similar in the spin-glass and the
Neel-ordered systems. In particular, we expect the fol-
lowing temperature dependence of g'„' and Cv in the
quantum-critical region (T » (g, —g)'" of the spin-glass
to spin-Quid transition:

(A21)

It follows then that the Wilson ratio W [Eq. (1.25)] is a
universal number at g = g, .

APPENDIX B:BERRY PHASES AND
DANGEROUSLY IRRELEVANT COUP LINGS

We have assumed in this paper that the O(3) 0 model
is sufficient to determine the quant»m-critical scaling
functions of quantum antiferromagnets. A key step in
this assumption is that the Berry phases present in the
antiferromagnet can be neglected. This assumption is
based on the following circumstantial evidence. After
some rather involved calculations, which have been dis-
cussed at length elsewhere, ' it was shown that the
primary efFect of the Berry phases was to induce spin-
Peierls ordering in the quantum-disordered phase of non-
even-integer-spin antiferromagnets. This was shown in
the context of large M calculations for SU(M) antiferro-
magnets. Further, a key feature of this calculation was
the appearance of two well-separated length scales which
characterized the fully gapped spin-Quid phase. The first
of these scales was the two-spin correlation length ( which

Z = 'VOe,

8 = —) cos(8; —Hz) + ) h4cos(48;),
(4)

(B2)

where the sites i, j lie on a three-dimensional cubic lat-
tice. This model will have a phase transition at some

determined the exponential decay of the equal-time spin-
spin correlation function. The second was (sp the length
at which Berry phases 6rst became effective in inducing
spin-Peierls ordering. In the large-M limit these two were
found to be related by

(sp -('
where gq

——0.062296 + Q(1/M). It is clear that for
sufficiently large M (which is the only region in which
we know how to perform these calculations) we have

(.'sp» (.
It was then pointed out to us by Daniel Fisher that

the appearance of two length scales at a second-order
phase transition, one of which is a power of the other,
is a characteristic property of systems with dangerously
irrelevant couplings. A dangerously irrelevant coupling
is defined as one which is irrelevant at the critical 6xed
point separating the two phases, but is relevant at the
fixed point which controls the nature of the phase one
is studying. Crudely speaking, the coupling decays to a
very small value at the first length scale while the system
is controlled by the critical 6xed point, but grows again
to a value of order unity at the second, larger, length
scale.

For the antiferromagnet, our assumptions then, are
the following. We assume that the dangerous irrele-
vancy of the Berry phase effects, found in the SU(M)
models, survives in the O(3)a model. The coupling to
the Berry phase terms in the action decays to a neg-
ligibly small value after renormalizing out to a scale
of order max(c /T, c /b, ). At scales larger than this,
the coupling grows again, as the renormalization-group
Bows are now in the vicinity of the strong-coupling 6xed
point controlling the quantum-disordered phase. How-

ever, this coupling significantly modifies only those cor-
relation functions which are directly sensitive to the pres-
ence of spin-Peierls ordering. For all other spin correla-
tions (which includes all we have considered in this pa-
per) the Berry phases can be neglected in determining
the leading quantum-critical behavior.

To clarify this issue, we now present a pedagogi-
cal discussion of a simple statistical mechanical model
with a dangerously irrelevant coupling. Unlike the
quantum antiferromagnet, the overall structure of the
renormalization-group Bows is well understood in this
model.

We consider the 6nite temperature properties of a clas-
sical, XY model on a cubic lattice. At each site we in-
troduce a fourfold anisotropy field h4, which we will find
is dangerously irrelevant. The model is described by the
partition function Z
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T = T, &om a high-temperature paramagnetic phase to
a low-temperature ordered phase. It is well known that
the fourfold anisotropy h4 is irrelevant near T = T, and
the phase transition is therefore in the universality class
of the pure three-dimensional XY model. However, it is
also clear that the 6eld h4 surely cannot be neglected in
the ordered phase. It breaks the 0(2) symmetry of the
XY model, and must therefore destroy the Goldstone
modes. Further, the common mean orientation at each
site must be one of 8 = 0, vr/2, m, 3m/2 and cannot be
arbitrary as in the XY model. The apparently conflict-
ing properties of the critical point and the ordered phase
are reconciled by the concept of a dangerously irrelevant
coupling.

Let us examine the structure of the renormalization-
group flows of this model for T close to T,: we measure
the deviation &om criticality by the reduced temperature
variable

T-Tt=

A schematic of the renormalization-group flows projected
onto the T, h4 plane are shown in Fig. 9. The critical 6xed
point is at t = 0 and h4 ——0. The initial growth of t away
from this fixed point is given by

t(E) = te'/", (84)

where h4 is of order unity, u is the crossover exponent
associated with h4 at the critical fixed point. The sys-
tem will emerge from the critical region at the Josephson
length scale (~ where t(E = Ei) = 1. From (84) we see
that

where 0 & t (( 1, e is the length rescaling factor, and
v is the usual thermal critical exponent. The field h4 is
irrelevant at this critical point and will therefore decay
exponentially

k.(e) = I ..-'/",

I,(e & ~', ) = k.(S;)e«' -':)

4e
—(~/ V+4()EI +PE (87)

Thus h4 will return to a value of order unity when the
argument of the exponent is zero. This defines a second
length scale (4 ——e & where

I.; =
/
1+—/E;. (88)

(i+~/(4 ~)

Additional insight can be gained by considering the
scaling form for the transverse susceptibility near the
transition. Assume the condensate points at 8 = 0. Then
the transverse susceptibility satisfies the scaling form

2

(i8(k)I ) = (~(p(k(g, cih4(q "),
Pa

(810)

where k is the wave vector, y is a universal function, and

cq is the only nonuniversal metric factor. For most values

of k(g the term proportional to h4 can be treated as a
small perturbation which makes a subdominant correc-
tion to the leading critical behavior. Only at extremely
small values of k(g does the h4 term become important.
Matching to the expected form of the incipient Goldstone

modes, we should have

p(k, Ii) = 1

k +h
(811)

—Z/2
Thus the h term is signi6cant for all k & h or for

The efFects of the h,4 6eld thus become important at
length scales of order (4. this is the scale at which the
Goldstone modes are destroyed, and the condensate gets
locked at one of 8 = 0, 7r/2, +, 37r/2. The scale (4 is re-

lated to (g by

(1+~/(2v) (812)

For 8 ) 8z, the flow of h4 will now be controlled by the
T = 0 6xed point. Let us assume that h4 is relevant at
the T = 0 fixed point with eigenvalue P ) 0 (the value
of (t( will be determined later). Then we have

Comparing with (89) we see that (t = 2. The key point,
of course, is that (4 » (~. In particular, the crossover

from critical to Goldstone fluctuations occurs at a scale
of order Q and is described by the scaling function of the
pure XY model y(k, 0). Only at much larger scales does

it become necessary to include the e8'ects of the h4 6eld.

A4 lk APPENDIX C: MONTE CARLO EVALUATION
OF QUANTUM-CRITICAL UNIFORM

SUSCEPTIBIX IT%

FIG. 9. Schematic of the renormalization-group Sows of
the action 8 [Eq. (B2)] of a classical XY model on a cubic
lattice. The coupling h4 is a cubic anisotropy perturbation
which is irrelevant at the critical fixed point T = T„h4 ——0.
Its neglect is however dangerous in the low-temperature phase
because h4 is relevant at the T = 0, h4 ——0 fixed point.

9Pay'„'(T) = ( ) (:sT B,(oo). (Cl)

The universal number Oi (oo) has been evaluated so far in

It was shown in Sec. I that the high-temperature be-
havior of the uniform, static spin susceptibility is given

by [see (1.24)j
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a 1/N expansion with the result (4.13). In this appendix
we will describe a determination of Oi(oo) at N = 3 by
Monte Carlo simulations.

The quantum O(3) nonlinear 0 model is expected to
be in the same universality class as the classical, Heisen-
berg ferromagnet on a cubic lattice. Our sixnulations
were therefore performed at the critical point of this lat-
ter model. We considered the ensemble de6ned by the
following partition function: L L

Run 1
L p
Run 2 Run 3

»mL, ~~ L~p~

TABLE I. Results of the Monte Carlo simulation of
the classical statistical-mechanics model (C2) at K = K
= 0.6930. We used a box of L x L x L sites with peri-
odic boundary conditions. The stiffness p is defiued in (C4).
The last column is obtained by a polynomial extrapolation
in inverse powers of 1/L. The three runs had 70000, 70000,
210 000 Hips per spin, respectively. A weighted average of the
three runs was used in the extrapolation.

z=j

X=-K) S, . S, ,
|~2)

(C2)

where i,j extend over the sites of a cubic lattice, and
S; = (S;,S„;,S, ;) is a three-component vector of
unit length. We used a lattice with I. x L x L sites,
with periodic boundary conditions in all three direc-
tions. The WoHF single-cluster algorithmios was used
to sample the states. This simulation was carried out
at the critical value K = K, at which this model has a
second-order phase transition. The value of K, is known
very accurately &om recent high-precision Monte Carlo
simulations:

10
15

5 20
25
30
10
15

7 20
25
30
15

10 20
25
30

0.3983
0.3693
0.3596
0.3511
0.3483
0.4138
0.3718
0.3650
0.3529
0.3424
0.4079
0.3861
0.3650
0.3548

estimate for Oi(oo):

0.3866
0.3701
0.3515
0.3574
0.3529
0.4087
0.3766
0.3625
0.3419
0.3405
0.4049
0.3743
0.3671
0.3521

0.3898
0.3663
0.3527
0.3478
0.3511
0.4099
0.3747
0.3506
0.3442
0.3402
0.4020
0.3713
0.3511
0.3425

0.3257

0.3037

0.2890

K, = 0.6930. (C3) Oi(oo) = 0.25 6 0.04. (C6)
It has been argued that g'„~ is related to the stiffness,

p, of this system to twists along the 7 direction. Upon
examining the response of 'R to a field that generates
rotations in the z-y plane, we obtain the following ex-
pression for p:

1
p~ —, ).K (S~,aS~ '+~+ S„,*S„,.+~)

T

- 2

) K (S,;Ss,,+- —S„;S;+-)
'a

(C4)

where the expectation value is to be evaluated in the
ensemble defined by Z. Finally, the universal number
Oi(oo) is defined by

Oi(oo) = lim
~

lim I p ~~ ~L -+oo .EL~oo
(C5)

It is crucial that the L ~ oo limit be taken Brst, to
model a quantum systexn Mich is in6nite in the spatial
directions. The subsequent L + oo places the quantum
system at zero temperature.

The results of our simulations are contained in Ta-
ble I. Three independent simulations of 70000, 70000,
and 210000 Hips per spins were performed in systems up
to L = 30 and L = 10. A polynomial extrapolation to
L = oo at I 6xed yielded the results shown in the last
column of Table I. Finally, a second polynomial extrap-
olation to L = oo was performed to yield the following

I

APPENDIX D: COMPUTATIONS IN THE NEEL
STATE AT T = 0

n= Crp+m, (Dl)

where (o'o) is finite and cro m = 0. The sublattice mag-
netization Np in spin-8 antiferromagnet is expressed as

S(op), where S = SZs. The renormalization fac-
tor Zg accounts for the order-parameter Huctuations at
short (lattice) scales which have to be integrated out in
the mapping to the 0 model &om the original spin Hamil-
tonian on the lattice. Upon substituting (Dl) into (3.1),
the functional integral becomes

In this Appendix, we derive the expressions for the
T = 0 sublattice magnetization No, and the spin-stifFness

p, to order 1/N. These results will be used in the
derivations of the universal scaling functions for the uni-
form and staggered susceptibilities in both the quantum-
critical and renormalized-classical regions. As in Sec. III,
our starting point is the functional integral for the O(N)
0 model. At zero temperature, the spin rotation symme-
try is broken and the perturbative 1/N expansion has to
be modified to account for the nonzero expectation value
of the order parameter. This 1/N expansion has been
developed by Brezin and Zinn-Justin and we use some
of their results. We first represent the unit vector field

+&OBxl b 0'p+7ll —1 exp ——' d r dv V oo + V vrl + —
2 &o + &l2 2 Ps 2 2 2 1 2

2h co
(D2)
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where the index l now runs from 1 to N —1, pP is the
bare spin stjLffness and cp is the bare spin-wave velocity.
All of the discussion in this appendix will use the rela-
tivistic cutofF scheme when the momenta and frequency
satisfy k +or ( A . In this situation, the full relativistic
invariance is preserved at each order in the perturbation

theory and we will not have to consider explicitly the
renormalization of the spin-wave velocity. To simplify the
presentation, below we use the units where h = cp = 1.
As in Sec. III, we introduce a Lagrange multiplier A into
the functional integral to impose the constraint, and in-

tegrate over 7r~. This gives

Z = Perp'VAexp ——' d r dv O„ap + A O.
p

—1 — ln —0„+A
p.'
2 0 2

Here 82 = (V'„) + (8 ) . The saddle-point point equa-
tion is easily obtained by taking a variational derivative
over A and neglecting nuctuations in 0'p. This yields

(N —1) d kdu)
g Gp(k, i(u) = 1 —(op) .

27r 3 (D4)

Here g = N/po is the coupling constant and Go(k, iur) =
(k2 + u2) i is the zero-temperature propagator of the
mt field at N = oo. The 1/N corrections to (D4) are
calculated as described earlier, ss with the modification
that we have to consider the fIuctuations of Op around its
mean value. We Gnd the T = 0 analog to the polarization
operator

1
II(k, i(u) =

8 kz+ A&2
(D11)

We then use (D5) for II' and evaluate the integral in
(D10) with the logarithmic accuracy. We obtain

where g, is the nonuniversal critical coupling. The value
of the integral depends on the precise form of the po-
larization operator at k, ur A, which can be very com-
plicated. However, for the logarithmic contribution in
(D10), we only need to know the form of II'(k, iv)) for
momentum and frequency well below the upper cutoK
For such k and u the evaluation of II(k, i~) at T = 0 is
straightforward and we obtain

II'(k, iu)) = II(k, i(u) + —(ao) Go(k, i~),
g

(D5)
( ), fg, —

gal 8
l

g.
"g. g)- (D12)

and the correlator of the 0p field:

([op(k, iur)]') = (op)'b((u)b'(k)

Gp(k, i(u) 1' 2 2 Gp(k, iu)) )
po ( g II'(k, i(u) )

(D6)

The correction can be exponentiated in the usual way
and we get

(D13)

The condition ap + crt
——1, then yields

d2kd(u
1 —(oo) = g G(k, i~)

27r 3

2 (a o)
2 d2kd~

G20 (k, i~)
N (2vr)s II'(k, i&a)

'

Here G is related to Gp in the usual way:

2P =1— 8
¹r2 (D14)

Our next goal is to express Xp in terms of the fully
renormalized spin stiffness at T = 0. At N = oo, we
have from (3.25)

G (k, iur) = Go (k, i(u) + Z(k, i(u), (D8)
p. =N

gc)
(D15)

(D9)

Below, we will express Np directly in terms of the fully
renormalized spin stiffness. It is instructive, however, to
compute the critical exponent for No directly from (D7).
For this we observe that the first term in the rhs in (D7)
is simply a constant so that with the accuracy to 1/N,

fg, —g) ( 2 d2k d(u G02(k, i(u) )
g, ) ( N (2z)s II*(k,ku) )

'

(D10)

Now we have to compute 1/N corrections to (D15). In
principle, it is possible to evaluate p, directly by calculat-
ing the response to the twist of the order parameter in the
momentum space. In practice, however, it is more con-
venient to calculate the static susceptibility y~, which
measures the response to the twist in ~ direction; the
value of p, then can be obtained using Lorentz invari-

2.ance: p, = cp - y~.
The calculations of y~ to order 1/N were described in

Sec. IIIB. As before, they have to be modified to account
for nonzero order parameter. For N = oo, we use (Dl)
for the n field, substitute it into the bubble diagram in

Fig. 4, and after simple manipulations obtain at T = 0,
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0
N=oo ~s 2

XJ = —,(~0)
~o

(D16)

The calculation of 1/N terms proceeds along the same
lines as in Sec. III B. We substitute (Dl), into the 1/N
diagrams in Fig. 4 and using (D6) obtain after some al-

gebra,
No gS2 8 fNAl

1 — ln
p, N 3vr2N I 16p )

(D20)

for observables are insensitive to the behavior of II' at
k, w A. In view of this, we use in Secs. IV and V
the result for No2/p, obtained from (D19) in the case
when the polarization operator is computed without a
cutoH'in the momentum and &equency integration. Then
II(k, ~) is given by (Dll) and performing the integration
in (D18), we find

where

( 2
Xi =X~

I
1 ——IT=o ~,N

d2kW Go2(k, ioi) (k2 —3ur2)

(2z)s II'(k, iu)) (k2+ urz)
'

(D17)

(D18)

This equation we use in (4.2).
We will also need the result for p, expressed in terms

of the spin-stiffness at N = oo. From (D14), (D10), and
(D15), we obtain

2 dzk W G2o(k, iu)) 4(d2

N (2z) II'(k, iu) (k + ur ))
'

We emphasize that the calculations at T = 0 are much
simpler than that at finite T because in fact we have to
keep only the terms (ao); all other contributions give
zero after integtntion over intermediate frequency. This
indeed is clearly seen from the expression for y~ at finite
T [Eq. (3.68)] where each term contains derivatives of
the Bose functions.

Finally, from (D13) and (D14), and the definition of
No, we obtain

(D21)

&g. -g&"
ps (D22)

Finally, we deduce from (D21) the critical exponent
for p, . For this, we perform the integration in (D21)
with the logarithmic accuracy using (Dl1) and (D5), and
exponentiate the result. We then obtain

No2 gS2 t' 2

p, N N
(D19) where

Clearly, the value of the integral in (D18) depends on the
form of II'(k, iu) near the upper cutofF and the result
for No2/p, is therefore model dependent. However, we

explicitly showed in Sec. IV that the universal functions

2P 32p= =1-
&+ q 3~2N' (D23)

and rl = 8/(3z' N) is the critical exponent for spin cor-
relations at g, .

S. Chakravarty, in IIigh-Temperature Superconductivity,
edited by K. Bedell, D. Coffey, D.E. Meltzer, D. Pines,
and J.R. Schrieffer (Addison-Wesley, Reading, MA, 1990),
p. 136.
E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).
S. Sachdev, Lofti Dimensionol quonturn Field Theories for
Condensed Matter Physicists, Proceedings of the Tt'ieste
Summer School 1992 (World Scientific, Singapore, to be
published), and references therein.
A.P. Ramirez, G.P. Espinosa, and A.S. Cooper, Phys.
Rev. Lett. 64, 2070 (1990).
C. Broholxn, G. Aeppli, G.P. Espinosa, and A.S. Cooper,
Phys. Rev. Lett. B5, 3173 (1991).
G. Aeppli, C. Broholm, and A. Ramirez (unpublished).
V. Elser, Phys. Rev. Lett. 62, 2405 (1990).
S.J. Clarke, A. Harrison, T.E. Mason, G.J. McIntyre, and
D. Visser, J. Phys. : Condens. Matter 4, L71 (1992).
For a review on recent experiments see, e.g., A. Harri-
son, Ann. Rep. Prog. Chem. 67A, 211 (1992); SSA, 447
(1992).
V.L. Pokrovskii, Adv. Phys. 26, 595 (1979).
A.F. Andreev and V.I. Marchenko, Usp. Fiz. Nauk 130,
39 (1980) [Sov. Phys. Usp. 23, 21 (1980)j.

S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys.
Rev. Lett. 60, 1057 (1988); Phys. Rev. B 39, 2344 (1989).
S. Tyc, B.I. Halperin, and S. Chakravarty, Phys. Rev.
Lett. 62, 835 (1989).
V. Kalmeyer and R.B.Laughlin, Phys. Rev. Lett. 59, 2095
(1987); X.G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B
39, 11413 (1989).
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989);
Phys. Rev. B 42, 4568 (1990).
N. Read and S. Sachdev, Phys. Rev. Lett. BB, 1773 (1991);
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219
(1991).
P. Chandra, P. Coleman, and A.I. Larkin, J. Phys. : Con-
dens. Matter 2, 7933 (1990).
I. Aleck and J. Brad Marston, Phys. Rev. B 37, 3774
(1988).
P.B. Wiegmann, Phys. Rev. Lett. BO, 821 (1988); D.V.
Khveshchenko and P.B. Wiegmann, Mod. Phys. Lett. B
4, 17 (1990).
P.W. Anderson, Science 235, 1196 (1987).
S. Sachdev and Jinwu Ye, Phys. Rev. Lett. B9, 2411
(1992).
A.V. Chubukov and S. Sachdev, Phys. Rev. Lett. 71, 169



11 960 ANDREY V. CHUBUKOV, SUBIR SACHDEV, AND JINWU YE 49

(1993); 71, 2680 (1993).
B. Andraka and A.M. Tsvelik, Phys. Rev. Lett. 67) 2886
(1991).
A.J. Millis (unpublished); J.A. Hertz, Phys. Rev. B 14,
525 (1976).
P. Hasenfratz and F. Niedermayer, Phys. Lett. B 268, 231
(1991);Z. Phys. B 92, 91 (1993).
P. Hasenfratz, M. Maggiore, and F. Niedermayer, Phys.
Lett. B 245, 522 (1990); P. Hasenfratz snd F. Nieder-

msyer, ibid. 245, 529 (1990).
S. Chakravarty and R. Orbach, Phys. Rev. Lett. 64, 224
(1990).
Y. Endoh et aL, Phys. Rev. B 37, 7443 (1988); K. Yamada
et al. , ibid. 40, 4557 (1989).
S.M. Hayden, G. Aeppli, H. Mook, D. Rytz, M.F. Hund-

ley, and Z. Fisk, Phys. Rev. Lett. 86, 821 (1991); S.M.
Hayden, G. Aeppli, R. Osborn, A.D. Taylor, T.G. Per-
ring, S.-W. Cheong, and Z. Fisk, ibid. 67, 3622 (1991).
T. Imai, C.P. Slichter, K. Yoshimura, and K. Kosuge,
Phys. Rev. Lett. 70, 10002 (1993).
D.C. Johnson, Phys. Rev. Lett. 82, 957 (1989).
R.R.P. Singh and M. Gelfand, Phys. Rev. B 42, 966
(1990).
H.Q. Ding snd M. Makivic, Phys. Rev. Lett. 64, 1449
(1990); Phys. Rev. B 43, 3662 (1990).
A. Sokol, S. Bacci, and E. Gagliano, Phys. Rev. B 47,
14646 (1993).
B.Keimer, R.J. Birgeneau, A. Cassanho, Y. Endoh, R.W.
Erwin, M.A. Kastner, and G. Shirane, Phys. Rev. Lett.
67, 1930 (1991).
B. Keimer, N. Belk, R.J. Birgeneau, A. Cassanho, C.Y.
Chen, M. Greven, M.A. Kastner, A. Aharony, Y. Endoh,
R.W. Erwin, and G. Shirane, Phys. Rev. B 46, 14034
(1992).
C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abra-
hams, and A.E. Ruckenstein, Phys. Rev. Lett. B3, 1996
(1989).
L.B. Ioffe and A.I. Larkin, Int. J. Mod. Phys. B 2, 203
(1988).
A.V. Chubukov, Phys. Rev. B 44, 392 (1991).
B.I. Halperin and W.M. Saslow, Phys. Rev. B 16, 2154
(1977).' T. Dombre and N. Read, Phys. Rev. B 39, 6797 (1989).
P. Azaria, B. Delamotte, and T. Jolicoeur, Phys. Rev.

Lett. B4, 3175 (1990).
A.B. Harris, C. Kallin, and A.J. Berlinsky, Phys. Rev.
B 45, 2889 (1992); J.T. Chslker, P.S. Holdsworth, and

E.F. Shender, Phys. Rev. Lett. B8, 855 (1992); P. Chan-

dra, P. Coleman and I. Ritchey, Phys. Rev. B 47, 15342
(1993); A.V. Chubukov, Phys. Rev. Lett. 89, 832 (1992);
J. von Delft and C.L. Henley, ibid. 89, 3236 (1992); J.N.

Reimers, A.J. Berlinsky, and A.-C Shi, Phys. Rev. B 43,
865 (1991); R.R.P. Singh and D. Huse, Phys. Rev. Lett.
68, 1706 (1992); D.L. Huber snd W.Y. Cheong, Phys.
Rev. B 47, 3220 (1993).
S. Sachdev, Phys. Rev. B 45, 12377 (1992).
S-k. Ma, Modern Theory of Cr iticol Phenomena
(Benjamin-Cummings, Reading, 1976).
J.B. Parkinson, J. Phys. C 2, 2012 (1969); B.S. Shas-

try and B. Shraiman, Phys. Rev. Lett. 65, 1068 (1990);
R.R.P. Singh, Comments Condens. Matter Phys. 15, 241
(1991).
M.E. Fisher, M.N. Barber, and D. Jasnow, Phys. Rev. A

8, 1111 (1973).

B.D. Josephson, Phys. Lett. 21, 608 (1966).
A.H. Castro Neto and E. Fradkin (unpublished).
A.N. Vasil'ev, Yu.M. Pis'mak, and Yu.R. Honkonen, Teor.
Mat. Fiz. 4B, 157 (1981).
C. Holm and W. Janke (unpublished); P. Peczak, A.M.
Ferrenberg, and D.P. Landau, Phys. Rev. B 43, 6087
(1991).
D. Stauffer, M. Ferer, and M. Wortis, Phys. Rev. Lett. 29)
345 (1972).
P.C. Hohenberg, A. Aharony, B.I. Halperin, and E.D. Sig-
gia, Phys. Rev. B 13, 2986 (1976); C. Bervillier, ibid. 14,
4964 (1976).
M. N. Barber, in Phase Bunsitions and Critical Phenom-
ena, edited by C. Domb and J. Lebowitz (Academic Press,
New York, 1983), Vol. 8, p. 145.
V. Privman and M.E. Fisher, Phys. Rev. B 30, 322 (1984).
M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev.
Lett. 64, 587 (1990); K. Kim and P.B. Weichmsnn, Phys.
Rev. B 43, 13583 (1991);M.-C. Cha et al. , ibid. 44, 6883
(1991).
D.S. Fisher, Phys. Rev. B 39, 11783 (1989).
M.E. Fisher and P.-G. de Gennes, C.R. Acad. Sci. Ser. B
287, 207 (1978).
A.B. Zamalodchikov, Pis'ma Zh. Eksp. Teor. Fiz. 43, 565
(1986) [JETP Lett. 43, 730 (1986)].
H.W.J. Blote, J.L. Cardy, and M.P. Nightingale, Phys.
Rev. Lett. 58, 742 (1986); I. AfHeck, ibid. 56, 746 (1986).
D.P. Arovas and D. Auerbach, Phys. Rev. B 38, 316
(1988); Phys. Rev. Lett. 61, 617 (1988).
B. Rosenstein, B.J. Warr, and S.H. Park, Nucl. Phys. B
336, 435 (1990).
E. Brezin, J. Phys. (Paris) 43, 15 (1982); M. Henkel and
C. Hoeger, Z. Phys. B 55, 67 (1984); S. Singh and R.K.
Pathria, Phys. Rev. B 31, 4483 (1985), and references
therein.
R.F. Dashen, S-K. Ma, and R. Rajaraman, Phys. Rev. D
11, 1499 (1975).
S. Sschdev, Phys. Lett. B 309, 285 (1993).
A.M. Polyskov, Gauge Fields and Strings (Harwood, New

York, 1987).
"S.Colitan, R. Jackiw, and D. Politzer, Phys. Rev. D 10,

2491 (1974).
I.A. Aref'eva, Ann. Phys. (N.Y.) 117, 393 (1979).
J.L. Cardy, J. Phys. A 17, L385 (1984); R. Shsnkar snd
S. Sachdev (unpublished).
A.M. Polyakov, Phys. Lett. 59B, 79 (1975).
P.B.Wiegmann, Pis'ms Zh. Eksp. Teor. Fiz. 41, 79 (1985)
[JETP Lett. 41, 95 (1985)].
E. Brezin and J. Zinn-Justin, Phys. Rev. B 14, 3110
(19?6).
A.M. Polyakov and P.B. Wiegmann, Phys. Lett. B 131,
121 (1983).
A.V. Chubukov, Phys. Rev. B 44, 12318 (1992).
M.I. Kaganov and A.V. Chubukov, Usp. Fiz. Nauk 153,
537 (1987) [Sov. Phys. Usp. 30, 1015 (1987)]; in Spin
Waves and Magnetic Dielectrics, edited by A.S. Borovik-
Romanov and S.K. Sinha (Elsevier Science, New York,
1988).
S. Tyc and B.I. Halperin, Phys. Rev. B 42, 2096 (1990).
B.I. Halperin and P.C. Hohenberg, Phys. Rev. 177, 952
(1969).
In the recent paper by one of us (Ref. 74), it was suggested
that the damping may become comparable to the real
part of the quasiparticle energy at the spatial scales which



49 THEORY OF TWO-DIMENSIONAL QUANTUM HEISENBERG. . . 11 961

parametrically exceed (. The more sophisticated analysis
presented here shows that it is more likely that the 2D
antiferromagnet has the same typical spatial scale (corre-
lation length) for both static and dynamic phenomenon,
as is predicted by the dynamical scaling hypothesis.
J. Igarashi, Phys. Rev. B 4B, 10763 (1992).
R.R.P. Singh, Phys. Rev. B 89, 9760 (1989); see also
R.R.P. Singh and D. Huse, ibid. 40, 7247 (1989).
A. Singh and Z. Tesanovic, Phys. Rev. B 41, 614 (1990);
A. Singh, Z. Tesanovic, and J.H. Kim, ibid. 44, 775?
(1991); A. Auerbach and B.E. Larson, ibid. 43, 7800
(1991).
B.I. Shraiman and E.D. Siggia, Phys. Rev. B 46, 8305
(1992).
A.V. Chubukov and D. Frenkel, Phys. Rev. B 46, 11884
(1992).
B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett. 61, 467
(1988); Phys. Rev. B 42, 2485 (1990).
J. Gan, N. Andrey, and P. Coleman, J. Phys. : Condens.
Matter 3, 3537 (1991).
S. Sachdev, Phys. Rev. B 49, 6770 (1994).
R.R.P. Singh, Phys. Rev. B 39, 9760 (1989).
A. Millis and H. Monien, Phys. Rev. Lett. 70, 2810 (1993).
D.C. Johnson, S.K. Sinha, A.J. Jacobson, and J.M.

Newsam, Physics (Amsterdam) C 15$-155, 572 (1988).
F. Mila and T.M. Rice, Physica C 157, 561 (1989); S.
Shastry, Phys. Rev. Lett. BS, 1288 (1989).
A.J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42,
167 (1990).
E. Manousakis and R. Salvador, Phys. Rev. B 39, 575
(1989); E. Manousakis, ibid. 45, 7570 (1992).
E. Manousakis and R. Salvador, Phys. Rev. B 40, 2205
(1989).
A. Sokol (private communication).
A. Chubukov, S. Sachdev, and A. Sokol, Phys. Rev. B 49,
9052 (1994).
M. Makivic and M. Jarrell, Phys. Rev. Lett. 68, 1770
(1992).
M.P.A. Fisher, P.B. Weichmann, G. Grinstein, and D.S.
Fisher, Phys. Rev. B 40, 546 (1989).
R.N. Bhatt and P.A. Lee, Phys. Rev. Lett. 48, 344 (1982).
I. AfBeck and A.W.W. Ludwig, Nucl. Phys. B360, 641
(1991).
K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801
(1986).
G. Murthy and S. Sachdev, Nucl. Phys. B344, 557 (1990).
D.S. Fisher (private communication).
U. Wolff, Phys. Rev. Lett. 82, 361 (1989).


