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Mean-field theory of freezing temperatures of two-component metallic spin glasses
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A mean-field approach which emphasizes spin-spin pair correlations is used to calculate the freezing
temperature Tg of two-component metallic spin glasses. We calculate the variation in Tg as a function of
the ratio of concentrations of the two magnetic species. Finite-temperature effects and intrinsic sd
scattering of electrons play important roles in establishing the trends exhibited by Tg. A clear physical
interpretation is given which provides insight into the behavior of Tg in real, two-component spin
glasses. The theory satisfactorily reproduces experimental results without the use of any adjustable pa-
rameters. We also predict how Tg will behave if the concentrations of the two species are varied while

the ratio c2/cl of the concentrations is held fixed.

I. INTRODUCTION

Despite the inherent complexity of spin glasses,
significant understanding has been obtained through the
application of seemingly "simple" theoretical methods.
An excellent example is the use of mean-field theory to
explain the cusp in the magnetic susceptibility y of spin
glasses (see for example Refs. 1 —4). Intense investiga-
tions by many researchers have provided significant ad-
vances in the understanding of spin glasses. Neverthe-
less, numerous intriguing questions remain to be solved.

The primary purpose of this paper is to contribute to
the understanding of the physical processes which deter-
mine the properties of spin glasses by addressing the
question of the behavior of the freezing temperatures Ts
of two-component metallic spin glasses. We show that an
improved understanding of the trends in T is obtained
by applying mean-field theory.

The behavior of T in two-component spin glasses is a
very complex question. The decision to use mein-field
theory in an attempt to describe the trends in Tg in two-
component systems is motivated by successes of the type
described above. More specifically, recent investigations
of the trends in T (Refs. 6—8) and y (Ref. 9) of metallic
spin glasses through the use of mean-field theory has
proven to be rather successful. Since we will apply the
methods of these studies, we begin by briefly outlining the
key aspects of these works.

A new approach was recently proposed for calculat-
ing the impurity concentration dependence of the freez-
ing temperature of a single-component metallic spin glass
such as AgMn or CuMn. The essential features of the
approach are (i) to include the intrinsic sd scattering of
conduction electrons from the magnetic ions (spins) in
the spin glass, (ii) to explicitly retain, and to reveal the
importance of, finite temperature effects, and (iii) to em-
phasize the role of spin-spin correlations and in doing so
to derive a new expression for T . The expression ob-
tained is

T ~ g &([J2] )1/21

l,J

where J; is the effective indirect exchange coupling be-
tween a pair (i,j ) of spina in the spin glass, [ ],„
denotes an average over all possible configurations of
magnetic ions and nonmagnetic ions (if present), N is the
total number of spins, and the prime on the sum means to
exclude j =i.

Equation (1) gives excellent agreement with several ex-
perimental results. For example, excellent agreement be-
tween theory and experiment is obtained for the depen-
dence of T~ on the concentration c of magnetic ions in
metallic spin glasses such as AgMn or CuMn. The
theory also provides a very good fit to experimental data
exhibiting the dependence of T on the concentration c;
of nonmagnetic impurities in spin glasses with c held
fixed (e.g., AgMn with Mn concentration fixed but vary-
ing concentrations of Sb). These and other comparisons
of the theory with experimental results are discussed
more fully in Refs. 6-8. The new theoretical approach
also explains the cusp in the isothermal dc magnetic sus-
ceptibility observed experimentally at T = T (Ref. 9).

The primary purpose of this paper is to extend the al-
ternative theoretical approach to calculate Ts(c„c2) in
two-component metallic spin glasses in which the concen-
tration of one species (type "1")is c, and the concentra-
tion of the other species (type "2") is c2. We restrict our
investigations to two-component metallic spin glasses in
which the intrinsic sd scattering is the dominant scatter-
ing mechanism. We exclude consideration of various
other possibilities including, for example, multicom-
ponent spin glasses in which spin-orbit scattering must be
taken into account. ' We take c, to be nonzero, finite,
and fixed, and we treat c2 as variable. We focus attention
on the range 0(x —=c2/c, 5 3 so as to be in accord with
the range typically investigated experimentally. " We
place emphasis on the very important features (i)—(iii) cit-
ed above.

H. A MEAN-FIELD THEORY
FOR TWO-COMPONENT SPIN GLASSES

Mean-field theory provides the following expressions
for ((S';")

~
and ~(S,' ) ~

when the magnetic ions are in a
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particular configuration:

I($,'. ")
I
=S,Bs (S, [g,"'+g "')IkT),

and

(2)

derivation of T (c„c2)given in the remainder of this pa-
per.

Some assumptions and approximations are required at
this stage. Making use of the spin-spin pair correlations,
we approximate G, ( T) and G2( T) by

I($' ') I=S28s (S [g' +g" ]/kT), (3) G, (T) ~ m &(T)H&(T)+ m&(T) mz( T)K&z( T),
Ci

(10)

where ( . . ) denotes the thermal expectation value at
temperature T, and

gI
—y [J(J )I($ ) I os/ J]

J

g =g [J I($ )I cosg ],

(g) G2(T)~mq(T)Hq(T)+mi(T) m2( T) Hi 2(T),

where
(5)

with similar expressions for g,'.
' and g

' ', and where Bz
is the well known Brillouin function, the prime on the
sum means to exclude j=i, $,1 is the angle between
(S';") and (Sz"), and other angles are defined similarly.

In what follows we will take T to be just less than T .
Consequently, all of the I(S';")I and I(S'; ')

I are small,
and we may expand the Brillouin functions in Eqs. (2)
and (3). Expanding Eq. (2) to lowest order, multiplying
both sides by (1/N, ) I ( S';"), and summing over all spins
"i"of type "1"gives

Si(Si+ I)
m', (T)=— g I(S',")I'= G, (T),

i B

where

H (T}=
1 g

(12)

H~(T)= (13)

and

Hi2(T) = yy I
Ji(I2)

I

2 J i T

For simplicity we will assume that the constants of pro-
portionality in Eqs. (10) and (11) are equal; this is
equivalent to taking the overall frustration between pairs
of spins to be independent of the type ("1"or "2"}of
each spin. Combining Eqs. (6), (8), (10), and (11), we ob-
tain two equations for T:

G (T)= gg i[J(&)(S(l)).($(1)) ]
i j

+ gg [J(12) ( $(1) ) ( $(2) ) ]
i j'

Similarly,

(7)

S,(S&+ I) cz
T 0- H&(T )+ qH&2(Ts)

B C)

S2(S~+ 1)
T ~ H2(T )+—Hi2(Ts)

3kB q

(15)

(16)

m (T): g I(S,' —')I = G (T),
Sz(S2+1)

3kB T (8)
q=m~(T )/m, (Ts ) . (17)

where the constants of proportionality are again equal
and

where

G (T)= yy [J( )(S( )).(S( ))]
2 /' J'

+ gg [J(12)($(1)) ($(2) ) ]
2 I J'

(9)

X, and %2 are, respectively, the numbers of spins of type
"1"and of type "2".

The importance of spin-spin pair correlations is cap-
tured in Eqs. (6)—(9). Consider for example the case of no
type "2" impurities (c2=0,c, &0). If T=T, then
m

&
&0, and we immediately have from Eq. (6) that

G&(T )&0. Using Eq. (7), G&(T )&0 shows that the
spins are pairwise correlated: Each spin pair has a ten-
dency to assume a relative orientation such that
[J,"(S';")-(S,'.")] &0. Indeed, completely random spin
directions would give G, (T)=0 even for T (Tz and
there would be no spin-glass state. Equation (1) for T
was derived by exploiting these spin-pair correlations (see
Refs. 6—8). These correlations play a major role in the

Equations (15) and (16) will be regarded as the two equa-
tions which determine the values of the two quantities Tg
and q; as discussed below, all other quantities will turn
out to be "knowns. *'

The coupling J; has been calculated previously.
Taking into account the intrinsic sd scattering of elec-
trons from magnetic ions in the spin glass and explicitly
retaining the finite-T dependence gives

I J;, I

=h (R;1 }Ito(R;, ), (18)

1, A,„„&E(A~,
h(R)= . y, A,„(R(Ar,

0, 8 &AT,

(19)

(20)

(21)

where Ko(R) is the coupling strength between two spins
in an otherwise pure system, [Eo(R)=2 mjk, d( /n 2)R
for R »kF '], j,d is the sd exchange constant which
enters the portion of the Hamiltonian that describes the
sd scattering, and a simplified version of h (R) was shown
to be
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where A,„„is the mean nearest-neighbor distance, AT is

the well known finite interaction range at temperature T,

'TFAT= (22&

and

tg(x) = [1+j,2xq (x)]f(x), (23)

~ 2

t (x)=s J2x+ f (x)+—sj2a,x lnx,.2 J&2 1

x 3

where

(24)

A, is the electron mean free path, A,d is the length scale
which arises as a consequence of the intrinsic sd scatter-
ing, and y is a constant which has the approximate value
0.6062 (Ref. 8).

Equations (18)—(21) give the coupling strength between
a typical pair of spins separated by distance R. We may
use these equations to obtain a clear physical picture of
the pairwise spin couplings. This picture will prove to be
extremely useful for interpreting the trends in T~(c„cz)
which we will derive below. We see that we may regard
all spin pairs having separation R & A,d as being coupled
with strength Eo(R), all pairs having R )Ar as being
completely uncoupled, and all pairs having A,d &R & AT
as having coupling strength yEO(R }. Since 0 &y & 1, we

see that the sd scattering has the effect of giving a reduc
tion in the spin-spin coupling strength at R =A,d.

It was also shown previously that, for concentrations
of order of or less than a few atomic percent, A,d was

only slightly larger than A, . In the remainder of this pa-
per, we will take A,d =A,.

We use Eqs. (18)—(21) for [J~"~, ~ J,'1'~, and
~ J,," '~ sim-

ply by making the proper choice for A.„„in each case. For
H, ( T), H2( T), and H, z( T) we use, respectively,

nearest-neighbor distance between type "1"pairs, A,„'„' be-
tween type "2"pairs, and A,„"„'is most easily defined by
describing how the sum H&z(T} will be evaluated. We
choose to evaluate H &2 ( T) as follows. For a given spin j'
of type "2"we perform the sum over all spins "i"of type
"1," then average the result over all spins of type "2."
We may therefore represent H, 2(T) by an integral over
distances R~'; from spins of type "2"to spins of type "1."
(See Ref. 8 for details. ) The lower limit of this integral
will then be the mean distance from a type "2"spin to a
type "1" spin. This choice is appropriate because we
have chosen c& as fixed and we regard c2 as increasing
from 0; consequently, when c2 «c&, type "2" spins will

be surrounded by type "1" spins and are themselves
much farther apart. As such, assuming for simplicity
that the spins are positioned randomly, we see that the
lower limit A,„"„'is simply A,„"„'. Using Eqs. (18)—(21) for
the coupling constants and evaluating the sums in Eqs.
(12)—(14) gives, after some algebra,

X =Cp/C(

s —=[S2(S2+1)]/[S, (S& + 1)],
j —= [j,"']/[J,'"],

A 2
= [j'd—"']/[j,'d" ]

a, = 1n(A, ,cI~ )++ ln
2

(26)

(27}

(28)

(29)

(30)

(31)

b —=B(/Bq, (32)

with the physical meaning of q(x) given by Eq. (17),
Tg" Tg(c„——c2=0} is the freezing temperature when

c2 =0 and c, )0, and A, , =B,/c, and A2=B2/c2 are, re-
spectively, the electron mean free paths when only type"1"or type "2"spins are present.

In deriving Eqs. (23) and (24) we have assumed for sim-

plicity that the spin positions are random, and have
therefore taken A,„"„'=c& '~ and A,„'„'=cz '~ . We have
also implicitly assumed that A,„"„'& A, , A, ',~' & A, , and
I, & Ar . These inequalities restrict the range of x to

xmin x x max

where x;„is given by

(33)

(34)

and

x,„=(A, ,c I
~ —1)/b; (35)

(36)

and

note that x;„and x,„are functions of c&. The restric-
tion is not severe; for example, the values b =1, A. , =100
A, and c, =0.001 A give 0.001&x &9, which is cer-
tainly suitable for our purposes. '

Note that all of the following quantities can be ob-
tained from experimental data and/or theoretical formu-
las: S„S2,j,2, j2, b, A, TF, kF, and Tg"' (details are
given below). Also recall that we treat c, as given and
fixed and cz as variable. Consequently, Eqs. (23}and (24)
give T~(x} and q(x) as functions of x with the various
quantities appearing in the two equations having values
characteristic of the particular spin glass. We emphasize
that, in using these two equations to compare theory with
experimental data for a given two-component spin glass,
there will be no free parameters to adjust to give a fit (see
below).

We solve Eqs. (23) and (24) by using Eq. (24) to express

q (x) in terms of t (x) and x, and inserting the result into
Eq. (23) to give a transcendental equation for t (x):

sj fzf(x)
q(x) =

tg(x) —sjzx [f(x}+(1/3)a, lnx]

f (x)= 1 —a, —1 — ln(1+bx)+ ln[t (x)]
2 2

sj,2X [f(x)]
tg(x) =f (x)+

tg(x) —sjzx [f(x)+(1/3)a, lnx]
(37)

(25} An equivalent but simpler expression for q(x) is obtained
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from Eq. (23):

t, ( x) f—(x)
q(x)= j,zxf (x)

where we now regard t (x) as determined by Eq. (37).
Equations (37) and (38) are the principal results of this

paper. They are readily solved numerically for given
values of the various quantities in them.

1.2

X 1.1

I ~ ~ I 1 I 0 I

III. PHYSICAL DISCUSSION

In order to reveal the fundamental physical features
captured by the theory, we show in Figs. 1-3 how t (x)
and q(x) vary with the quantities j2 and a, . Note that
this heuristic investigation is to be distinguished from the
comparison of theory and experiment of the type present-
ed below. In Figs. 1-3 we take jiz=j2 (viz. we take
I:j,'d"')'= Ij,'d" HJ,'~"

1 }
Figure 1 shows t (x) vs x for various values of jz. The

three principal features of the curves are (1} tg(x) in-
creases with j2 at all x, (2) for small enough j2, ts(x) ini-

tially decreases with x, reaches a minimum, then in-
creases with x, and (3) for large enough j2, t (x) is mono-
tonic increasing with x.

These three features are readily interpreted in terms of
competition between two physical effects. (I) As type "2"
spins are added, the nearest-neighbor spin-spin distances
decrease, and the total concentration of moments in-
creases; both tend to elevate T (II) The.addition of type"2" spins, however, results in a decrease in both of the
important length scales A,d =A, and AT, consequently,

g
there is a reduction in the spin-spin coupling strengths of

1..3 I

1.0

1.0 1.5 2.0 2.5

FIG. 2. As in Fig. 1 but with j2 =1, s =1, b =1,
y/2=0. 3031, and with values of a& from top curve to bottom as
follows: O. l, 0.2, 0.3, 0.4, 0.5.

some pairs (due to the decrease in A,d ), and a decoupling
of other pairs (due to AT decreasing), with the result that

T tends to drop. [Recall the physical interpretation
given just after Eq. (22).]

As a specific example, the feature (1) in Fig. 1 results
because an increase in j2 means enhanced spin-spin pair
interactions and an elevation in Tg, in the case of feature
(2), the effect of reduced length scales dominates initially,
causing T~ to fall, but eventually gives way to pair-
coupling effects, at which stage Ts rises; in (3} the length
scale effects are always less significant than pair-coupling
effects and Tg is monotonic increasing. Note that the

~ & ~ I
~

& ~ I I
~

S & r
~

& I ~

1.0

1.0 2.0 2.5

FIG. 1. The freezing temperature
tg(x)—= Tg(c&,c2)/Tg(cl, c&=0) as a function of x —=c2/c& in a
two-component metallic spin glass with magnetic ion concentra-
tions c& and c2. The curves shown are for five values of the ra-
tio j2 of sd coupling strengths between the two types of spins,

j& —=j,'d'/j, 'd'. From bottom curve to top, the values of j2 are
0.25, 0.35, 0.45, 0.55, and 0.65. The values of the other quanti-
ties which determine t~(x) are s =1, b =1, y/2=0. 3031, and

a& =0.3554; see text for details.

1.0 1.5 2.0 2.5

FIG. 3. The ratio of magnitudes of spin
q(x)=—m2(Tg )/ml(Tg ) as a function of x =—c, /c, in a two-
component metallic spin glass with magnetic ion concentrations
c &,c2. As in Fig. 1, the five curves, from bottom to top, have the
following values of j2. 0.52, 0.54, 0.56, 0.58, 0.60. The other
quantities have the values a, =0.3, y/2=0. 3, b =1, and s =0.5.
See text for details.
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t,'(0+ }:—
Bt (x)

Bx ~ p+

~j i2
—~i(1—y /2}b

1+a,y/2
(39)

which in turn gives

a[t,'(0+)]
Ba,

[sj,2y/2+ (1 y /2)b]—
(40)

(1+aiy/2)
this means that B[t'(0+)]/Bc, is always negative. In
terms of experimental behavior of a given two-component
metallic spin glass in which sd scattering dominates, our
prediction is as follows. In difFerent samples having the
same ratio c2/c„as ci increases the t (x) curves for the
different samples will vary in the sense from the top curve
down in Fig. 2.

In Fig. 3 we show the variation in q(x) with j2. Note
that the values q (0+ ) are given by

q (0+ ) =sj2 (41)

effects due to reductions in the length scales show up in
all the t (x) curves in Fig. l. Also, note that the choices
s =1 and b =1 have been made to isolate the effect of
variation in j2, while the value a&=0.3554 is simply a
realistic choice, corresponding arbitrarily to
Ago 974Mno o26 (viz. Mn is type "1").

The competition between the two physical effects ex-
plains the primary features in Fig. 2 as well, where a, is
varied. In Fig. 2, the trend is opposite to that of Fig. 1:
tg(x) decreases with increasing a, . If s or y is varied the
trends are like those in Fig. 1, while the character of
curves for different values of b are as in Fig. 2. (Note that
even though y has a fixed value, we are free to vary y for
heuristic purposes. } In all cases the physical explanations
are similar to those given above for changes in j2.

We wish to point out that the results shown in Fig. 2
represent a prediction of our theory. Specifically, an in-
crease in a& may be thought of as due to an increase in c&

[see Eq. (31) and note that ln(A, i
T"')] varies weakly com-

pared to in(A, ,c', ~ )= ln(B, c, )]. Consequently, our
theory predicts that t (x) will decrease with ci in a
fashion similar to that of Fig. 2. This is understood phys-
ically as follows. If c, is varied with all other quantities
held fixed (including x}, only two length scales vary in-
dependently, say A, and A,„"„'. Since A, decreases more rap-
idly than A, '„'„', the reduction in t (x}due to reduction in
spin-spin coupling strength dominates over the tendency
for tg(x) to increase due to diminished nearest-neighbor
distance. The mathematical explanation is most easily re-
vealed by using Eq. (37) to show that

1.10-

1.05-

1,00'~
0

0,95.— ~

0.0 1.0 2.0 3.0

FIG. 4. The freezing temperature tg (x) in the two-
component spin glass AuCrFe. The Cr concentration is fixed at
2.3 at. %%uo, whil e th econcentratio no f Fevaries . Th esoli ddots
are data presented in Ref. 11; the curve is the theoretical result,
Eq. (37). See text for details.

1.2-

component metallic spin glasses. "One is that T (c„c2)
decreases initially as c2 increases with c& held fixed,
reaches a minimum, then increases with c2. This is
shown in Fig. 4 for AuCrFe where the concentration of
Cr is fixed while that of Fe increases. Our theory (solid
curve) provides a satisfactory account of the experimental
behavior. The other type of behavior is that Tg increases
monotonically with c2. Figure 5 compares our theory
with experimental data for AuFeMn with the concentra-
tion of Fe fixed and that of Mn varying. The agreement
between theory and experiment is rather good, and it ap-
pears from Figs. 4 and 5 that the theory has captured the
essential physics: The physical explanation underlying
these behaviors is the competition between the two op-
posing physical effects described above. (A brief physical
discussion was also given in Ref. 8.} We stress that the
theoretical curves in Figs. 4 and 5 contain no adjustable
parameters.

The curves in Figs. 4 and 5 were obtained using Eqs.
(37) and (25), with values of (sjz }, a „and b obtained
from the literature in the following manner. Values for
(sjz } were obtained by using Eqs. (15}and (16) to show
that

[see Eq. (36) and recall that jiz =j2 in Figs. 1—3]. The
physical explanation for the features in Fig. 3 closely
parallels that for Fig. 1.

We also point out that the limiting case where c, is
held fixed and cz~0 has been examined' to ensure that
we recover the results reported previously for single-
component metallic spin glasses.

0.2 0.4 0.6

IV. COMPARISON OF THEORY WITH EXPERIMENT

We briefly compare our theory with experimental re-
sults. Two types of behavior have been reported in two-

FIG. 5. As in Fig. 4 but for AuFeMn with the concentration
of Fe fixed at 3.0 at. % and the Mn concentration varying. The
solid squares are data given in Ref. 11, while the curve is the
theoretical result, Eq. (37).
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c,az( cz ) Ts '(cz )
(sJ'z ) = (, )

(42)
cza, (c, )T"'(c, )

where az(cz ) and Ts '(cz ) are, respectively, the analogs of
ai(c, ) and Ts "(c, ) when only species "2" is present with
concentration cz. Values of Tg"'(c, ) and T' '(cz) are
readily found in the literature. "' Values of a, (c, ) and
az(cz) were obtained using Eq. (31) and calculating
A, ,(c i ) or A, z(cz ) using a free-electron picture' and having
values for the resistivities p, (c, ) or pz(cz) for the specific
material. ' These resistivity values also provide values
for b. In Fig. 4, (sjz)=0.50, a, =0.48, and b =1.76; in
Fig. 5, (sjz)=0.40, a, =0.55, and b =0.31. (Note that
we again take j iz

=jz in Figs. 4 and 5.)
Finally, we note that ideas along the lines of those

presented in this paper were mentioned briefly by Vier
and Schultz. " Henley extended their presentation by
considering a mean-field theory of multicomponent spin
glasses. ' However, a basic assumption was that the
range of interaction was infinite. Although mean-field
theories with infinite interaction ranges can give reason-
able results for transition temperatures, we have seen that
the finite range of interaction AT plays a prominent role
in the physical processes which establish the behavior in
spin glasses, and we therefore regard our approach as
preferable.

V. SUMMARY

In summary, we have presented a derivation of a
mean-field theory for the spin-glass freezing temperature
in a two-component metallic spin glass, and we have il-
lustrated the basic underlying physical ideas. We have
also shown that our theory satisfactorily accounts for ex-
perimental results and provides a physical understanding
of these results. Our calculations included the sd scatter-
ing of conduction electrons by the magnetic ions and
finite temperature e6'ects. Emphasis was placed on the
role of spin-spin pair correlations. We also predict that
the initial slope of t (x) for a given two-component me-
tallic spin glass will decrease as c

&
increases.
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