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The two main characteristics of the holmium ions in HoF3 are that their local electronic properties are
dominated by two singlet states lying well below the remaining 4f levels, and that the classical dipole
coupling is an order of magnitude larger than any other two-ion interactions between the Ho moments.
This combination makes the system particularly suitable for testing refinements of the mean-field theory.
There are four Ho ions per unit cell and the hyperfine coupled electronic and nuclear moments on the
Ho ions order in a ferrimagnetic structure at T, =0.53 K. The corrections to the mean-field behavior of
holmium trifluoride, both in the paramagnetic and ferrimagnetic phase, have been calculated to first or-
der in the high-density 1/z expansion. The effective medium theory, which includes the effects of the
single-site fluctuations, leads to a substantially improved description of the magnetic properties of HoF3,
in comparison with that based on the mean-field approximation.

I. INTRODUCTION

The magnetic properties of HoF3 have been established
experimentally' in considerable detail, and these exper-
iments were recently interpreted in terms of a mean-field
(MF) model by Leask et al. '—HoF3 is orthorhombic,
and the low symmetry at the Ho sites implies that the
J=8 ground-state multiplet splits into singlets. In the
paramagnetic phase, the energy difference between the
two lowest singlets is about 0.7 meV and the dipole
matrix-element between the two states is large. The next
singlet lies at about 5 meV whereas the remaining ones lie
between 10 and 50 meV above the ground state, and this
arrangement of the crystal-field levels leads to a very an-
isotropic susceptibility at low temperatures. The system
is close to an Ising system, with the only modification
that there are two easy directions, one for each magneti-
cally equivalent pair of Ho ions in a unit cell. The classi-
cal dipole coupling between the angular moments is
weak, but is nevertheless found to be one order of magni-
tude stronger than any other interaction between the di-
poles. It gives rise to strong correlation effects below 5 K
and is responsible for the induced magnetic ordering of
the singlet ground-state system at T, =0.53 K. The di-

pole coupling is however not suSciently strong to pro-
duce an ordering of the isolated electronic system. The
ratio between the two-ion coupling and the threshold
value required for inducing magnetic ordering of the elec-
tronic moments is found to be R =0.86. The phase tran-
sition occurs only because the hyperfine interaction be-
tween the electronic and nuclear moments enhances the
effective susceptibility, thus leading to a cooperative or-
dering of the two systems. Below T, the ordered mo-
ments are along the two easy directions. At low tempera-
tures, HoF3 may be considered to be a simple singlet-
singlet system in which the moments interact like classi-
cal dipoles. The dipole-dipole interaction can be calculat-
ed accurately from first principles and the magnetic sys-
tem is fully characterized by only a few parameters. The

only complications are that there are four magnetic ions
per unit cell, that the hyperfine interaction plays an ac-
tive role, and that additional two-ion couplings are of
some importance.

Although the mean-field theory of Leask et al. ' was
able to reproduce many of the observations made in
HoF3, such as the excitation spectrum determined by
neutron scattering at 1.6 K, some discrepancies
remained. The calculated moment in the zero tempera-
ture limit was 16% smaller than that observed, and the
comparison between the theoretical and experimental
heat capacity was not entirely acceptable. Quadrupole-
quadrupole couplings may be of some importance in
HoF3 for explaining the discrepancies, but in this paper
we shall concentrate on the corrections to the mean-field
theory due to the single-site Quctuations. In Sec. II we
recapitulate the results of the high-density I iz expansion
for the singlet-singlet model utilizing the effective medi-
um approach. The theory is then extended to cover
both the paramagnetic and the ordered case. In Sec. III
the theory is applied to HoF3 and the conclusions are
presented in Sec. IV.

II. THE 1/z EXPANSION

We consider a Bravais lattice of N identical singlet-
singlet atoms, characterized by the energy separation 6
between the two singlets, and by the dipole matrix ele-
ments. In the case of a singlet-singlet system, the x axis
may be defined so that only the matrix-elements of J„are
nonzero, and M denotes the (numerical) value of this J„
matrix element between the two states, whereas +m and—m are the matrix elements of J„within, respectively,
the lower and upper singlet. Mo =M +m is a constant
and m =0 in the paramagnetic case at zero Geld. At the
temperature T= 1/k~P, the MF population factors of the
lower and the upper state are no and n „where
no= ll[1+exp( —Ph)], no+n, = l and we define

noi =no n i.
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The two-site Green function is defined as the ~-ordered
ensemble average

6(lJ, r] r—i) = —( T,J;g(r])Jjx(ri) ) .

Ir, —r2I (p, and we use the short-hand notation

(2.1)

(2.2)

G(q, ico„)=pe "f G(ij, r)e " dr .
J 0

(2.3)

The Fourier transform of the Green function is defined in
terms of (A' times) the Matsubara frequencies,
co„=2m n /P, where n is an integer:

tors. ' These are not Bose operators, so the "contrac-
tions" determined by the commutators of the different
operators are not c numbers, but operators which give
rise to new contractions. However, the next generation
of contractions adds terms to 6 (q, i co„)which always in-

volve additional q summations. Hence in the order
(1/z), these contractions are neglected. This corre-
sponds to a decoupling of the higher-order cumulants in
(2.5) into products of the second-order terms,
( T,J;„(r&)JJ„(ri))0= —5i Go(r, —ri) (if the possible
difference between (J„)and (J, )0 is neglected, see
below). The infinite series of "chain diagrams, " generat-
ed by (2.5) using this decoupling, is easily summed, and
the result is

The Hamiltonian is divided into two parts, &=&0+&&,
where gf'0 is the mean-field part and &, is the perturba-
tion

Go(i co„). IRPg 1+8(q)G (' „) (2.9)

&,= —
—,
' g cf(ij )J,,JJ„

IJ

(2.4)

in which case the Green function is determined by the
linked-cluster expansion

with

( T,U(P, O)J;„(r)J„(0))0

(U(P, O)),
(2.5)

U(p, 0)=1—f 9&(r&)dr&+
0

(2.6)

The index 0 on the thermal averages indicates that they
are the mean-field values. The noninteracting Green
function, obtained in the zeroth order of %,, vanishes if
i Xj, whereas if i =j it is

showing that this approximation is equivalent to the
random-phase approximation (RPA). The difference be-
tween the fourth-order cumulant and the corresponding
decoupled value appears in the next order of 1/z. In
the usual "unconditional" cumulant expansion this
difference, the fourth-order semi-invariant, is introduced
as an additional vertex. The vertex in the RPA chain di-
agrams is replaced by the sum of this and the fourth-
order semi-invariant, and neglecting any particular effects
of whether some vertices in a chain belong to the same
site or not, we may straightforwardly sum the series.

In the order 1/z only the single-site Green function is
directly modified, as the fourth-order cumulant only
differs from the decoupled one if all the four momentum
operators belong to the same site. The single-site Green
function is

60(ico„)= Mg(ic—o„)—m h(i co„),
where the two response functions are

(2.7)
G(ico„)—:6(ii, ico„)=—g G(q, ico„)1

(2.10)

2n0) 6
g (i co„)=, h (ico„)=P(1 no, )5—„0.

(ico„)— (2.&)

The perturbation && cannot, in general, be considered
as being small compared to &o, but each time a term in-
volving the two-ion coupling is summed over q, we
effectively gain a factor 1/z, where z is the coordination
number. A systematic expansion of the Green function
in powers of 1/z, in the case of the singlet-singlet system,
was developed by Stinchcombe. Here, we shall use a
slightly different approach and utilize the concept of an
effective medium which is the basis of the coherent-
potential approximation.

The ensemble averages in (2.5) are calculated by ex-
pressing the angular momentum operators in terms of the
"standard-basis" operators, a„„=I v ) (p, I

where
I
v ) are

the MF eigenstates of an atom, and by utilizing the in-
variance of the trace to a cyclic permutation of the opera-

I

and, to the order 1/z, the two-site Green function may be
expressed in terms of 6 (ico„) by introducing the
effective-medium coupling

K(ico„)=—g 8(q)G(q, ico„)/G(ico„)1

q

in which case

G(ico„)
1+ IP(q) —K(ico„)JG(ico„)

(2.11)

(2.12)

K (i co„)is the sum of all chain diagrams which start and
end at the same site without crossing this site in be-
tween. We may therefore consider an effective cumulant
expansion of 6(ico„),equivalent to (2.5) where cF(ij) in

is replaced by the time-dependent coupling
K (r, —r2), and the term to leading order in this coupling
is

0 0 0
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The decoupling of the higher-order cumulants in the
single-site series into products of the second-order terms
leads to the result

GQ(ia)„)
1+K (i co„)GQ(iso„)

(2.14)

and when this result is introduced in (2.12), K(ice„)can-
cels out and we get the RPA result, (2.9). To the next or-
der in 1/z we have to include the fourth-order cumulant
term, (2.13). We shall first consider the paramagnetic
phase, m =0, in which case

G(iso„}=GQ(ice„}

cumulants into the single-site series, neglecting the corre-
sponding (1/z) two-site effects. The second-order con-
tributions to the effective medium have been considered
in an analysis" of Pr and are of some importance if the
energy gap in the excitation spectrum is small. In the
present analysis we shall consider only the leading-order
1/z modifications due to the single-site fluctuations.

In the paramagnetic phase, the contribution of the
fluctuations to the internal energy is

r

6+EN„
5U = g K(i co„)— G(ice„} Nn—, 6

213
„

(2.21)
G—Q(iso„)[K(ice„)GQ(ia)„)+X(ia)„)]+

(2.15}
and introducing the 1/z result for G (ice„)in this expres-

sion, we may write the energy change

where the renormalization factor is

X(ia)„)=a+y(ice„)g(iso„)

a is a constant

Ma= [Aq
—

—,
' [g(0)+P(1 nQ]

—)]A)]
~o&

and the frequency-dependent term is

My(iso„)= 2 [A, —(1—
nQ, )K(ice„}]

7f p)

(2.16)

(2.17)

(2.18)

+~o&5U=— 6—M A, (2 ]+a

+—g K(i co„)[G(iso„) GQ—(ice„)], (2.22)
1

where the last sum is a small second-order term. The
derivative of 5U with respect to T determines the change
of the heat capacity from its mean-field value. In the cal-
culation of the energy it is of importance that the Green
function satisfies the sum rule:

and the parameters A, are defined as —g G(ia)„)= —M~1
(2.23)

k» =—g K(ice„.)[g(iso„)]».1

n'
(2.19)

The unconditional cumulant expansion accounts correct-
ly for the fourth-order cumulant term in (2.15}, but an
analysis of the sixth and higher-order terms shows that
this procedure does not lead to a good estimate of the
higher-order contributions in the single-site series. In-
stead, it is found that the series generated by replacing
GQ(iso„) in front of the second term of the single-site
series (2.15) by the interacting Green function G(ice„),
much more effectively accounts for the terms deriving
from specifically, the sixth-order cumulant. Introducing
this Dyson-like result for the single-site Green function in
(2.12},we get

GQ(i co„}
G(q, iso„)= 1+X(i co„)+d (q)GQ(&~„)

(2.20)

valid to first order in 1/z. This result is nearly the same
as the one derived by Galili and Zevin using an elaborate
renormalization of the unconditional expansion. In addi-
tion to the simplifications attained by utilizing the
effective-xnediurn approach, the present procedure is fully
self-consistent. A more detailed discussion of the
effective medium theory and its comparison with the un-
conditional cumulant expansion may be found in Refs. 5
and 10. In a systematic expansion in 1/z, the effective-
medium approximation ceases to be valid in second or-
der. However, an improvement of the theory is obtain-
able by including the new diagrams due to the sixth-order

(J„)= (J„),=m'n„
which differs from the usual mean Seld Hp.

HMF HQ 5H j gPgHQ gygH+ 8(0)(J )

(2.24)

(2.25)

where H is the applied field. The determination of &Q in
terms of HMF instead of Hp introduces an extra perturba-

(m =0). This is strictly the case if the single-site series is
terminated after the first or the second term in (2.15). It
is also found numerically to be valid with a rather high
accuracy for the self-consistent 1/z-Green function.

Next we wish to consider the situation when m%0. In
the low-temperature regime, with which we shall mostly
be concerned, the elastic pole in (2.7) is weak compared
to the inelastic one, unless the system is close to the satu-
ration limit m ))M. However, in this limit, i.e., at high
fields, all the fluctuations are quenched and the mean-
field approximation is valid. This means that, generally,
at low temperature the elastic fluctuations are of less im-
portance than the inelastic ones, and it is therefore ac-
ceptable to include the elastic-pole contributions less
rigorously.

The first problem we meet in the order 1/z is that, if
we define the mean-field Hamiltonian in the usual way,
(J„)Q will in general be nonzero, giving rise to additional
complications in the linked-cluster expansion of the
Green function. In order to avoid these complications we
introduce a modified mean field, HMF, defined by the re-
quirement that
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tion in the Hamiltonian, %=Ho+&, +%2, with
%&= gps5HQ;J„; .The ratio 5H/HM„ is a small

quantity, at the most about 0.1 in the numerical calcula-
tions, and %z is truly a weak perturbation. Furthermore,
the leading order modification of the cumulant expansion
is proportional to (5H/HMF ), which small correction is
neglected.

The elastic pole disturbs the inelastic fluctuations, and
X(ice„)in (2.20), when n %0, is changed into

G(i co„)
1 K—(i~„)G(ice„)

(2.30)

(J„)=(J,) = —gp f "G (0;H')dH', (2.31}

which is equal to Go(ice„)/[1+X(iso„)],except in the
zero-frequency case when m%0.

The mean field HM„is determined by (2.24) which may
be written

2mX(ice„)=a—a + y(ice„)— y(0) g(ice„)

with

m 4a = A, z
—g(0)A, , + iL3

"o& g 0

(2.26)
where Go(0;H') is the noninteracting Green function,
(2.7), as a function of the Zeeman-field H'.
Differentiating this equation with respect to the applied
field gp~H, at a constant temperature, we get on the left-
hand side the static bulk susceptibility —G(0,0), or

dHMF
G(0,0;H) =Go(0;HMF ) [1—8(0}G(0,0;H ) ]

—(1 no, )(1+—,'Pbn» )K—(0)g(0) (2.27)
(2.32)

In this result we have for simplicity neglected some
frequency-dependent terms which vanish in the zero-
frequency limit [g (i co„.Rico„}appearing as a factor in the
n' sums has been replaced by its zero-frequency value

g (iso„)] The .inelastic broadening of the elastic peak dis-
cussed in Ref. 11 is neglected in this approximation. In
addition to the inelastic modifications we get elastic
terms appearing only at zero frequency, and at this fre-
quency the single-site Green function is found to be

G(0)=- M g(0)
2

—m gh(0),
1+X(0)—M K(0)g(0)

(2.28)

where X(0) is the zero-frequency value of X(ice„)given
by (2.26}and

1+tanh[m no&PK(0}—M PA, t]
1+[4nc)K(0)g(0)+2A~+g(0)A, )]M /no)

(2.29)

The cumulant expansion of the elastic contribution
effectively becomes an expansion in PK(0) which con-
verges slowly at low temperatures, where however the
elastic term as a whole is frozen out. The actual result
for the 1/z term in the numerator of g, deriving from the
fourth-order cumulant, is the leading order term in the
Taylor expansion of the tanh term, which diverges in the
zero-temperature limit. This divergence was not found to
inhuence the numerical results significantly, as the term
is multiplied by h (0) which vanishes exponentially in this
limit. However, in order to account in a simple way for
the renormalization of this term expected due to higher-
order contributions, we have replaced the 1/z term by its
tanh value.

The final result for G (q, iso„)to first order in 1/z when
m is nonzero is determined in terms of G(ice„). At
nonzero frequencies the result may be written as (2.20),
with X(iso„)now given by (2.26). At zero frequency we
have to introduce G (0) given by (2.28} in the original ex-
pression (2.12) for G(q, iso„).The result (2.12) becomes
equivalent to the RPA result if Go(iso„) in (2.9) is re-
placed by the effective noninteracting Green function

which is directly integrable, as HMF is the mean field

determining G(0, 0;H), and we get the following relation
between the two field quantities

M F Go(0;H')
Hp= dH'

Go(0;H')
(2.33)

making use of the effective noninteracting Green function
defined by (2.30). The combination of (2.33) and (2.25)
determines the relation between the applied field and the
mean field, which allows a fully self-consistent calculation
of (J„)as a function of field, in much the same way as in

the MF approximation. The adjustment of the mean
field, by replacing Ho by the effective value HMF, implies
that the change in the free energy including the 1/z con-
tributions, relatively to the nonmagnetic state, is deter-
mined by the mean-field part of the Hamiltonian, f90, be-
cause dF/N= —

g}U,s(J„)dHis equal to —gps( J„)odH
(at constant temperature). This has the consequence that

Mo
5F(m =0)= N f gp&—5Hd( J„). (2.34)

Mo is the saturation value of (J„)in the limit of an

infinite field, in which limit any correction to the MF ap-
proximation vanishes. The difference 5H =Hp HMF is
considered to be a function of (J„),and introducing
5F(m =0), as determined by 5U in (2.22) and the corre-
sponding change in heat capacity, the fulfillment of (2.34)
provides an independent test of the theory.

III. THE MAGNETIC FROPERTIES OF HoF3

HoF3 is orthorhombic with the lattice parameters
a =6.404 A, b =6.875 A ', and c =4.379 A ', and
there are 4 Ho + and 12 F ions per unit cell. The posi-
tions of the ions within the unit cell are specified in the
previous papers ' on HoF3, and the projections of the
ions on the a-c and a-b planes are shown in Fig. 1. The
crystal-Geld Hamiltonian for the Ho ions at the four
different sites in the unit cell is the same when referring
to one local coordinate system for the sublattices labeled
1 and 2 in Fig. 1 and another, in which the b and c axes
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FIG. 1. The 4 Ho and 12 F ions in one unit
cell of the orthorhombic structure of HoF3,
projected on the a-c and the a-b plane. The
arrows indicate the local x axes lying in the a-c
plane and making the angles %8 with the a
axis, which are also the directions of the mo-

ments in the ordered phase. The figure shows

the case where 8=+25'.

JV(E)= g 5(e~ „—s),1

q, v

(3.1)

where sq „arethe four excitation energies at a certain q.
The q summation in the expression (2.11) for E(iso„)
may be replaced by an energy integration by the intro-
duction of JV'(E). The resulting integral is the same as the
one derived for a Bravais lattice. Calculating K(iso„}in
this way, the final density of states has been determined
self-consistently by an iterative procedure, using the RPA
as a starting point. The result, nominally at 0.55 K, is

are reversed, for the sublattices 3 and 4. The local easy
axes, or x axes, are indicated in the figure. They lie in the
a-c plane and make the angles 8 and —8 with the a axis.
The magnitude of 8, but not its sign, is known from the
experiments. ' The sign of 8 has not much inQuence on
the analysis, but we have here chosen 8=+25' as also
used in Fig. 1. This choice of sign leads to a slightly
better fit of the magnetization curves than the other, but
the difference is not so significant that it rules out the al-
ternative choice.

The equivalence of the ions, when considered in their
local coordinate systems, makes it straightforward to
generalize the theory in the preceding section to this case
with four magnetic iona per unit cell. In the paramagnet-
ic phase the only modification of the RPA calculations
presented in Ref. 1 are that the components in the
single-ion susceptibility tensors g „(co),deriving from the
singlet-singlet transition on the rth ion, should be divided

by the common renormalization factor 1+X(co). This
follows from the fact that the RPA expression for the
final Green function is unchanged if the noninteracting
Green function Go(iso„) in (2.9) is replaced by the
effective Go(ice„)given by (2.30}. Neglecting small 1/z
corrections of the RPA contributions from other single-
ion transitions, this procedure allows the full scheme of
the ions to be included in the calculations. The imagi-
nary part of X(co}is proportional to the imaginary part of
E(co) times (1—no, ), and the latter factor is vanishing
small at low temperatures, thus X(co) is real just above

T, . In this limit the paramagnetic density of states, for
each of the 4N magnetic ions, is

4.0-

07E30

Q

2.00

Q)
Cl

1.0

0.0
0.0

I

0.2 0.4 0.6
Energy (meV)

I

0.8 1.0

FIG. 2. The final calculated density of states per Ho ion in the
low-temperature limit of the paramagnetic phase, JV'(c, ). The
square-root singularities at the minimum and maximum ener-

gies are modified by the directional dependence of the long-
wavelength A, mode (see Fig. 3).

shown in Fig. 2. The corresponding excitation energies
at 1.6 K along the high-symmetry directions (h00) and
(001) are shown in Fig. 3. As discussed in Ref. 1 an
effective double-zone representation is applicable along
these directions, and only two modes scatter the neutrons
in a constant-q scan. The calculated dispersion relations,
the solid lines in Fig. 3, are compared with the experi-
mental neutron-scattering results and the RPA predic-
tions presented in Ref. 1. Although the excitation ener-
gies in the order 1/z are not changed much compared to
the RPA theory, the tendency of the excitations to split
into two separated bands is much more pronounced in
the final density of states in Fig. 2 than in the RPA.

Some of the parameters in the present calculations
differ from those used in the previous MF model. Includ-
ing 5U given by (2.21) in the calculation of the paramag-
netic heat capacity, the fit to the experimental position of
the maximum in the Schottky anomaly is improved by a
slight reduction of the zero-field value of b from 0.71 to
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0.69 meV. This change is accomplished by using

V6p = 3.42 X 10 meV

V6~=(6.41 —i4 5.9) X 10 meV,
(3.2)

4.0

—3.0C)
E

I

I
I
L

I
I
I

1
E

I
I
I

whereas the remaining crystal-field parameters are the
same as in Table I in Ref. 1. The change also influences
weakly the matrix element (M =6.551 instead of 6.541).
The quality of the fit to the experimental heat capacity is
much improved in comparison with the one derived in
the MF approximation, as shown in Fig. 4. The fit is now
close to perfect below 7 K, where the phonons are unim-
portant, and down to about 1 K, where critical Auctua-
tions may start to be of importance.

The dominant part of the two-ion coupling, due to the
classical dipole-dipole interaction, is unchanged. Given
the positions of the magnetic Ho-ions, the dipole-dipole
interaction is calculated by the Ewald method utilizing
the refinements developed by Bowden and Clark. ' In or-
der to get agreement with the observed transition temper-
ature, and to explain the larger splitting between the A

&

and A2 excitation modes at (100) than that predicted by

.= 2.0

a

1.0

t

I
I
I
1
1

I
l

I

0.0
0.1

I I ~PPf ~ I I

1.0
Temperature (K)

I I i I I

10.0

FIG. 4. The low-temperature heat capacity of HoF3. The
solid circles are the experimental results obtained by Bleaney
et al. (Ref. 3), the dashed line is the magnetic contribution pre-
dicted by the MF theory (Ref. 1), and the solid line is the result
derived in the present approximation including the e5'ect of the
single-site fluctuations. Above 7—8 K the phonons start to con-
tribute, as do the higher-1ying 4f levels on the Ho ions.

1.5

T= 1.6K

c
UJ 05

IHFP

I

A1 I

IP PPP
I~ 1.0 —

O A4
~ $ ~ 0 --e~ ..

)

A3

I
I

I

I

I

I

I

I

I

I
I

I

I

I

I

I A4
I

()
PPPr

the classical coupling, two exchange-coupling constants,
8 I 3 and 8I 2, were used as fitting parameters. They are
the isotropic couplings between, respectively, nearest and
next-nearest neighbors. To these we here add one more
coupling, 8», which is the nearest-neighbor coupling be-
tween ions on the same sublattice (the distance between
these ions is not much greater than the smallest one).
The final va1ues of the three parameters are

0
I

A1

0.0
1.0

A2I

I

I

I

I i I

A

I

I

I

I i I ~ I aI ~ I a

1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0
h {units of a*} I {units of c*)

8» = —0.30 Ju, eV (
—0.64 peV),

8»=0.37 peV (0.30 ILI,eV),

4» =0.12 IueV (0),

(3.3)

FIG. 3. The dispersion relation of the singlet-singlet excita-
tions along a* and c* in the paramagnetic phase of HoF3 at 1.6
K. The closed circles are the experimental results (Ref. 1) ob-
tained with the neutron-scattering vector along (h00) and (00l),
whereas the open circles are the results obtained along the
energetically-equivalent directions (h01) and (10l) (with h and l

lying between 0 and 1). The results are shown in a double zone
representation, and the thin dashed lines indicate the Brillouin-
zone boundaries. The solid lines are the theoretical predictions
including the single-site fluctuations, and the thick dashed lines

are the RPA results derived from the MF model in Ref. 1. The
labeling of the different modes, Al —A4, close to the Bragg
points is explained in Ref. 1. The short solid lines marked A 1*

and A 3 show the energies of the two ferromagnetic modes in
the long-wavelength limit, when the direction of the wave vec-
tor is perpendicular to, respectively, (h00) and (001). In com-
bination with the nonzero experimental resolution width, the
A*, mode in particular contributes much more strongly to the
scattering cross section than the A 1 mode close to (100). Reso-
lution effects combined with the singular behavior of the long-
wavelength A

&
mode may also be important for explaining the

difference between the theoretical and experimental energy of
this mode.

where the numbers in the parentheses are the previous
values used in the MF model (when 8=+25'). The intro-
duction of the coupling parameter 8» leads here to a
slight improvement of the fit to the excitation energies,
and thus probably also to a better estimate of the density
of states, but it is in no way essential for the analysis. For
instance, the reduction of the calculated energy of the
upper A, mode close to (100) is a pure renormalization
effect. The new values of the exchange parameters mean
that the effective coupling pa, rameter determining T, (see
Ref. 1).

cPI(8)=28»cos28+28I~+2J»+16. 8484D (3.4)

is now 7.92 peV, which is about 11' larger than in the
MF model. This increase is required in order to compen-
sate for the reduction, by the factor 1+X(0), of the
effective single-site susceptibility deriving from the fluc-
tuations. This factor is calculated to be 1.128 just above
T'

In the calculation of the zero-frequency susceptibility,
it is important to include the nuclear contribution due to
the hyperfine interaction. This coupling enhances the
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susceptibility at T, by about 16%. To a first approxima-
tion the influence of the fluctuations on this coupling may
be neglected. However, it is practicable to include the
effects of the singlet-singlet fluctuations on the hyperfine
coupling, leaving out the intrinsic 1/z modification of the
nuclear susceptibility (which is of the order A ). In this
approximation the xx component of the effective nonin-
teracting susceptibility, g=y'/[ I++(0)], is replaced by

(3.5)

and K (0) by approximately K (0)(1+A ~f'yr ). I=—,'is
the nuclear spin, A =3.36 peU is the hyperfine coupling
and yl is the nuclear xx susceptibility component as

determined from &hi(efl} given by (3) in Ref. 1. j in this
Hamiltonian is replaced by (1/N)g~(q), but this
change can be neglected in the quadrupole term.

The maximum value of the renormalization factor,
1+X(0},is 1.140 at T=2 K. Above this temperature
X(0) steadily decreases, and the renormalization is re-
duced to 1.098 at 4.2 K. The rather weak variation of the
renormalization in this temperature interval means that
the result for the renormalized temperature-dependent
bulk susceptibility in the paramagnetic phase is close to
the previous MF-result shown in Fig. 7 in Ref. 1. In the
presence of a magnetic field, or in the ordered phase, the
mean field is determined by (2.33). The change of this
field, 5H, induced by the fluctuations, and the moments
themselves are calculated fully self-consistently. Above
T, in the low-field limit 5H/HMF=X(0). At higher
fields, 5H goes through a maximum and then starts to de-
crease. At low temperatures the maximum value is about
0.3 kOe, and the maximum occurs when the moment is
about half its saturation value (HMF=4 kOe). In the
high-field limit 5H/HMF vanishes, whereas 5H itself be-
comes small but not zero. It is uncertain whether this is
due to the approximations made or not, but the nonzero
value of 5H at infinite fields has no consequences. More
importantly, the area determined by 5H as a function of
gpii( J„)is found to agree quite accurately with the cal-
culated energy change of the nonmagnetic state induced
by the fluctuations. In the low-temperature limit
5U/N= —9.06 peV and (2.34) is satisfied to within
2—3 %. Only in the high-temperature limit is the integral
in (2.34) calculated to vanish somewhat faster than
5F(m =0), indicating that the elastic contributions
should be included in a more careful manner in this limit.

At low fields the calculated renormalized magnetiza-
tion is close to that predicted by the MF model, corre-
sponding to the behavior of the (zero-field) susceptibility.
When the field is applied along the a direction, the mag-
netization increases very rapidly and is close to its satura-
tion value already at a field of about 10 kOe. At this field
the 1/z renormalization is nearly quenched, correspond-
ing effectively to an enhancement of the coupling con-
stant. The calculated magnetization at low temperatures
and intermediate fields is therefore increased in compar-
ison with the result derived from the MF model. At 4.2
K, when the field is applied along the c axis, the (change
of the} renormalization effect is small. In the other case,
when the field is along the a axis at 1.6 K, the magnetiza-

0'6-p
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O)
tg 4

p
CO

4

I

p

a-axis, T=1.6K

10 15
Internal Magnetic Field (kOe)

20 25

FIG. 5. The magnetic moment of HoF3 as a function of field

along the a axis at 1.6 K and along the c axis at 4.2 K. The ex-
perimental results of Bleaney et al. (Ref. 3) have been corrected
for the demagnetization field estimated from the shape of the
samples. The mean-field predictions (Ref. 1) are shown by the
dashed lines, and the present calculations by the solid lines.

tion is calculated to be somewhat larger than predicted
by the MF model, and thus closer to the experimental
behavior, as shown in Fig. 5. The figure only contains
the results below 25 kOe. The magnetization curves have
been measured up to a field of 80 kOe. At the -higher

fields the results of the two models coincide and are in

good agreement with experiment (see Fig. 6 in Ref. 1).
The rapid quenching of the fluctuations produced by a
field along the a axis at low temperatures is also illustrat-
ed by Fig. 6, showing the field dependence of the excita-
tions observed at (001) at 1.6 K. The width of the excita-
tion band, which is close to the distance between the
upper and lower excitation in this figure, is reduced by a
factor of 5 at 10 kOe, compared to its zero-field value.
Above about 25 kOe the excitation band is almost com-
pletely flat and the single-site fluctuations are of no im-

portance. The change of the bare interaction parameters
means that the present model reproduces the experimen-
tal behavior somewhat more accurately than the previous
model.

Just above T„the entropy due to the electronic
singlet-singlet states is vanishingly small, and the heat
capacity in the ferrimagnetic phase is determined by the
variation in the population of the nuclear levels as in the
MF case [thus the calculation of the heat capacity in the
ordered phase does not rely on the relation (2.34)]. The
effects of the single-site fluctuations are included via the
reduction of the mean field derived from (2.33). The re-

sult is compared with the experimental data in Fig. 4
showing that the present model, in contrast to the MF
model, can almost account for the large jurnp in the heat
capacity observed experimentally at T, . The improved
description of the heat capacity in the ordered phase is
related directly to the fact that the ordered moment pre-
dicted in the zero-temperature limit is closer to the ob-
served value. As shown in Fig. 7, the discrepancy is re-
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FIG. 8. The dispersion relation along a* and c in the or-
dered phase of HoF3 at 90 mK. The meaning of the symbols is
the same as in Fig. 3. The cross hatched lines show the theoreti-
cal results at 0.25 K.
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FIG. 6. The position of the inelastic scattering peaks at (001)
as a function of magnetic field applied along the a direction at
1.6 K. The circles are the experimental results (Ref. 1) and the
dashed and solid lines show the calculated energies of the A2,
A 3 and A 3 modes, respectively, in the RPA (Ref. 1) and when
including the 1/z renormalization. The A2 and A3 modes are
near the minimum and maximum excitation energies, and the
decreasing distance between the upper and lower lines indicates
that the total excitation bandwidth rapidly declines as the field
is increased.

duced by almost a factor of 2, and the calculated moment
at T=O is now about 9% instead of 16% smaller than
that determined by the neutron-diffraction experiment.
The larger value of the ordered moments implies an in-
crease in the excitation energies and, as shown in Fig. 8,
the calculated excitation energies at 0.09 K are slightly
above those derived from the MF model. It is argued in
Ref. 1 that the sample temperature at which the experi-
mental results shown in Fig. 8 were obtained might have
been higher than indicated, because of the very large nu-
clear heat capacity at these temperatures. Here we find

that we get a reasonable agreement between theory and
experiment, if the sample temperature is assumed to be
about 0.25 K.

IV. DISCUSSION AND CONCLUSION

3.0

2.0

1.0 TC

0.0
0.0 0.2

I

0.4
Temperature (K)

0.6

FIG. 7. The solid lines show the calculated values of the an-
gular moment, (J„),and the nuclear spin, (I, ), of a Ho ion as
a function of temperature below T, . The dashed lines are the
corresponding results derived in the MF case. ' The filled cir-
cles are the experimental values of (J„)determined from the
variation of the magnetic scattering intensities at (100) obtained
by Brown et al. (Ref. 2). Their results have been scaled to agree
with the magnetic moment of 5.7p&, which they obtained from
structure refinements at 70 mK.

The renormalization effects due to single-site fluctua-
tions have been included to leading order in the case of
the singlet-singlet system HoF3. The expansion of the
Matsubara Green function, applicable to this system, is
considered to first order in 1/z. In this order all the sin-

gle sites are assumed to be placed in equivalent surround-
ings. The fluctuations in this effective medium, which
derive self-consistently from the response of the single
sites, affect the single-site Green function in a manner
which may be determined by a cumulant expansion. An
examination of the cumulants in the series of the single-
site Green function shows that the usual "unconditional"
1/z expansion could be improved substantially in a
straightforward way. One additional advantage of the
present procedure is that it is fully self-consistent, and the
results therefore also behave properly close to a second-
order phase transition.

HoF3 is almost the ideal system for studying the effects
of fluctuations. The electronic properties are nearly
determined by the two lowest singlets alone at low tern-

peratures, and the classical dipole-dipole coupling is a
factor of 10 larger than other dipole couplings in the sys-
tern. The single-site properties are simple and the most
important part of the two-ion interactions may be calcu-
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lated directly. Furthermore, the long-range critical fluc-
tuations close to the phase transition are expected to be
of marginal importance, as they only lead to logarithmic
corrections to the mean-field behavior. The effects of the
l/z ffuctuations are calculated to be rather substantial in
this system. For instance, the single-site susceptibility is
found to be reduced effectively up to 12% at the lowest
temperature. In the comparison with the result to the
MF model in Ref. 1, these differences are not always
manifest, because the renormalization effects to some ex-
tent are included in this model via an effective adjustment
of the interaction parameters. The renormalization
effects vary slowly with temperature but may be
quenched rather rapidly by applying a magnetic field, in
which case differences may appear between the two mod-
els, since the bare interaction parameters are different.

The comparison between theory and experiment has
been improved systematically by the inclusion of the
effects due to the single-site fluctuations. The most strik-
ing iinprovement is found in the case of the heat capacity.
Even so, the experimental heat capacity does not ap-
proach zero as closely as the theoretical prediction at
temperatures just above T„indicating that the critical
Quctuations are of some importance, or alternatively that
effects of the order (1/z) should be included at the
lowest temperatures. Although the theoretical magneti-
zation curves, as a function of field or of temperature
below T„arein better agreement with experiments than

found in the MF model, there are still some discrepan-
cies. %e do not expect that higher-order renormalization
effects can eliminate these deviations. An estimate of the
bare electrostatic interaction between the quadrupole mo-
ments of the 4f electrons on the diff'erent ions indicates
that this coupling may be of some importance. However,
this interaction is expected to be strongly shielded by the
other electrons on the Ho and the Cl ions, and the good
account of the heat capacity does not leave much room
for any additional couplings. The discrepancies are sys-
tematic, but they are approaching a level where experi-
mental uncertainties may be significant for the compar-
isons. Utilizing the correlation between the jump in the
heat capacity at T, and the zero-temperature moment,
the comparison of experiment with theory suggests that
this moment should be only a few percent larger than cal-
culated, between 5.2-5.4pz, to be compared with the
neutron diffraction result of 5.7pz+0. 2JM&. It is there-
fore apparent that a further refinement of the theoretical
understanding of this unique magnetic system must de-
pend on the performance of even more precise experi-
ments.
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