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Instanton approach to the lattice polaron problem
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Starting from the path-integral approach to the process of tunneling in the presence of phonons we de-

velop a theoretical procedure for the calculation of the bandwidth of the small-radius polaron in a one-

dimensional crystal lattice. A two-site analog of the Holstein molecular crystal model is explored to
study the tunneling character in the limit of small phonon frequencies. We do not observe any change-
over from the regime of Frank-Condon type of bandwidth renormalization to the so-called adiabatic re-

gime anticipated in the molecular crystal model.

I. INTRODUCTION

An electron interacting with elastic deformations of
the host lattice is usually called a polaron. From the
theoretical point of view, the study of a single polaron is
equivalent to the study of a particle moving in a periodic
potential and interacting with a phonon field. In this
general sense the problem appears to be relevant to a
wide class of phenomena in solid state physics including
the physics of excitons, ' the behavior of defects in alkali
halides, and light interstitials in metals.

An enormous literature (see, e.g. , Refs. 1, 2, 5, and 6) is
devoted to the properties of the polaron systems which
have now been studied for more than five decades. It is
well known that the ideas of polaron theory for Jahn-
Teller compounds have played a stimulating role in Bed-
norz and Muller's experiments crowned by the discovery
of high-temperature superconductivity (HTSC). There-
fore it is not surprising that the strong-coupling polaron
theory is considered by a number of authors ' to be
the basis for understanding this new phenomenon.

In the strong-coupling limit as the size of lattice distor-
tion becomes comparable to the lattice constant, one is
speaking about a small polaron state as a nearly localized
("self-trapped") state. This means an electron moving to-
gether with the surrounding phonon cloud in a narrow
polaronic band. The width of the latter is usually expect-
ed to be considerably reduced with respect to the bare
electron bandwidth by the oscillator wave function over-
lap factor being known in the literature as Debye-%'aller,
Frank-Condon, or Lang-Firsov renormalization factor.
The value of the polaron bandwidth appears to be a very
important parameter for all the properties of small pola-
ron systems, and in particular in the role which they may
play in the superconducting state of high-T, material.

It is commonly accepted that all the essentia1 physics
of the small polaron state can be adequately described on
the basis of Holstein's molecular crystal model (MCM)'
containing the minimal set of important parameters for
the interacting electron-phonon system. In the simplest

version these are the phonon frequency coo of molecular
vibrational breathing mode, the polaron binding energy

Ez, and the nearest-neighbor tunneling matrix element J.
The parameter space of MCM is described by a plot of
Fig. 1 which turns out to be helpful in analyzing the
different regimes of polaron problem. The phonon renor-
malization factor is given by the exponential function of
the dimensionless interaction constant g =E~/too which

may become large in the small polaron region determined
by

E ~1.

The latter inequality defines the strong-coupling limit and
is known in the polaron literature as the condition for
small polaron formation.

As was argued by Holstein, ' the phonon overlap fac-
tor exp(g ) governs the bandwidth renormalization in the
so-called antiadiabatic regime when the phonon frequen-
cy is quite large. In the opposite case of small phonon

0

FICx. 1. Two-dimensional parameter space of the molecular
crystal model.
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frequencies one comes into the adiabatic regime with a
different type of expression for the polaron bandwidth.
According to Holstein the crossover between the adiabat-
ic and the antiadiabatic regime is given by J-gcoo (see
dashed-dotted line in Fig. 1), this estimate being obtained
by equating two different expressions for the bandwidth.

There is also another ad hoc prescription for the cross-
over to occur at J-coo (Ref. 2) which seems to be ques-
tionable since it does not depend on the interaction
strength. For an example of quite a different point of
view we refer to Ref. 15 where only the phonon overlap
type of renormalization was anticipated for the entire
small polaron region given by Eq. (1).

The purpose of the present paper is to discuss the small
polaron properties starting from the more theoretically
justified description of the tunneling process in the pres-
ence of phonons. Such an approach was initiated by
Sethna' (see also Ref. 17) and may be considered as a
generalization of Feynman path-integral formalism to the
lattice polaron problem. This description is based on (i)
the concept of tunneling as a quasiclassical motion along
an (instanton) path in an configurational space and (ii) the
field theoretical methods for locating this path for the
tunneling entity. The method of integrating out the pho-
non variables (which is due to Feynman) reduces the
problem to that of the motion of a particle in the effective
potential with an additional retarded self-interaction
term. The main di5'erence from the MCM and most oth-
er theoretical approaches is that here the bare tunneling
amplitude J is not introduced as a given parameter con-
taining "all" the information about the tunneling in the
rigid lattice. It is, on the contrary, a calculable quantity
which moreover appears not to be of very crucial impor-
tance for the analysis of tunneling process in the presence
of phonons. As was pointed out by Sethna, the trunca-
tion of a noninteracting particle Hamiltonian to a matrix
containing only one parameter J (being a prerequisite of
MCM), referred to by him as "truncation approxima-
tion, " may lead to substantial oversimplification of the
model resulting in the loss of its physical significance un-
der certain conditions. We present here evidence that
precisely this might happen in the above mentioned "adi-
abatic" regime of small polaron tunneling.

In the following section of this paper we provide a gen-
eral description of the path-integral approach to the one-
dimensional lattice polaron problem in the zero-
temperature limit. An essential part of the calculation
dealing with Euclidean action, the most important quan-
tity entering the formula for the polaron bandwidth in
the exponential form, is given in Sec. III. We also give an
approximate expression for the preexponential factor
thus providing the possibility of evaluating the polaron
bandwidth explicitly. Section IV contains the qualitative
analysis of the two-site polaron model which serves as a
good teaching example for any lattice polaron theory.
The formalism is developed in close analogy with the
molecular crystal model. The question of small polaron
crossover from "adiabatic" to "antiadiabatic" regime is
of special concern in this section. We cannot find any
physical reason for this crossover to take place. More-
over, there is also no indication for the bare polaron

bandwidth to be of any significance in the discussion of
this crossover.

II. GENERAL DESCRIPTION OF
THE INSTANTON APPROACH

—
A, gq„W(x —x„) . (2)

Here p and M denote the mass of the electron and of the
vibrating molecules, respectively, A, is the strength of the
electron-phonon interaction, chosen with its usual linear
in q dependence; W(x —x„)describes the electron-lattice
interaction as a function of the distance of the electron
from the nth molecule and is assumed to have maximal
value at x =x„: W(0) = l. In order to have a close anal-

ogy with the Holstein model, W(x —x„) is supposed to
vanish for ~x

—x„~)a/2 (a is the lattice period) al-

though the general formalism does not depend on this as-
sumption.

The statistical density matrix for the system

p(x, Iq„);x', tq„'I;p}
—PE (k)

„(x,I q„J PP' k (x', I q„' ) }e
m, k

(3)

where m is the electron band index and k the electron
momentum, contains only low-lying energy levels, when
considered at low temperature (p~m). We assume
those to have a narrow band structure with the renormal-
ized (polaron} tunneling amplitude J being much smaller
than the phonon frequency cop,

J &&cop . (4)

It should be noted that this inequality, serving as a cri-
terium for validity of the formalism developed here, does
not imply the smallness of the bare electron tunneling
amplitude J as compared to cop.

With the inverse temperature P going to infinity, only
the lowest polaron band contribution survives in Eq. (3).
Restricting ourselves to this limit we integrate formally
over the Iq„) variables taking for simplicity q„' =q„=q„o
and transfer the sum over k into the integral thus arriv-
ing at the result

a dk, —PE,(k)
p(x, x', p)p „~ pk(x, x')e2'

where yk is a temperature-independent function.
The same quantity on the other hand has the

equivalent path-integral representation

We start with the Lagrangian I. for a single electron
specified by a coordinate x, moving in a one-dimensional
periodic potential V(x) of a host lattice of vibrating
molecular units located at the minima of V(x): x =x„
(the internal degrees of freedom of these vibrating molec-
ular units are denoted by q„)

l. =
—,'p,x —V(x)+ —M g (q„—cooq„)

1
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I

P(»x'p) = f"Dx (&)f +"g dq„of '" '"' g Dq„(r)e
n Il NO

with

(6)

S&=f dr. p—x (r)+V[x(z)]+—Mg[q„(r)+co&q„(r)]+A, gq (r)W'[x(r) —x ]
n n

(7)

being the Euclidean action of the system.
It is a textbook result of Feynman' that the integration over the phonon trajectories can be carried out explicitly

leading to the one-electron problem with a retarded self-interaction term in the efective action:

p(x, x', P) =p q(P) f Dx (r)exp[ —S,s[x(r)]], (8)

A,
2

S,~[x(r)]=f dr[ ,'px'(r-)+ V[x(r)]]—g f f dr dr'G(r r') W—[x(r) x„]—W[x(r') x„],——P/2 4M coo —pi2

G(o }=[n~&e +(n b+1)e ' ], n z=(e —1} (10)

The factorized out bare-phonon matrix density

COO

p „(p~oo )~exp —pg
n

contributes with the oscillator zero-point energy to the
ground state energy of the whole system and will be
neglected for the following discussion.

Defining the position of the nth molecule to be

x„=a(n —
—,
' ), n =0,+1,+2, . . . , (12)

pX = V'(x) . (13)

To make use of the known analytic solution of this equa-
tion for the double-well potential

'2

we need to consider p( —a/2, a/2;P) as the quantity
which contains the entire information about the electron
tunneling process from one molecular site to another.

A good description of the calculation of the electron
bandwidth in the instanton approach without phonons
can be found in. ' The basic entity is the one-instanton
tunneling trajectory of the particle, starting at
~= —p/2~ —oo at n =0 site and finishing at
w=+p/2~+ oo at the adjacent n =1 site. When there
is no interaction with phonons this trajectory is deter-
mined from the classical equation of motion in the invert-
ed potential —V(x ):

7 f
Ny

(18)

which it takes the particle to move through the potential
barrier between adjacent sites. The increase of v& leads
to the increase of action due to the potential energy term,
while the decrease of v& increases action via the kinetic
energy term. From the balance of these two contribu-
tions one can easily estimate ~I (Ref. 17) and get the re-
sult corresponding to Eq. (15) up to a minor numerical
factor.

An instanton calculation of the particle bandwidth im-
plies the condition

J +(N)

which means that the Qip time has to be much less than

I

where So, the value for the minimum action, correspond-
ing to the instanton path (15), is given by

16 ~o
So= (17)

3 coy

The quasiclassical description works well for So & 6.20

The important physical quantity entering the discus-
sion is coI which represents twice the electron ground-
state energy in the effective single-well potential of one
molecule. According to (15) it defines what Sethna calls
the Hip time

4x
Vg (x)= Vo 2

1
a

given by

(14)

a coI
x (r) =—tanh r, coI =41/ 2Vo/pa (15)

we fix the host lattice potential V(x) by iterating the tun-
neling barrier part of Vz (x) periodically along the x
axis (see Fig. 2}. The bare tunneling matrix element J
which is simply by a factor of 4 smaller than the electron
bandwidth is expressed as' '

a/2

—
SOJ=coI+6So /m. e (16)

FIG. 2. The periodic host lattice potential of the one-
dimensional polaron problem.
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To proceed with the calculation of the tunneling ampli-
tude one has to find the paths for which the action (9) has
a local minima. It seems plausible that such a path
describing a single tunneling event between the sites n =0
and n =1 will have the same qualitative behavior as that
given by Eq. (15) but with the only important difference
in the value of "renormalized" flip frequency cof which
replaces the bare flip frequency cof. While the precise
effect of the retarded interaction term in Eq. (9) can be
studied numerically, as it was shown by Sethna' there
are at least two natural approximations which can be
treated on the qualitative level. These are the slow- and
fast-flip approximations.

The slow-flip approximation which appears to be good
for the case of tunneling of heavy defects' ' corresponds
to large values of phonon frequency coo. Roughly speak-
ing, when coo is the highest frequency of the problem
(600 ))cgf ), one can replace 6(o ) in Eq. (9) by 25( cr ) /cop

thus arriving at

S,s[x(r)]=fdrI ,'px (r)—+U[x(r)] —E ]

=Si«,i[x (r)) PE-
U(x)= V(x) Eg W (—x —x„)—1

(20)

where U(x) is the effective potential experienced by the
particle instantaneously followed by the lattice and

E~ =A, l2Mcoo is the previously mentioned polaron shift.
The effective potential U retains the translational symme-
try of the lattice and if it has no unexpectedly large devia-
tions from V, the resulting flip time will be of the same
order as the initial one. A substantial change of the basic
trajectory and the flip rate can be imagined for some
peculiar forms of 8'and unreasonably large values of po-
laron shift E, comparable with the ground-state energy
of the particle in a single well. We shall not deal with
such a situation in this paper.

What is of much greater interest for the polaron prob-
lem is the second, fast-flip approximation corresponding
to cop « cof . Before analyzing this limit it is convenient
to transform Eq. (9) for S,e using the relation

=2 1 86(a)= 5(o)+ 26(o) .
COQ COO BcT

The first term on the right-hand side (rhs), as in the
slow-flip case, gives rise to the effective potential U(x),
while the second one, after a double partial integration,
results in a velocity dependent nonlocal contribution to
the action which can now be rewritten as

S«[x(r}]= PE~+S [x (r)]—, (21)

the time ~L -J ' spent by the particle on the site be-
tween two subsequent tunneling events. This is known as
the dilute instanton gas approximation and insofar as it
remains good for the bare electron problem due to the
large value of SQ one expects no diSculty when the in-
teraction with phonons is turned on.

III. ONE-DIMENSIONAL POLARON BANDWIDTH
AT ZERO TEMPERATURE

S [x(r}]=S, ,) [x (r) ]

+—g2$ f fdrdr'G(r —r'}8'„'[x(r)—x„]

X W„'[x(r') x—„]x(r)x(r'),
(22)

with S&«& being the same as in Eq. (20). In the fast-flip
limit the main contribution to the nonlocal part of
S [x(r)] comes from the flip region of the instanton tra-
jectory: v —r' & cof

' «cop '. To the leading approxima-
tion one can replace 6(cr ) by its maximum value

2n~h+1=6(0)~1 (P~ «) thus arriving at the result

S[x(r}]=S„„&[x(r)]+g (23)

5S
5x(r)5x(r') ' (25)

evaluated on the classical instanton trajectory. We esti-
mate the preexponent of (24) by using as a guideline the
analogous procedure for the bare tunneling process
presented in Ref. 20. At the first step one introduces a
somewhat simpler "reference" operator Bo =B[x(r)
=x ] corresponding to the particle motion in the vicini-

ty of the arbitrary minimum of the effective potential
U(x). Omitting for the time being the polaron shift fac-
tor exp(PE ) one has

Bearing in mind that the polaron tunneling amplitude
J is exponentially dependent on S, one immediately
identifies the g term in Eq. (23) with the phonon overlap
renormalization factor of the small polaron theory. It is
noteworthy that in analogy with the slow-flip case (up to
not so much important difference between U and V po-
tentials}, there is no considerable change in the instanton
trajectory and the corresponding flip rate in the fast-flip
regime. This might seem questionable in view of the ap-
parent possibility of having very large values of g upon
decreasing the phonon frequency. From a first glance
analysis of the nonlocal contribution in Eq. (22) one could
expect to get a sizable reduction of this term by causing
the electron to have a small velocity, which means mak-
ing it wait for the lattice motion. This is exactly what
one supposes to occur in the adiabatic regime cop~0. We
shall postpone any further discussion of this question to
the next section.

If the classical instanton trajectory x,&(r) which gives
the minimum value to the effective action Eqs. (9) or (20)
is found, the WKB expression for the path-integral Eq.
(8) with p~h having dropped out reads

p( —a I2,a 12;P)=e ~ Dx (r)e
PE +a/2

—a/2

=e ~N[DetB[x,&(r)]] '~ e

(24)

The preexponential factor takes into account the quadra-
tic fluctuations in the vicinity of x,&(r). Apart from the
correctly determined norxnalization constant N it con-
tains the determinant of the nonlocal differential operator
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p( —a /2, a /2;P)

DetB [x„(r)]=N [DetBO ]
DetBO

(26)

p( —a /2, a /2;P) =N [DetBO]

+~«a dk;k, P[E +&J«s[«]l
X e ''e

—m. /a 2'

with S,&
being a shorthand notation for the action at the

instanton trajectory. An important property of B[x,&(r) ]
(but not of Bo) is the presence of a zero eigenvalue which
makes Eq. (26) formally divergent. This arises from the
apparent invariance of the original Lagrangian with
respect to time shifts. The shift of the instanton center
r~(r r, )

—in Eq. (15}cannot result in any change of ac-
tion. Intuitively it should seem obvious that the instan-
ton must enter Eq. (24) in the form of an integral over the
position ~, of its center. Separating out this part of the
path integral is equivalent to the substitution

(32)

In Eq. (32) we have put back the previously omitted pola-
ron shift factor. Comparison of this expression with Eq.
(5) provides a strict identification of J, Eq. (29), with the
renormalized polaron bandwidth.

The only quantity undetermined up to now remains the
determinant of the Bo operator. When the interaction
with phonons is turned off this is reduced to the deter-
minant of the harmonic oscillator

N[DetBO] ' =gpcof /me f, (A, =O, P~ oo )

(33)
DetB [x,&(r) ]

DetBO

—1/2

Det'B [x,t(r)]
DetBO

—1/2

gS,) /2m dr, , (27)

contributing with the ground-state energy of a particle lo-
calized in the single potential well of the molecular site.
We develop an approximate method of DetBO calculation
in the Appendix. Here we quote the result which reads

N[DetBO] '~ =Q(p/n ko, co2/canoe (34)

which appears to be of rather general importance in the
instanton calculus. In Eq. (27} Det' denotes the reduced
determinant with the zero eigenvalue having been re-
moved. For the simple double well Eq. (14} the curly
bracket on the r.h.s. of Eq. (27} is equal to ~12cof.
This result is the same for our choice of V(x) (Fig. 2)
when the interaction with phonons is switched off. As-
suming the results with interaction turned on to be not
too much different from this value, we write down the
final expression for the one-instanton tunneling amplitude
which included all the classical trajectories in interval
d~, near ~, =0:

p( —a /2, a /2;P), „,;„„

Eo(k) = E+—,'(co)—+co2 —a)0) —2J cos(ka) . (35)

All the quantities entering this formula can be evaluated
explicitly. As it was pointed out in the preceding discus-
sion the developed formalism remains valid as far as re-
normalized bandwidth J remains small compared with
the frequency of phonon vibrations and the flip frequency
of the tunneling particle.

with frequency parameters co, 2 being given by Eq. (A9).
After the substitution of this expression into Eq. (32) one
can readily obtain the dispersion of the polaron in its
lowest energy band

=N[DetBO] ' (+6S,, /ne "cof )dr, . (28) IV. ON THE EXISTENCE OF ADIABATIC REGIME
FOR SMALL POLARON TUNNELING

The quantity

J=cof+6S,&/ne (29)

(31)

one can easily rewrite Eq. (30) as

has the meaning of an instanton density in the time space.
Direct integration of Eq. (28) over dr, which is

equivalent to replacing dr, by p yields an expression for

p up to a good approximation as long as pJ remains
much less than unity. As p tends to infinity one has to
consider multi-instanton (anti-instanton) paths ' thus
arriving at

J )n +t7

p( —a/2, a/2;p) =N[DetB0] '~2 g 8
n, n

(30)

Using the identity

When discussing polaron properties one is usually con-
cerned with the self-trapping transition between large-
and small-radius polaron states. In the framework of the
MCM presumably the most natural way to study this
transition region is to analyze the behavior of the
relevant quantities along the horizontal line 1 in Fig. 1,
that is to calculate them as a function of the effective cou-
pling E /J for a fixed value of the adiabaticity parameter
co&&/ (Jsee, e.g., Ref. 15). Extensive studies in this direc-
tion were carried out in the context of the two-site pola-
ron problem ' which represents the simplest version
of the MCM, containing all the important features of po-
laron states.

Less attention was paid to the changeover of polaron
properties as a function of phonon frequency when the
strength of the interaction with phonons remains Sxed.
As mentioned in the Introduction, it is generally believed
that the so-called adiabatic regime exists for suSciently
small values of ~0. However, no concensus has emerged
up to now clearly defining the boundary of this regime
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within the relevant parameter space. It is the purpose of
this paper to discuss this question starting from the
path-integral approach to the two-site polaron problem.
In this case there is only one phonon mode (of the two}
which couples to the electron motion between the two
molecular sites. ' This enables us to write down the
corresponding Lagrangian function as follows:

approached by the condition (1) in the Holstein model
and corresponds to a strong reduction of the tunneling
amplitude (J & coo } either by the phonon overlap ex-
ponent or via some other renormalization law in the-
presumably existing —adiabatic regime.

The expression for the Euclidean action which is strict-
ly analogous to our previous expression Eqs. (21}and (22}
reads

l.= —,'JMx —V~ ~(x)+ —,'M(q —
cooq ) — q4(x),

&2

(36)

where

4(x)= —4( —x)=—W(x —xo)—W(x —x, )

S [x (r)]=S)„,([x (r)]+S„,„)„g[x(r)],

S)()qg[ x( r)]= f dr( ,'Ijx (r—)+Vd ~[x(r)]

,'E {—4—[x(r)]—1]),

(37)

(38)

(a)

—a//'2
I

I

I

I

I

I

I

I

I

-a//'v

a/v a/8

describes the effective interaction of electron with the
out-of-phase q =(qo —q, )/+2 vibrational mode involv-

ing the n =0 and n =1 sites.
To retain the analogy with the Holstein model as much

as possible, 4(x) should be taken as approximately con-
stant (%1) in the vicinity of the sites (x =+a/2) and
display some transitory behavior near x =0. A smooth
curve 1 depicted in Fig. 3(a) may be quite adequate in
representing all the necessary features of 4(x). Curve 2
with v as a free parameter will be used in our further
analysis as a convenient explicit parametrization.

We intend to consider the small polaron limit which is

S„,„&,~&[x(r)]=g —f f dr dr'4„'[x(r)]4„'[x(r')]
—~ol~—wlXx(r)x (r'}e

(39)

where the zero-temperature limit is used from the very
beginning in as far as the quantities under consideration
must remain finite when P tends to infinity. The polaron
shift E~ =g coo—being independent on M—is taken to
be fixed as well as all other parameters which enter Eq.
(38} for the local part of the Euclidean action. By de-
creasing the phonon frequency, that is by going down
along the vertical line 2 in Fig. 1, one gets an unlimited
increase of g which multiplies the nonlocal contribution
to the action, Eq. (39). We need to verify whether or not
the corresponding growth of $„,„&~,& may be compensat-
ed by an appropriate decrease in the particle velocity
x(r) which is controlled by the flip-time parameter of the
instanton trajectory. If this happens one can think of the
electron as waiting for the lattice to move in the process
of transition across the barrier.

We assume the classical trajectory, giving the
minimum value for the efFective action Eqs. (37)—(39), to
have the same qualitative time dependence as that of Eq.
(15}. The flip frequency has possibly a different value

Nf fcof with g being the frequency renormalization pa-
rameter. We proceed further by parametrizing 4(x) ac-
cording to Fig. 3(a} (curve 2) as

vx /a if ~x ~

~ a /v
+1 otherwise, (40)

where v is supposed to be large (say not less than 4). As a
result only a small region of the instanton trajectory be-
ing essentially linear in ~,

(41)

FIG. 3. (a) The electron-phonon interaction intensity as a
function of the electron coordinate in the two-site polaron prob-
lem. (b) The classical (instanton) trajectory describing a single
tunneling event.

contributes to the nonlocal part of the action [see Fig.
3(b)].

From Eqs. (39)—(41}one easily gets

where
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0 4

Q)f V

o 4

Nf v
(43}

The integral on the rhs of Eq. (42) has an upper bound
equal to unity corresponding to a=0 and decays as 1/a
for large a. For our estimates we find it convenient to
parametrize Eq. (42) in the simplest approximate form
I = 1/(1+a) which is expected to work well in both the
small and, most importantly, the large a regions.

For the reasonable values of E and the proposed form
of 4(x) one can hardly expect the effective potential con-
tribution arising from the electron-phonon interaction to
play an important role in S&„„. We therefore shall ig-
nore in the following the term in Eq. (38) proportional to
Ep Thus, the essential part of S~„,& is related to the bare
potential and the kinetic energy terms. For the instanton
path Eq. (15) both of them contribute equally to So [Eq.
(17)]. The rescaling of the flip frequency (cof ~gcof ) can
be easily treated by a corresponding rescaling of the time
variable leading to S„„,=So(g+g ')/2.

As a result we have the following expression for the
effective action of the two-site problem:

S [x(~)]=—So g+ —+g21 1
(44)

The value of g which minimizes S is determined by the
equation

1 2gh 1

S, (g+g)2
' (45)

One readily finds that the solution to Eq. (45) obeys the
inequalities

'1/ 1 —2g'6/So g 1 (46)

with the lower boundary being determined by the ratio

2g 6
So

2E 4 3E 4—«1
a)fS0 v 8 Vo v

(47)

This appears to be remarkably independent of coo and is

inevitably small as long as E «Vo.
We thus come to the conclusion that the flip frequency

remains essentially unchanged when mo tends to zero,
providing the fast-flip approximation and the exp(g )

type of bandwidth renormalization works well in this lim-
it. We find no indication for an adiabatic regime within

this path-integral approach for the local type of electron-
phonon interaction which characterizes the MCM.
There is, moreover, no indication for the bare electron
bandwidth to be of primary importance for our discus-
sion of tunneling properties.

V. CONCLUSIONS

Starting from the path-integral approach to the quan-
turn tunneling process in the periodic potential we have
developed a theoretical formalism describing the band
motion of a particle in the presence of phonons. By ap-
plying this to the lattice polaron problem we have pro-
posed a method for direct evaluation of polaron band-
width in the small polaron regime of the one-dimensional
analog of Holstein's molecular crystal model. The initial
(bare) tunneling amplitude appears to be of minor
significance in extracting the important physical features
of the system, which are primarily determined by the
value of the lip-time parameter being absent in the
canonical picture of polaron motion. We definitely do
not observe any changeover of tunneling properties when

entering the region of adiabaticity however small coo

might be. The fast-fiip (Frank-Condon} approximation
with a bandwidth controlled by the phonon overlap is
found to cover the entire parameter space which general-

ly is considered to be governed by the adiabatic approxi-
mation. For the local type of electron-phonon interac-
tion one can see no "driving force" which could make the
electron slow down its across-barrier transition in adjust-
ing to the motion of the lattice.
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APPENDIX

We present here the expressions for the differential
operators B and Bo and propose a procedure for the cal-
culation of DetBO.

The operator B, which is defined by Eq. (25), reads

a'
B=5(r—r') . —p + U"[x(~)]+2E g {W'[x(~) —x„]]

n

+5(r—r') g W"[x(r) x„]F„(~) co()E—G(r r') g—W'[x(~}——x„]W'[x(r') —x„], (Al)

where

F„(r)= W[x(~)—x„] ,'o)0 fdr G—(r—r)W[x(Y) x—„] . —

It is reduced to the operator Bo
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Bo=5(T T—') —p + U"(x )

we rewrite the expression for Bp in the more compact
form

+2E g(8"[x —x„])
a'

Bo =5(T T ) p +pQ pcooRG(T T ) .
BH

(A4)

co—os G(T T'—) g ( W'[x —x„])2, (A2)
We proceed further by defining an auxiliary operator Q
corresponding to a harmonic oscillator of mass p and fre-
quency cop whose determinant is a well-known quantity

for x(T)=x,x being any arbitrary minimum of the
effective periodic potential U (x}.

Defining the quantities

pR =E g [W'(x —x„)]
(A3)

2

+@coo, N Detg = e
Pp

PCOp

One can obviously express DetBp as

DetBo=Det(QBog ')=Det(QBo)/Detg .

(A5)

(A6)

pQ = U"(x }+2pR, After evaluating the kernel of the product operator QBo

E(QBo)=f dT"5(T T")Q—(T"}Bo(T" T')—

p +@coo 5(T T ) p +pQ pcooRG(T T )T'

=5(T T')— P +PCOp
a'

2

ciT'2

2—p +pQ —2p cooR (A7)

we can write

c}2 2

QBo = p +@coo p +pQ —2„cooR
c} c}

t}
DetBo =Det —p +paP,

XDet —p +pcs& Detg, (Alo)

where

8'
p +pco)

c}7

8'
P +PN2

C}T'
(A8)

thus arriving at the final result

N
—2D g ~ @ 1 2 0N DetBp =— e

P N~N2
(A 1 1)

~2 —1 [(~2+f12)+Q( 2 f12)2+8 ~2 ] (A9)

We are now able to express DetBp in terms of simple os-
cillator determinants

The combination of frequencies (co, +co2 —coo) in the
exponent may be interpreted as twice the ground-state
energy of the particle when it is measured from the bot-
tom of the effective potential well. One can easily check
that this quantity tends to the value of cof if the interac-
tion with phonons is switched off.
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