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A quantum-mechanical simulation of orientational order in solid molecular hydrogen is presented,
based on path-integral Monte Carlo calculations. The effective potential between nearest-neighbor
hydrogen molecules is derived from first-principles total energy calculations, taking full account of
the symmetries of the Hamiltonian within a hexagonal close-packed arrangement of the molecule
centers. A first-order orientational order transition is found by studying short- and long-range an-
gular correlations and the behavior of the corresponding order parameters. A pressure-temperature
phase diagram is constructed and compared to relevant experimental and theoretical results.

I. INTRODUCTION

The various phases of solid hydrogen have been
the subject of extensive experimental and theoretical
studies. In the last few years interest in the high-pressure
behavior of this system was renewed, due to the develop-
ment of diamond anvil cells that can reach pressures in
the Mbar (1 Mbar = 100 GPa) range. 2 The motivation
for these studies is the quest to observe the insulator-to-
metal transition postulated by Wigner and Huntington:
A sufficiently large pressure (predicted to be 3 Mbar)
is expected to turn the insulating molecular phase to a
metallic atomic phase. The possibility of superconduc-
tivity in the high-pressure phase, predicted by Ashcroft,
and estimated to take place near room temperature,
gave additional impetus to the study of solid hydrogen.
Only recently, Silvera and collaborators and Mao and
collaborators have achieved in the laboratory the
required pressures (1—2 Mbar) to observe such phenom-
ena. These experimental studies showed that the highly
compressed molecular phase of hydrogen is a fascinating
phase in itself, with a rich phase diagram which possibly
includes a metallic phase, even before the molecular-to-
atomic transition takes place.

From the theoretical point of view, one of the major
difBculties in obtaining a realistic description of hydrogen
at these pressures is the quantum nature of the protons:
The zero-point motion associated with the proton degrees
of freedom makes it necessary to treat them as quantum
rather than classical particles. This complicates enor-
mously the standard electronic structure approach used
to describe the physics of solids, which is based on a
classical treatment of the ionic degrees of freedom. In
this paper we discuss a methodology for studying the
physics of solid hydrogen in the molecular phase, using
realistic interactions between the protons derived &om
extensive first-principles calculations, and taking account
of the quantum nature of rotational degrees of freedom
through path-integral Monte Carlo (PIMC) simulations.

The paper is organized as follows: Section II describes
the derivation of a realistic interaction Hamiltonian for

the molecular solid by fitting static first-principles calcu-
lations. Section III describes the PIMC simulations and
the observed order-disorder transition. Section IV con-
tains a study of the pressure dependence of the transition
temperature. Finally, Sec. V discusses the limitations of
this approach and gives a comparison to relevant exper-
imental and theoretical work.

II. DERIVATION
OF REALISTIC PROTON INTERACTIONS

In the pressure range that we will discuss, we will
assume that hydrogen remains in thp molecular phase.
The justification for this assumption comes both &om
experiment and Rom theory. Experimental results
show that there is a well-defined mode corresponding
to intramolecular vibrations in solid hydrogen (called a
vibron). io'ii i is The frequency of this mode has been
measured experimentally as a function of pressure. The
vibron &equency first increases with applied pressure and
eventually starts to decrease. These changes in fre-
quency, although quite pronounced, are such that they
keep the vibron mode (with frequency in the 4000 cm
range) clearly separated from intermolecular vibrations,
which have much lower frequencies (below 1000 cm ).
This is strong indication that the molecular nature of
the solid remains intact to a very high pressure. Abrupt
changes in the vibron &equency have been interpreted as
indications of phase transitions and possibly of qualita-
tive changes in the electronic spectrum.

At low densities, molecular hydrogen has a large gap
in the electronic spectrum, separating bonding Rom an-
tibonding states. Ashcroft has discussed how the struc-
ture of the solid can in8uence the nature of electronic
states. Indeed, detailed theoretical studies show that
the electronic gap is sensitive to the density, 2 as well
as the bond length and the orientation of the hydrogen
pairs, ' and can vanish when these parameters are var-
ied. An example is shown in Fig. I, where the band
gaps of two different ordered structures are compared as
a function of relative molar density (normalized to its
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FIG. 1. Electronic gap (in eV) vs relative density for the
H-a and H-p structures (shown schematically as insets). vp is
the zero-pressure volume. The corresponding pressure range
(using the experimental EOS; see text) is given in parentheses.

zero-pressure value). As this figure shows, certain or-
dered structures (e.g. , the H-p structure) maintain a clear
separation (band gap) between bonding and antibonding
electronic states up to very high densities or pressures, if
one uses an equation of state to translate density to pres-
sure (see details below). Furthermore, previous studies
have revealed that the configurations with larger band
gap are also the energetically favored ones. When the
bonding and antibonding manifolds of electronic states
are clearly separated in energy (the band gap is posi-
tive), one can think of the two electrons associated with
each Hz pair as belonging to the intramolecular bond, in
which case a molecular picture of the solid is meaning-
ful. When the gap vanishes the molecular picture begins
to lose its physical meaning, since the antibonding states
start being occupied and the electrons acquire metallic
character. At still higher pressure, the vibron frequency
is expected to become comparable to other vibrational
modes in the crystal at which point the molecules will
dissociate. 2 A recent simulation of the system treating
the protons as classical point particles has revealed in-
teresting changes in the structure and the dimensionality
during the molecular-to-atomic tx'ansitjon.

Having established the plausibility of the molecular
picture for pressures in the 1—2 Mbar range, we then con-
sider a simpMed model for the motion of protons. All
hydrogen atoms are paired to forxn molecules, which have
six independent ionic degrees of freedom associated with
the presence of two protons. Experixnent indicates that
as the pressure increases the molecules forxn a hexago-
nal close packed (hcp) lattice, and there is indirect evi-
dence that this lattice structure persists in the 1—2 Mbar
pressure range. The pair of hydrogen atoxns constitut-
ing a molecule can be thought of as a diimbbell, with
an average length which depends on the pressure. We
take the average pressure-dependent d»mbbell length to
be the equilibrium bond length of hydrogen xnolecules as
obtained from previous total-energy calculations. We

also use the results of those calculations to determine
the optimal c/u ratio of the hcp lattice. This structural
parameter tends to decrease with increasing pressure for
the low-energy ordered configurations (such as H-p), zs in
accordance with experimental measurements. In con-
trast, the higher-energy H-a structure prefers a larger
c/a ratio with increasing pressure. 2s

With 6xed molecule lengths and 6xed molecule cen-
ters at hcp lattice sites, there remain only two rota-
tional degrees of freedom for each molecule, the 8 and
P angular coordinates. Here we do not take the nu-
clear spin explicitly into account. Thus, no distinction is
made between ortho (total nuclear spin 1) and para (to-
tal nuclear spin 0) hydrogen molecules. At the pressure
range we will investigate, this distinction does not ap-
pear to be important, io'i4 and can therefore be neglected.
We have performed extensive total-energy calculations in
the space of the two angular coordinates using density
functional theory in the local density approximation
(LDA) with a plane wave basis with an energy cutoff up
to 52 Ry, and a dense grid of 144 points in the full Bril-
louin zone of the hcp lattice. Our total-energy studies
show that the 8 variable is associated with a much larger
constant of rotation: Changes in 8 orientation produce
energy variations several (approximately 5) times larger
than the energy variations corresponding to P motion.
This is demonstrated in Fig. 2 for molar volume 3.3
cm /mol. We notice that the barrier between 8 = 60'
and 8 = 120' is only a factor of 2 larger than the en-

ergy barrier for P motion, but due. to the symmetry of
the H2 molecule (the two protons are equivalent), these
two coxdigurations can be viewed as having the saxne 8
coordinate and P coordinates differing by 180'. Thus,
the energy variation in 8 (for fixed P) can be represented
by an expansion

VII (8) = Bz cos(28) + B4 cos(48) +

M(mRy/celll

0
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FIG. 2. Energy variations associated with rotations in the
polar coordinate 8 at fixed P = 30' (circles) and the azimuthal
coordinate P at fixed 8 = 60' (triangles). The solid lines are
Bts to the calculated values as described in the text.
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which provides an excellent fit to the calculated values
with the first four terms (see Fig. 2). It is physically
plausible that if the Vp potential has deep minima the 0
variable will be restricted to values close to its equilib-
rium (i.e., 80 ——60' or equivalently 120'). Restricting 0
to this value allows for a significant simplification of the
problem, both at the level of calculating energy difFer-
ences within the first-principles formalism (by reducing
the number of configurations required to determine the
parameters in the Hamiltonian), and at the level of per-
forming finite-temperature quantum simulations (by al-
lowing for much longer runs which reduce statistical fiuc-
tuations). In order to make the calculations tractable at
both levels, we will assume that 8 = 80 for all molecules.
We shall critically examine the effect of this approxima-
tion, first, by comparing the relevant values of coefficients
in the various potential-energy terms (below, in this sec-
tion) and second, by considering the effect of this con-
straint on the potential energy surface for a particular
case (in Sec. V). With this restriction in 8, only one de-
gree of freedom is left for each molecule, the variable P.
This system is described by the following Hamiltonian:

1 82
D)

. (
2 — l mi m2 m

l=p, 2,4

& Y„-(fl)Yi„-(~2)Yi', (f1) (5)

In principle, the range of interactions in V2 is unlimited.
In practice, we have found it convenient and adequate to
keep only first-neighbor interactions.

In order to make the physical meaning of these terms
more obvious, we have rewritten the l = 0 term as

and the t = 4 term as

(~) (2)
Q pQp

6r~ (6)

(m + ml + m2) 0& fl]. (ll0~ 4'1)) f12 (~0& $1)
describe the orientation of two molecules and 0 = (8, P)
is the orientation of the vector connecting their centers,
in a given coordinate kame. Because of the inherent
symmetry in the molecules (the two protons are equiva-
lent), li and l2 must both be even. Furthermore, if either
of them is zero, the corresponding term contains only one
P; variable, and should be included in the Vi term of the
potential energy. Thus, the lowest-order terms in V2 are

V„(4...P;„..., P,„). (2)
(Q pQ p 5Q pQp r rp

(1) (2) {1) (2)

f4=
I 6rs 3r~

&1(&g( "(
'R contains the kinetic energy associated with each P vari-
able and the potential energy which includes all possible
n-body interactions. Here D = 52/(m„d2), m„ is the
mass of the proton and d, is the pressure-dependent equi-
librium length of the molecule. We have found that by
retaining only the two lowest-order n-body interactions
(n = 1 and n = 2) in the Hamiltonian 'R we can obtain a
very reasonable representation of the proton interactions.

The n = 1 interaction term obeys the symmetries of
the underlying lattice, which for hcp gives the form

Vi (P) = As cos(6$) + Ai2 cos(12$) + (3)

li l2 lIy fD2 7A
l lg, lg, my, mg

x Yi, , (Qi)Yi, , , (02)Y,' (0), (4)

The coefficients As, Ai2, etc. , can be found by calculating
the energy of ordered structures in which all molecules
are rotated by exactly the same amount in P with all
other coordinates held fixed. We have performed such
calculations and found that to an excellent approxima-
tion only the first term (As) is needed, with the other co-
efBcients being at least two orders of magnitude smaller,
for all the densities we considered. In Fig. 2 we show
a typical fit to the calculated energies using the cos(6$)
term alone. En the following we refer to this term as
the "crystal field, " since it describes the energetics of
configurations that do not break the periodicity of the
underlying hcp lattice.

The n = 2 interaction term in its most general form
can be expressed as an expansion in spherical harmonics:

35Q pQ s r rpr~rs )(~) (2)

12r9

where Q 'p ——d
'

dp with dl'1(i = 1, 2) the unit vec-
tor describing the orientation of molecule (i) and r the
vector joining the centers of the molecules (1) and (2).
In the above expressions the Greek letter indices corre-
spond to Cartesian components of the vectors. The co-
efficient of fo is typically one order of magnitude smaller
than the coefficient of f4 This last .term, which is the
most important term in the Hamiltonian, is essentially
the quadrupole-quadrupole interaction, as would be ex-
pected for neutral homopolar molecules. This interaction
is believed to be responsible for the ordered low-pressure
and low-temperature structure of solid molecular hydro-
gen, the Pa3 lattice. Here we will demonstrate through
careful fitting to first-principles results that the same
type of interaction is important at high pressure. Fur-
thermore, we will establish the relative magnitude of the
different terms in this interaction which depend on the
volume (see below).

The coefBcients Cp, C2, C4 can be determined by con-
sidering molecule rotations that break the hcp lattice pe-
riodicity. Two such types of rotations are illustrated in
Fig. 3. The first type [Fig. 3(a)] determines the values
of Cl for interactions between out-of-plane nearest neigh-
bors in the hcp lattice (denoted below as Ci ), while the
second type [Fig. 3(b)] determines the values of Ci for
interactions between in-plane nearest neighbors (denoted
as Ci;). Before determining the values of Ci and Ci;,
the relevant crystal field contributions need to be sub-
tracted kom the total energy. We have performed exten-
sive first-principles calculations of the energetics of such
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FIG. 3. Molecular con6gurations used to calculate the dif-

ferent terms in the Hamiltonian. The solid lines join centers of
molecules that lie on one plane of the hcp lattice; the dashed
lines join centers of molecules that lie on the next plane along
the c axis. The curved arrows illustrate the motion of the
molecules considered in the calculations: (a) motion that de-
termines the out-of-plane coupling constants; (b) motion that
determines the in-plane coupling constants.
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rotations at various densities. We find that in general the
coefficients Co, C2 are much smaller in magnitude than|4. In particular, C2 is within the numerical noise of our
first-principles calculations, and we opted to neglect this
term.

Figure 4 shows the energy variations for rotations
that determine the coefficients C4; (the in-plane nearest-
neighbor interaction) and C4 (the out-of-plane nearest-
neighbor interaction) at a specific volume (3.3 cms/mol).
The energy variation due to the V2 term alone is shown

here, after the contribution of the crystal field has been
subtracted out. The fits obtained by the expansion in
Eq. (5) are rather satisfactory, given that the accuracy
of the first-principles calculations is of order I mRy/unit
cell. Figure 5 shows the dependence of the various coef-
ficients on the volume. We used simple smooth curves

AE (mRy/cell)

12
0 0 0 In-plane

o Out-of-plane

I rits

FIG. 4. Total energy vs azimuthal angle P for molecular
motions that determine the in-plane (dots) and out-of-plane
(squares) coupling constants in the Vz term of the Hamilto-
nian. The solid lines are Sts to the calculated values as de-
scribed in the text. The crystal Seld component Vj has been
subtracted out from the total energy. The in-plane results
have been shifted by 3 mRy/cell for clarity.

FIG. 5. The behavior of the leading terms in the crystal
field As (triangles), the in-plane nearest-neighbor interaction
C4, (circles), and the out-of-plane interaction C4 (squares),
as a function of molar volume. The lines are 6ts to the calcu-
lated points. The solid circles are the two lowest-order terms
in the polar angle potential Vo.

to fit the calculated values, so that simulations could
be performed at any volume in the interval between 2.3
and 3.3 cms/mol. As expected, all coefficients decrease
with increasing volume because the separation between
molecules becomes larger and the intermolecular inter-
actions weaker. In this figure we also display the two
lowest-order coefficients in the expansion Vo, Eq. (I), at
volume 3.3 cm /mol. The leading term in this expan-
sion (Bz) is much larger (by about a factor of 5) than
the coefficients of other terins in the potential (A's and
C's), indicating the large variation in the energy with
the polar angle 8 that was discussed earlier. It is also
noteworthy that the energy variation due to changes in
the polar angle becomes much more pronounced at lower
volumes (higher pressures), as was established by ear-
lier calculations. 6 Consequently, we expect the Vo term
to increase faster than the other terms. This supports
the approximation of restricting the polar angle 8 to its
equilibrium value.

Through this analysis, we have then obtained a Hamil-
tonian that describes the energetics of molecular motion
in solid hydrogen as an expansion in nearest-neighbor in-
teractions that obey the proper symmetries. Since these
interactions reproduce the results of first-principles cal-
culations with an accuracy comparable to the error bars
in such calculations, the Hamiltonian can be viewed as a
first-principles description of the system for the types of
motion considered here. We emphasize this last point, be-
cause our Hamiltonian will be able to capture neither the
molecular-to-atomic transition nor the metallic molecu-
lar phases. Both of these situations are expected to be
important near the high end (~ 2 Mbar) of the pressure
range we considered. Finally, all the structures we have
considered in the LDA calculations have nonvanishing
band gaps for the range of volumes under investigation.
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Thus, the relative energies that determine the coefficients
of the Hamiltonian are not affected by the well known de-
ficiency of the LDA to reproduce the magnitude of the
electronic gap. 24

III. PATH-INTEGRAL SIMULATIONS

With our interaction Hamiltonian we proceeded to per-
form simulations that take into account the quantum na-
ture of the rotational degrees of freedom (the P's). The
simulations are based on Feynman's path-integral formu-
lation for the propagator

P(zg, z2, P) = (zg e z2),

which in imaginary time ~ = i&N becomes

(8)

(mNI
P(xg, xz, P) =

( ( [dz]e
4, 2mhz

with the action 8 defined by

The integration f [dx] is over all possible paths with end
points (zq, zz). m is the mass of the particles in the
system and N is a large number of intervals into which
the inverse temperature P (or imaginary time iPK) is dis-
cretized. Equation (10) is formally equivalent to the par-
tition function of a system consisting of N beads, in-
teracting by harmonic springs of constant mN/(h2P2) in
an external potential (1/N)V(x). For our system each
coordinate z represents a collective set of variables (P, j,
while the mass of these particles is (2D/ sin eo)

We use the standard Metropolis algorithm to sample
the propagator P(z, x; P) through a Monte Carlo pro-
cedure, which then gives the probability distribution of
the variables (P;) at a given reduced temperature P
and density (the density determines the values of the
coefEcients As, C4;, C4, ... which describe the exter-
nal potential for the variables (P;)). We use N = 40
beads and sample the system for 2 x 10 MC moves
per bead (104 MC moves per bead were used for ther-
malization). We performed calculations for a system of
64 molecules arranged in an hcp supercell of four planes
with 16 molecules on each, and having periodic bound-
ary conditions. We have implemented the calculation on
a parallel processor computer (CM-2) but found that the
use of parallelism was of limited help. This is because
a mixture of local and global MC moves was necessary
for effective sampling of phase space. Global moves are
ideally suited for a parallel architecture, whereas local
moves are inefficient. The optimal ratio of global to local
moves (determined by experimentation) was 1:50, which
makes this particular system a poor choice for parallel
computations.

We examined a range of volumes from 2.3 to 3.3
cm /mol. In order to translate these volumes to pressure,

P (Mbar)

2.5

1.5

0.5
1.5 2.5

V (cm /mol)

3.5

FIG. 6. Experimental (Ref. 36) (dots) and theoretical (cir-
cles) equations of state for molecular hydrogen. The theoret-
ical EOS is an average over low-energy structures with polar
angle 8 = 60'.

we used both an experimentalM equation of state (EOS)
and a theoretically obtained EOS. These are compared in
Fig. 6. The theoretical EOS obtained &om our calcula-
tions lies below the experimental one, because it is based
on static calculations which do not take into account zero-
point vibrational and rotational motion. When the pro-
tons are treated quantum mechanically the theoretical
EOS is shifted to higher pressure values. ' As seen from
Fig. 6, the range of volumes we considered corresponds to
pressures of 0.55—1.60 Mbar (using the theoretical EOS),
or 0.75—1.86 Mbar (using the experimental EOS).ss For
each volume we calculated the properties of the system at
various temperatures. The main result of these simula-
tions is that there exist two clearly distinguishable phases
of the system: an orientationally ordered phase below
some pressure-dependent transition temperature T, and
an orientationally disordered phase above this tempera-
ture. The terms "orientational order" and "orientational
disorder" refer to the azimuthal angles P, , which are the
only variables in the Hamiltonian [see Eq. (2)]. For clar-
ity, we will name these phases azimuthally ordered phase
(AOP) and azimuthally disordered phase (ADP). A pic-
ture of the two phases can be obtained by superimposing
several instantaneous configurations selected among the
large number of MC steps of each run. Figure 7 shows
such superpositions of equal numbers of instantaneous
configurations for the case of (a) T ( T, and (b) T )T„'
there is an obvious qualitative difference between the two
cases, which allows us to label them "ordered" and "dis-
ordered" respectively. The precise ordering scheme in
the AOP, the nature of the ADP, and the nature of the
transition all show interesting features which we discuss
below.

In order to describe the system in the AOP and
ADP we first measured the correlations between nearest-
neighbor relative orientations. To this end, we defined a
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FIG. 7. Superpositions of instantaneous
con6gurations of molecules from typical
PIMC simulations: (a) the azimuthally or-
dered phase; (b) the azimuthally disordered
phase.

set of six neighbors for any given molecule (labeled 0 in
Fig. 8), three of them in the plane (labeled 1—3), and
three out of plane (labeled 4—6). This assignment allows
one to sweep over all the nearest-neighbor relative ori-
entations as the label 0 is successively attached to every
molecule in the system. The calculated distributions of
the nearest-neighbor relative orientations for T ( T, and
T & T, are shown in Fig. 9. For T ( T, both the in-

plane and out-of-plane correlations reveal the presence
of short-range order (SRO). The ordering scheme is il-

lustrated in Fig. 8. For convenience, we attach arrows
to the lines that represent the molecules, so that we can
discuss the ordering in terms of spins that can be "par-
allel" or "antiparallel. " The arrows point to the atom in
each molecule which lies above the ab plane. This assign-
ment is possible because the polar angle is kept fixed at
Ho

——60'. As seen in Fig. 8, neighbor 1 is parallel to
0, whereas neighbors 2 and 3 are at angles +vr/3. The
existence of two peaks is due to the fact that when the
label 0 is placed at one of the sites labeled 2 or 3 in Fig.
8, the sign of the relative orientation changes. Similarly,
neighbors 4 and 5 are antiparallel to the molecule at the
origin, while neighbor 6 is at a relative angle of +2z/3.
Again, the two peaks in the distribution of the relative
orientation of 0 and 6 are due to the fact that when label
0 is placed to the site labeled 6 in Fig. 8, the relative
angle between the molecule at the new origin and at the

2o=-5 ). ( o (&' —&o))
i=4,5,6

In-plane SRO Out-of-plane SRO

T(T
!

C

:4 5

i

0
.7

T& Tc

new site 6 has opposite sign than before. The width of
the peaks is independent of the temperature and is due
to quantum fluctuations. These fiuctuations are evident
in the representation of the ordered phase in Fig. 7(a).
The smooth distribution of points in Fig. 9 for T ( T,
indicates that our PIMC results are well converged in
terms of sampling of MC moves. We have found that the
PIMC data of Fig. 9 for T (T, fall on perfect Gaussian
curves, centered at the values described above, with a
half-width equal to x/4.

Another way of revealing the presence of SRO is
through the order parameters

1.2,3

FIG. 8. The ordering pattern in the azimuthally ordered
phase. The six in-plane nearest neighbors (dots connected
by solid lines) and the three out-of-pane nearest neighbors
(circles connected by dashed lines) of the central molecule
labeled 0 are shown. The arrow heads indicate the position of
the atoms that lie above the ab plane of the hcp lattice. The
view is along the c axis. The labels 1—6 identify the different
types of neighbors (see text).

FIG. 9. Short-range order as revealed by nearest-neighbor
correlations between any given molecule and its neighbors
labeled 1—6 shown in Fig. 6: in-plane (left two panels),
out-of-plane (right two panels), below T, (top two panels),
and above T, (bottom two panels); T is the transition tem-
perature for ordering. The various peaks correspond to the
ordering scheme of Fig. 8. The widths of the peaks are associ-
ated with quantum-mechanical Suctuations. Notice the non-
vanishing out-of-plane correlations for T ) T, (lower right
panel), which signiSes short-range order in the azimuthally
disordered phase (see text).
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with the position 0 sweeping through all sites in the sys-
tem, and the sites i = 1, . . . , 6 referring to the the nearest
neighbors of each molecule, as identified in Fig. 8. The
angular brackets denote an average over the simulation.
The order parameters 8I and 8~ measure the degree of
SRO for in-plane and out-of-plane neighbors respectively,
and are normalized so that a perfectly ordered classical
system would give 81 = 8~ = 1. Here (as well as in the
long-range order parameter defined below) the standard
1/M normalization, where M is the number of molecules
in the simulation cell, is implied. A plot of these order
parameters at a particular volume, as a function of re-
duced inverse temperature, is shown in Fig. 10.

In addition to the SRO revealed by the relative ori-
entations of nearest neighbors, there is long-range order
(LRO) in the AOP. This is seen through the behavior of
the order parameter

l: = (cos 2(go —4g)), (1S)

Order
parameters

1
e- —o In-plane SRO

Out-of-plane SRO

LRO
i7

I

0.5

0
a

0.5 l 1.5

FIG. 10. Behavior of the order parameters for long-range
order 6 (dots), in-plane short-range order 81 (circles), and
out-of-plane short-range order So (triangles) as a function of
inverse temperature P. The abrupt change takes place at the
same value of P for all three order parameters. Notice the
nonvanishing value of So at high temperature (low P values).
This calculation corresponds to volume 3.3 cm /mol.

where again the label 0 sweeps through all the lattice
sites and the angular brackets indicate an average over
the simulation. The angle Po is the absolute angle de-
scribing the orientation of a given molecule with respect
to the lattice. The label A takes two values that corre-
spond to the two possible orientations 4p of molecules on
a single plane in the ordering scheme shown in Fig. 8 (the
sites 1 and 2, for example). The factor of 2 in the cosine
of l'. is included so that one does not have to distinguish
between alternate planes: Since the relative orientation
of molecules on alternate planes in the AOP changes by
m (see Fig. 8), this factor makes all contributions to the
order parameter l'. have the same sign. Thus, l'. describes
the absolute orientation of molecules with respect to the
lattice. If all molecules are aligned in the same man-
ner, the relative orientation between two molecules at
any distance is fixed by their relative position on the lat-

tice. Consequently, if l. acquires a nonvanishing value,
the system has long-range order. The behavior of l: as a
function of reduced inverse temperature is shown in Fig.
10. The long-range order in the system disappears at the
same temperature as the in-plane and out-of-plane short-
range order. The ordered phase has the Pca2i symmetry,
compatible with the results of Nagara and Nakamura,
who found a configuration of the same symmetry to be
the lowest-energy ordered molecular structure within the
LDA.

There is one feature of the behavior of the order pa-
rameters that is intriguing: While the values of 81 and
2 vanish above T, (within statistical fluctuations), the
value of 8~ is not negligible in the ADP. This can also
be seen in the behavior of the nearest-neighbor corre-
lations for out-of-plane neighbors at T ) T, (see Fig.
9). Apparently, in the ADP a non-negligible out-of-plane
correlation is present, which tends to orient neighboring
molecules on alternate planes at a relative angle equal to
vr. This observation strongly suggests that the ADP can
be thought of as a phase with weak short-range corre-
lations, which bears some resemblance to liquid crystal
phases (see also Sec. V).

IV. TRANSITION TEMPERATURE
vs PRESSURE

We studied the temperature dependence of the order
parameters that describe SRO and LRO for the range
of volumes discussed earlier. The results are shown in
Figs. 11(a) and 11(b) for SRO (the in-plane and out-of-
plane order parameters respectively) and in Fig. 11(c)
for LRO. For all cases examined there is a transition
temperature at which there is an abrupt change in the
value of the order parameters. The transition temper-
ature is the same, no matter which order parameter is
used to define it, as in the case shown in Fig. 10. The
main result of these studies is that the transition tem-
perature increases monotonically with pressure. This is
to be expected, since the interactions become stronger
as the density increases (see Fig. 5) and more thermal
energy is needed to destroy the order.

We comment brie6y on the persistence of significant
out-of-plane SRO in the disordered phase, and its depen-
dence on temperature. The persistence of out-of-plane
SRO in the ADP becomes less pronounced as the density
increases: At the highest density (smallest volume) con-
sidered in Fig. 11(b), the SRO in the high-temperature
phase disappears very quickly with increasing tempera-
ture. This behavior is expected, since at higher densities
the transition temperature is also higher, so that when
the system passes to the disordered phase the thermal
energy is already high enough to destroy any remaining
weak out-of-plane short range correlations.

In Fig. 12 we summarize the behavior of the transition
temperature as a function of pressure. There are large
error bars associated with the values of the transition
temperature. These error bars arise &om two sources.
First, the determination of the transition temperature is
uncertain: The jumps in the values of the order parame-
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ters shown in Figs. 10 and 11 appear sharp when plotted
against the reduced inverse temperature P but the cor-
responding value of T, involves an uncertainty which is
equal to the difference in the P ~ values between the two
points closest to the jump. As the density increases, the
transition becomes less abrupt (this is most noticeable
in the lowest volume curves of Fig. 11). Thus, Rom the
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FIG. 12. Phase diagram for the AOP-ADP transition as
calculated (circles). The solid line is guide to the eye. The
temperature error bars come from the sharpness in the transi-
tion of the order parameter plots (see Fig. 11). The pressure
error bars come from the uncertainty in the equation of state
that was used to translate volume to pressure (see text). The
squares are from the calculation of Runge et al. (Ref. 40)
with error bars due to incomplete MC annealing. The ex-
perimentally known BSP and H-A transitions are shown as
dashed lines. The asterisk marks the point where the H-A
line appears to terminate, as measured by Raman scattering.

simulations alone, error bars in T, that increase with the
pressure are observed (see Fig. 12). This is a manifesta-
tion of 6nite-size efFects which become more pronounced
at higher pressure and temperature. A second source of
uncertainty is our method of translating density to pres-
sure: The experimental EOS is an extrapolation from
low-pressure rn.easurements. It is not clear how reliable
this equation is in the density range we are considering. A
change in the structure and orientation of the molecules,
which results in lower energy at compressed volumes,
could produce signi6cant deviations &om the extrapo-
lation of low-pressure experimental results. On the other
hand, the theoretical EOS is obtained &om static calcula-
tions and does not include zero-point motion. Thus, the
experimental EOS probably overestimates the effect of
zero-point motion, whereas the theoretical EOS underes-
timates it. In Fig. 12 we give the T, vs P curve obtained
&om the average of the two EOS, while the pressure error
bars indicate the difference between the two calculations.

2.3 V. DISCUSSION AND CONCLUSIONS

0
0.2 0.8 1.4

FIG. 11. Behavior of the (a) in-plane SRO, (b) out-of-plane
SRO, and (c) LRO order parameters as a function of inverse
temperature P, for the different volumes considered. Each
curve is labeled by the corresponding volume in cm /mol.

The potential energy of the Hamiltonian 'R of Eq. (2)
is related to a class of classical spin models studied ex-
tensively in the literature. The closest model to the
system studied here is that discussed by Bruinsma and
Nelson, which included crystal 6eld terms and nearest-
neighbor interactions of the XY type [cos(P; —P~), which
is contained in the fo term, Eq. (6)]. There are two im-
portant differences between that model and the Harnilto-
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nian studied here: First, both the crystal structure and
the nearest-neighbor interactions we considered are con-
siderably more complicated than a simple XY model.
Second, our model is a quantum-mechanical one, whereas
the model studied by Bruinsma and Nelson is a classical
one. Nevertheless, the behavior of the classical model
contained much of the physical behavior we observed
in the present model. A second-order phase transition
was found by Bruinsma and Nelson between a smectic-C
(tilted hexatic) and a stacked hexatic phase. These two
phases are characterized by LRO and SRO of the in-plane
orientations, whereas in our study we find phases char-
acterized by the presence or absence of in-plane orienta-
tional order (both SRO and LRO). Thus, the smectic-C
phase corresponds to the AOP described above, whereas
the stacked hexatic phase corresponds to the ADP phase.
Our numerical evidence suggests a first-order transition
between the two phases, whereas Bruinsma and Nelson
found a second-order transition in their classical model.
The difference may be due to the complicated lattice
structure of our model, which includes four sublattices
and may have a multicomponent order parameter. The
determination of the order parameter and the nature of
the transition in the model Hamiltonian Eq. (2) deserve
further theoretical analysis which is beyond the scope of
the present work.

A more recent theoretical study by Runge et al.
reported PIMC calculations on solid molecular hydro-
gen at high pressures. The intermolecular interactions
were based either on a pair potential fitted to dilute gas
data, or to first-pnnciples calculations for solid phases
of molecular hydrogen in cubic lattices. There are sev-
eral important differences between the present study and
the work of Runge et al. First, diferent Hamiltonians
were used in the simulations. We have restricted the
phase space to the azimuthal angular coordinates of the
molecules, whereas the potential energy of Runge et aL
contains both angular coordinates for each molecule. Sec-
ond, the interaction terms in our Hamiltonian incorpo-
rate explicitly all the proper symmetries of the hcp lat-
tice, whereas Runge et al. have a general interaction
term, the coeKcients of which were fitted by performing
first-principles calculations on fcc lattices. Third, both
the molecular bond length and the c/a ratio of the hcp
lattice were optimal for each volume in our calculations,
while they were kept fixed at their ideal (zero-pressure)
values in the study by Runge et aL As a consequence
of these diAerences in the model, quite difI'erent behav-
ior is obtained for the system. The results of the two
calculations are compared in Fig. 12. We obtain signifi-
cantly higher transition temperatures than Runge et al.
We note that our error bars have a dig'erent origin than
those reported by Runge et a/. In particular, both the
temperature and the pressure error bars in our study are
independent of statistical errors, whereas Runge et al. at-
tribute their error bars to imperfect MC annealing. Our
PIMC are long enough (see Sec. III) to essentially elimi-
nate statistical errors. However, neither the temperature
value nor the pressure value can be better determined
by better statistics. The uncertainty in the temperature
comes &om a smoothing of the transition which is more

pronounced at higher temperatures and is the result of
finite-size efI'ects. The uncertainty in the pressure comes
from using two different EOS for the system; at this point
it is not clear which is a more realistic EOS at high pres-
sure.

The most important restriction in the present simu-
lation is that of the polar angle 0. As argued in Sec.
II, this is a meaningful approximation for a strong polar
confining potential. In Fig. 13 we show the confining
potential for the polar angle, for a given azimuthal an-
gle (P = 30'), and its ground state energy and wave
function magnitude, obtained numerically by a quantum
Monte Carlo method. The wave function magnitude is
very strongly peaked in the region 60 & 0 & 120'. In
Fig. 14 we display the potential energy as a function of
polar and azimuthal angles for the molecular hcp crys-
tal. It is clear from this figure that the dependence of
the potential on the azimuthal variable in the range of
60' ( 0 ( 120 is essentially the same as that for 0 = 60',
with small variations in the overall magnitude. Thus, re-
stricting the variable 0 to 60' exaggerates the strength
of the azimuthal potential, without altering its shape.
In this sense, inclusion of the polar angle as an inde-
pendent variable would not alter the topology of the en-

ergy surface. Therefore, the efI'ect of restricting the phase
space of our Hamiltonian to one angular coordinate per
molecule results in renormalization of the coupling con-
stants, which displaces the ADP-AOP line away from
its physical position. When additional degrees of free-
dom (such as the polar angles or the bond lengths) are
taken into account explicitly, the coefBcients in the Vj, V2

terms will be renormalized to lower values and the con-
tributions to the kinetic energy will increase. This will
make it easier to remove the orientational order, thereby
requiring higher pressure to restore order at fixed tem-
perature, or less thermal energy to destroy order at fixed
pressure. The net eKect will be a shift of the AOP-ADP
line toward higher pressure and lower temperature.

Experimentally, at least two transitions between difI'er-

AE(mRy/cel1)

I I I I I I I t I 1 I I I I

30 60 90 120 1SO 180
Rotation angle (degrees)

FIG. 13. The energy and wave function magnitude of the
ground state in the Vo potential.
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FIG. 14. A taro-variable plot of the energy
variation as a function of polar and azimuthal
angles for the molecular hcp lattice at volume
3.3 cm /mol.

ent phases have been reported at pressures in the range
between 1 and 2 Mbar for solid molecular hydrogen. One
transition at 1.1 Mbar has been called the broken symme-
try phase (BSP) transition, and a different one near 1.5
Mbar has been called the hydrogen-A (H-A) transition. ~o

Both transitions are characterized by discontinuities in
the vibron frequency. At low temperatures, the vibron
&equency discontinuity is 10 cm for the BSP tran-
sition and much larger ( 100 cm ~) for the H-A transi-
tion. Moreover, the discontinuity exhibits interesting be-
havior at the H-A line: the vibron discontinuity as deter-
mined by Raman scattering disappears at approximately
1.7 Mbar and 140 K. The origin of the H-A transition
is controversial, and has been linked to the possi-
ble onset of metallic behavior in the system. 6

Additional transitions in this range cannot be ruled out.
As far as the ADP-AOP transition which we have de-

scribed above is concerned, it cannot be unambiguously
related to either the BSP or the H-A transitions. Both
the BSP and the H-A transitions lie much below the line
obtained in our simulations (see Fig. 12). Furthermore,
the ADP-AOP transition we have described involves a
symmetry breaking: In the ADP the symmetry is that
of the hcp lattice whereas in the AOP a lower symme-
try structure is found (Pca2q). Silvera4s has argued
&om general symmetry considerations that the H-A line
should not involve a symmetry breaking transition if the
line terminates at a critical point. This argument would
preclude the identi6cation of the AOP-ADP transition
with the H-A line. However, recent experiments show
that the in&ared activity increases dramatically when the
H-A line is crossed. Although this has been interpreted
as signifying a qualitative change in the occupation of
electronic states, it could also be due to a symmetry
breaking. If symmetry breaking is involved, additional
phase boundaries should exist in the neighborhood of the
point where the H-A line appears to terminate. This

region of the phase diagram needs to be examined in
greater detail in order to establish all the phase bound-
aries. The BSP line, on the other hand, does involve a
symmetry breaking and could, in principle, correspond
to the ADP-AOP transition.

In conclusion, we have shown that a realistic Hamilto-
nian for molecular interactions in dense solid hydrogen
gives rise to a transition between an orientationally or-
dered and an orientationally disordered phase, where the
order refers to the azimuthal rotational coordinates, at
pressures in the range 0.5—2 Mbar. The available infor-
mation on structural transitions in this range does not
permit the unambiguous identi6cation of the ADP-AOP
transition with either the BSP or the H-A transitions that
have been observed experimentally. Alternatively, the
ADP-AOP line may correspond to an unidenti6ed tran-
sition which remains to be found experimentally. The
strong breaking of the symmetry in this transition should
make it easily identi6able by in&ared or Raman spec-
troscopy. We expect that at least a new in&ared line
should appear when the AOP is obtained due to the
breaking of symmetry. 4
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